Research Article
BibTex RIS Cite

Dynamic Investigations of Rare Gas-NO+ Interactions

Year 2022, Volume: 12 Issue: 3, 1518 - 1528, 01.09.2022
https://doi.org/10.21597/jist.1103258

Abstract

In this work, integral cross sections and rate constants of ground states of the Rg-NO+ (X1Σ+) system were calculated from quantum mechanical approach. The Rg separately defines the three inert gaseous of He, Ne and Ar elements. Equilibrium geometry values of the Rg-NO+ (X1Σ+) complexes were calculated employing the CCSD(T)-F12 method with cc-pVTZ-F12 basis set augmented with mid-bond functions. After using analytical forms of the potentials, vibrational frequencies and dissociation energies were calculated. The dissociation energy values of 196.6, 364.4 and 1045.0 cm-1 were found for He-NO+, Ne-NO+ and Ar-NO+ systems, respectively. Zero-point energy (ZPE) values of the systems were found to be 1240.4, 1251.6 and 1284.9 cm-1 for He-NO+, Ne-NO+ and Ar-NO+