Research Article
BibTex RIS Cite

Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması

Year 2022, Volume: 12 Issue: 3, 1592 - 1606, 01.09.2022
https://doi.org/10.21597/jist.1087730

Abstract

Bu çalışmada, uçucu kül (UK) ve yüksek fırın cürufunun (YFC) geopolimer betonların basınç dayanımı ve durabilite özellikleri üzerindeki sinerjik etkisini araştırmak için alümino-silikat kaynağı olarak UK ve YFC ve aktivatör olarak NaOH ve Na2SiO3 seçilmiştir. Bağlayıcı olarak %100-0, %80-20, %70-30, %60-40 ve %50-50 oranlarında uçucu kül ve yüksek fırın cürufu kullanılarak 5 geopolimer farklı beton grubu üretilmiştir. Yapılan ön deneyler neticesinde, geopolimer beton numunelere 90°C’de 72 saat ısı kürü uygulanmıştır. Üretilen numunelerin 3, 7, 28 ve 90 günlük basınç dayanımları tespit edilmiştir. Durabilite deneyleri kapsamında 28 günlük numuneler 200°C, 400°C, 600°C ve 800°C olmak üzere 4 farklı yüksek sıcaklık etkisine maruz bırakılmıştır. Yüksek sıcaklıktan sonra numunelerin basınç dayanımı, kılcal su emme katsayıları, ağırlık değişimleri ve ultrasonik ses hızları tespit edilmiştir. İçyapı analizi kapsamında yüksek sıcaklık etkisinden sonra SEM analizi yapılmıştır. Sonuç olarak uçucu kül esaslı geopolimer üretiminde cüruf eklenmesi ile betonun mekanik ve durabilite özellikleri gelişmiş ve daha yoğun bir mikroyapı elde edilmiştir. Yüksek sıcaklık etkisinden sonra tüm karışımlar içinde en yüksek basınç dayanım sonuçları %50 cüruf içeren karışıma aittir.

Supporting Institution

Atatürk Üniversitesi Bilimsel Araştırma Projeleri (BAP) Birimi

Project Number

FYL-2021-9650

Thanks

Bu çalışma Atatürk Üniversitesi Bilimsel Araştırma Projeleri (BAP) Programı tarafından desteklenen “Yüksek Sıcaklıktan Sonra Asit, Sülfat ve Tuz Etkisine Maruz Kalan Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması” isimli FYL-2021-9650 kodlu yüksek lisans tez araştırma projesi ile desteklenmiştir. Desteklerinden dolayı Atatürk Üniversitesi BAP Birimine teşekkür ederiz.

References

  • Akbulut F, Polat R, Karagöl F, 2021. Erzurum Pasinler Bölgesi Perlitinin Geopolimer Üretiminde Kullanımının Araştırılması. Türk Doğa ve Fen Dergisi, 10 (1): 37–45.
  • Al-Mashhadani M, 2021. Strength Behavior of Geopolymer Based SIFCON with Different Fibers. Avrupa Bilim ve Teknoloji Dergisi, 28 (28): 1342–1347.
  • ASTM C 597-16, 2016. Standard Test Method for Pulse Velocity Through Concrete. 4.
  • Barbosa VFF, MacKenzie KJD, 2003. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, 38 (2): 319–331.
  • Brough AR, Atkinson A, 2002. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32 (6): 865–879.
  • Das S, Saha P, Prajna Jena S, Panda P, 2021. Geopolymer concrete: Sustainable green concrete for reduced greenhouse gas emission – A review. Materials Today: Proceedings, 2214-7853: 1-10.
  • Davidovits J, 1991. Geopolymers-Inorganic polymeric new materials. Journal of Thermal Analysis, 37 (8): 1633–1656.
  • Davidovits J, 2020. Geopolymer Chemistry and Applications. 5-th edition, A. 680. Institute Geopolymere–Saint-Quentin. France.
  • Deb PS, Nath P, Sarker PK, 2014. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design, 62: 32–39.
  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ, 2006. Geopolymer technology: The current state of the art. Journal of Materials Science, 42 (9): 2917–2933.
  • Ekinci E, Türkmen İ, 2021. Farklı Aktivatör Ve Ham Madde Değişkenlerinin Geopolimer Hamurun Basınç Dayanımına Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 24 (24): 169–175.
  • Elvery RH, İbrahim LAM, 1976. Ultrasonıc Assessment Of Concrete Strength At Early Ages. Undefined, 28 (97): 181–190.
  • Ghosh R, Sagar SP, Kumar A, Gupta SK, Kumar S, 2018. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of Building Engineering, 16: 39–44.
  • Gustavo W, Saavedra V, Daniela Angulo E, Mejía De Gutiérrez R, 2016. Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. Journal of Materials in Civil Engineering, 28 (12): 1-8.
  • Haddad RH, Alshbuol O, 2016. Production of geopolymer concrete using natural pozzolan: A parametric study. Construction and Building Materials, 114: 699–707.
  • Hendriks CA, Worrell E, Price L, Martin N, Ozawa Meida L, de Jager D, Riemer P, 1999. Emission reduction of greenhouse gases from the cement industry. Greenhouse Gas Control Technologies, 4: 939–944.
  • İsa Atabey İ, Ay C, 2021. Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, 24 (24): 184–189.
  • Ismail N, El-Hassan H, Asce M, 2018. Development and Characterization of Fly Ash–Slag Blended Geopolymer Mortar and Lightweight Concrete. Journal of Materials in Civil Engineering, 30 (4): 1-10.
  • Kong DLY, Sanjayan JG, Sagoe-Crentsil K, 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 37 (12): 1583–1589.
  • Kuranlı ÖF, Uysal M, Abbas MT, Cosgun T, Niş A, Aygörmez Y, Canpolat O, Al-mashhadani MM, 2022. Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Construction and Building Materials, 325: 126747.
  • Li Z, Liu S, 2007. Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer. Journal of Materials in Civil Engineering, 19 (6): 470–474.
  • Lloyd NA, Rangan BV, 2010. Geopolymer Concrete with Fly Ash. Second International Conference on Sustainable Construction Materials and Technologies, 2010, pp:1493–1504.
  • Lu C, Wang Q, Liu Y, Xue T, Yu Q, Chen S, 2022a. Influence of new organic alkali activators on microstructure and strength of fly ash geopolymer. Ceramics International, 48 (9): 1-8.
  • Lu C, Wang Q, Liu Y, Xue T, Yu Q, Chen S, 2022b. Influence of new organic alkali activators on microstructure and strength of fly ash geopolymer. Ceramics International, 48 (9): 1-7.
  • Luo Y, Li SH, Klima KM, Brouwers HJH, Yu Q, 2022. Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cement and Concrete Research, 151: 106649.
  • Marvila MT, de Azevedo ARG, de Vieira CMF, 2021. Reaction mechanisms of alkali-activated materials. Revista Ibracon de Estruturas e Materiais, 14 (3): 1-19.
  • Marvila MT, de Azevedo ARG, de Matos PR, Monteiro SN, Vieira CMF, 2021. Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials (Basel, Switzerland), 14 (8): 1-17.
  • Nath P, Sarker PK, 2014. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66: 163–171.
  • Nawaz M, Heitor A, Sivakumar M, 2020. Geopolymers in construction - recent developments. Construction and Building Materials, 260: 120472.
  • Negahban E, Bagheri A, Sanjayan J, 2021. Pore gradation effect on Portland cement and geopolymer concretes. Cement and Concrete Composites, 122: 104141. Neupane K, 2016. Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry. Mechanics of Materials, 103: 110–122.
  • Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM, 2010. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40 (2): 189–196.
  • Özcan U, Güngör S, 2019. Sürdürülebilir Bir Yöntem / Betonda Puzolan Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 15: 176–182.
  • Roy DM, 1999. Alkali-activated cements: Opportunities and challenges. Cement and Concrete Research, 29 (2): 249–254.
  • Sharma A, Basumatary N, Singh P, Kapoor K, Singh SP, 2021. Potential of geopolymer concrete as substitution for conventional concrete: A review. Materials Today: Proceedings, 2214-7853: 1-7.
  • Song H, Wei L, Ji Y, Cao L, Cheng F, 2018. Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Advanced Powder Technology, 29 (6): 1487–1492. Stafford FN, Raupp-Pereira F, Labrincha JA, Hotza D, 2016. Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137: 1293–1299.
  • Tayeh BA, Zeyad AM, Agwa IS, Amin M, 2021a. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15: 1-6.
  • Tayeh BA, Zeyad AM, Agwa IS, Amin M, 2021b. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15: 1-7.
  • TS EN 1097-6, 2013. Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğuve su emme oranının tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 12390-3, 2019. Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 13057, 2004. Beton yapılar, Koruma ve tamir için mamul ve sistemler, Deney metotları, Kılcal su emmeye direncin tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 933-1, 2012. Agregaların geometrik özellikleri için deneyler bölüm 1: Tane büyüklüğü dağılımı tayini- Eleme metodu. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • Turhan D, Karagöl F, Polat R, 2021. Investigation of the Properties of Perlite-Based Geopolymer Concrete with Red Mud. PACE-2021 International Congress on the Phenomenological Aspects of Civil Engineering, 2021, pp:1–7.
  • Wang J, Zheng C, Mo L, GangaRao H, Liang R, 2022. Assessment of recycling use of GFRP powder as replacement of fly ash in geopolymer paste and concrete at ambient and high temperatures. Ceramics International, 2-14.
  • Wu B, Ma X, Deng H, Li Y, Xiang Y, Zhu Y, 2022. An efficient approach for mitigation of efflorescence in fly ash-based geopolymer mortars under high-low humidity cycles. Construction and Building Materials, 317: 1-10.
  • Yip CK, Lukey GC, Van Deventer JSJ, 2005. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35 (9): 1688–1697.
  • Zhang P, Gao Z, Wang J, Guo J, Hu S, Ling Y, 2020. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270: 1-10.
  • Zhang Z, Provis JL, Reid A, Wang H, 2014. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64: 30–41.

Examination of Mechanical and Durability Properties of Fly Ash Based and Slag Added Geopolymer Concretes

Year 2022, Volume: 12 Issue: 3, 1592 - 1606, 01.09.2022
https://doi.org/10.21597/jist.1087730

Abstract

In this study, a mixture of fly ash (UK) and blast furnace slag (YFC) as an alumino-silicate source and NaOH and Na2SiO3 as the activators were chosen to investigate the synergistic effects of the UK and YFC on the mechanical and durability properties of geopolymer concrete. 5 different geopolymer concrete groups were produced using fly ash and blast furnace slag at the rates of 100-0, 80-20%, 70-30%, 60-40%, and 50-50% as binders. As a result of the preliminary experiments, the produced geopolymer samples were cured at 90°C for 72 hours. The compressive strengths of 3, 7, 28, and 90 days of produced samples were determined. Within the scope of durability tests, 28 day’s samples were exposed to 4 different high-temperature effects such as 200°C, 400°C, 600°C, and 800°C. The compressive strengths, capillary water absorption coefficients, weight changes, and UPV values of the samples were determined after high temperatures. As the internal structure analysis, scanning electron microscopy (SEM) analysis was performed after the high-temperature effect. As a result, with the addition of slag in the production of fly ash-based geopolymer, the mechanical and durability properties of the concrete improved and it was obtained a denser microstructure. After the effect of high temperature, among all mixtures, the highest compressive strength results belong to the mixture containing 50% slag.

Project Number

FYL-2021-9650

References

  • Akbulut F, Polat R, Karagöl F, 2021. Erzurum Pasinler Bölgesi Perlitinin Geopolimer Üretiminde Kullanımının Araştırılması. Türk Doğa ve Fen Dergisi, 10 (1): 37–45.
  • Al-Mashhadani M, 2021. Strength Behavior of Geopolymer Based SIFCON with Different Fibers. Avrupa Bilim ve Teknoloji Dergisi, 28 (28): 1342–1347.
  • ASTM C 597-16, 2016. Standard Test Method for Pulse Velocity Through Concrete. 4.
  • Barbosa VFF, MacKenzie KJD, 2003. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials Research Bulletin, 38 (2): 319–331.
  • Brough AR, Atkinson A, 2002. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cement and Concrete Research, 32 (6): 865–879.
  • Das S, Saha P, Prajna Jena S, Panda P, 2021. Geopolymer concrete: Sustainable green concrete for reduced greenhouse gas emission – A review. Materials Today: Proceedings, 2214-7853: 1-10.
  • Davidovits J, 1991. Geopolymers-Inorganic polymeric new materials. Journal of Thermal Analysis, 37 (8): 1633–1656.
  • Davidovits J, 2020. Geopolymer Chemistry and Applications. 5-th edition, A. 680. Institute Geopolymere–Saint-Quentin. France.
  • Deb PS, Nath P, Sarker PK, 2014. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials & Design, 62: 32–39.
  • Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ, 2006. Geopolymer technology: The current state of the art. Journal of Materials Science, 42 (9): 2917–2933.
  • Ekinci E, Türkmen İ, 2021. Farklı Aktivatör Ve Ham Madde Değişkenlerinin Geopolimer Hamurun Basınç Dayanımına Etkisinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, 24 (24): 169–175.
  • Elvery RH, İbrahim LAM, 1976. Ultrasonıc Assessment Of Concrete Strength At Early Ages. Undefined, 28 (97): 181–190.
  • Ghosh R, Sagar SP, Kumar A, Gupta SK, Kumar S, 2018. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. Journal of Building Engineering, 16: 39–44.
  • Gustavo W, Saavedra V, Daniela Angulo E, Mejía De Gutiérrez R, 2016. Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack. Journal of Materials in Civil Engineering, 28 (12): 1-8.
  • Haddad RH, Alshbuol O, 2016. Production of geopolymer concrete using natural pozzolan: A parametric study. Construction and Building Materials, 114: 699–707.
  • Hendriks CA, Worrell E, Price L, Martin N, Ozawa Meida L, de Jager D, Riemer P, 1999. Emission reduction of greenhouse gases from the cement industry. Greenhouse Gas Control Technologies, 4: 939–944.
  • İsa Atabey İ, Ay C, 2021. Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, 24 (24): 184–189.
  • Ismail N, El-Hassan H, Asce M, 2018. Development and Characterization of Fly Ash–Slag Blended Geopolymer Mortar and Lightweight Concrete. Journal of Materials in Civil Engineering, 30 (4): 1-10.
  • Kong DLY, Sanjayan JG, Sagoe-Crentsil K, 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research, 37 (12): 1583–1589.
  • Kuranlı ÖF, Uysal M, Abbas MT, Cosgun T, Niş A, Aygörmez Y, Canpolat O, Al-mashhadani MM, 2022. Evaluation of slag/fly ash based geopolymer concrete with steel, polypropylene and polyamide fibers. Construction and Building Materials, 325: 126747.
  • Li Z, Liu S, 2007. Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer. Journal of Materials in Civil Engineering, 19 (6): 470–474.
  • Lloyd NA, Rangan BV, 2010. Geopolymer Concrete with Fly Ash. Second International Conference on Sustainable Construction Materials and Technologies, 2010, pp:1493–1504.
  • Lu C, Wang Q, Liu Y, Xue T, Yu Q, Chen S, 2022a. Influence of new organic alkali activators on microstructure and strength of fly ash geopolymer. Ceramics International, 48 (9): 1-8.
  • Lu C, Wang Q, Liu Y, Xue T, Yu Q, Chen S, 2022b. Influence of new organic alkali activators on microstructure and strength of fly ash geopolymer. Ceramics International, 48 (9): 1-7.
  • Luo Y, Li SH, Klima KM, Brouwers HJH, Yu Q, 2022. Degradation mechanism of hybrid fly ash/slag based geopolymers exposed to elevated temperatures. Cement and Concrete Research, 151: 106649.
  • Marvila MT, de Azevedo ARG, de Vieira CMF, 2021. Reaction mechanisms of alkali-activated materials. Revista Ibracon de Estruturas e Materiais, 14 (3): 1-19.
  • Marvila MT, de Azevedo ARG, de Matos PR, Monteiro SN, Vieira CMF, 2021. Rheological and the Fresh State Properties of Alkali-Activated Mortars by Blast Furnace Slag. Materials (Basel, Switzerland), 14 (8): 1-17.
  • Nath P, Sarker PK, 2014. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66: 163–171.
  • Nawaz M, Heitor A, Sivakumar M, 2020. Geopolymers in construction - recent developments. Construction and Building Materials, 260: 120472.
  • Negahban E, Bagheri A, Sanjayan J, 2021. Pore gradation effect on Portland cement and geopolymer concretes. Cement and Concrete Composites, 122: 104141. Neupane K, 2016. Fly ash and GGBFS based powder-activated geopolymer binders: A viable sustainable alternative of portland cement in concrete industry. Mechanics of Materials, 103: 110–122.
  • Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM, 2010. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40 (2): 189–196.
  • Özcan U, Güngör S, 2019. Sürdürülebilir Bir Yöntem / Betonda Puzolan Kullanımı. Avrupa Bilim ve Teknoloji Dergisi, 15: 176–182.
  • Roy DM, 1999. Alkali-activated cements: Opportunities and challenges. Cement and Concrete Research, 29 (2): 249–254.
  • Sharma A, Basumatary N, Singh P, Kapoor K, Singh SP, 2021. Potential of geopolymer concrete as substitution for conventional concrete: A review. Materials Today: Proceedings, 2214-7853: 1-7.
  • Song H, Wei L, Ji Y, Cao L, Cheng F, 2018. Heavy metal fixing and heat resistance abilities of coal fly ash-waste glass based geopolymers by hydrothermal hot pressing. Advanced Powder Technology, 29 (6): 1487–1492. Stafford FN, Raupp-Pereira F, Labrincha JA, Hotza D, 2016. Life cycle assessment of the production of cement: A Brazilian case study. Journal of Cleaner Production, 137: 1293–1299.
  • Tayeh BA, Zeyad AM, Agwa IS, Amin M, 2021a. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15: 1-6.
  • Tayeh BA, Zeyad AM, Agwa IS, Amin M, 2021b. Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete. Case Studies in Construction Materials, 15: 1-7.
  • TS EN 1097-6, 2013. Agregaların mekanik ve fiziksel özellikleri için deneyler bölüm 6: Tane yoğunluğuve su emme oranının tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 12390-3, 2019. Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 13057, 2004. Beton yapılar, Koruma ve tamir için mamul ve sistemler, Deney metotları, Kılcal su emmeye direncin tayini. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • TS EN 933-1, 2012. Agregaların geometrik özellikleri için deneyler bölüm 1: Tane büyüklüğü dağılımı tayini- Eleme metodu. Türk Standartları Enstitüsü, Ankara, Türkiye.
  • Turhan D, Karagöl F, Polat R, 2021. Investigation of the Properties of Perlite-Based Geopolymer Concrete with Red Mud. PACE-2021 International Congress on the Phenomenological Aspects of Civil Engineering, 2021, pp:1–7.
  • Wang J, Zheng C, Mo L, GangaRao H, Liang R, 2022. Assessment of recycling use of GFRP powder as replacement of fly ash in geopolymer paste and concrete at ambient and high temperatures. Ceramics International, 2-14.
  • Wu B, Ma X, Deng H, Li Y, Xiang Y, Zhu Y, 2022. An efficient approach for mitigation of efflorescence in fly ash-based geopolymer mortars under high-low humidity cycles. Construction and Building Materials, 317: 1-10.
  • Yip CK, Lukey GC, Van Deventer JSJ, 2005. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35 (9): 1688–1697.
  • Zhang P, Gao Z, Wang J, Guo J, Hu S, Ling Y, 2020. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. Journal of Cleaner Production, 270: 1-10.
  • Zhang Z, Provis JL, Reid A, Wang H, 2014. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64: 30–41.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Nisa Yazıcı This is me 0000-0001-6249-7110

Fatma Karagöl 0000-0003-1760-1972

Project Number FYL-2021-9650
Early Pub Date August 26, 2022
Publication Date September 1, 2022
Submission Date March 14, 2022
Acceptance Date April 26, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Yazıcı, N., & Karagöl, F. (2022). Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması. Journal of the Institute of Science and Technology, 12(3), 1592-1606. https://doi.org/10.21597/jist.1087730
AMA Yazıcı N, Karagöl F. Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması. J. Inst. Sci. and Tech. September 2022;12(3):1592-1606. doi:10.21597/jist.1087730
Chicago Yazıcı, Nisa, and Fatma Karagöl. “Uçucu Kül Esaslı Ve Cüruf Katkılı Geopolimer Betonların Mekanik Ve Durabilite Özelliklerinin Araştırılması”. Journal of the Institute of Science and Technology 12, no. 3 (September 2022): 1592-1606. https://doi.org/10.21597/jist.1087730.
EndNote Yazıcı N, Karagöl F (September 1, 2022) Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması. Journal of the Institute of Science and Technology 12 3 1592–1606.
IEEE N. Yazıcı and F. Karagöl, “Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması”, J. Inst. Sci. and Tech., vol. 12, no. 3, pp. 1592–1606, 2022, doi: 10.21597/jist.1087730.
ISNAD Yazıcı, Nisa - Karagöl, Fatma. “Uçucu Kül Esaslı Ve Cüruf Katkılı Geopolimer Betonların Mekanik Ve Durabilite Özelliklerinin Araştırılması”. Journal of the Institute of Science and Technology 12/3 (September 2022), 1592-1606. https://doi.org/10.21597/jist.1087730.
JAMA Yazıcı N, Karagöl F. Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması. J. Inst. Sci. and Tech. 2022;12:1592–1606.
MLA Yazıcı, Nisa and Fatma Karagöl. “Uçucu Kül Esaslı Ve Cüruf Katkılı Geopolimer Betonların Mekanik Ve Durabilite Özelliklerinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 12, no. 3, 2022, pp. 1592-06, doi:10.21597/jist.1087730.
Vancouver Yazıcı N, Karagöl F. Uçucu Kül Esaslı ve Cüruf Katkılı Geopolimer Betonların Mekanik ve Durabilite Özelliklerinin Araştırılması. J. Inst. Sci. and Tech. 2022;12(3):1592-606.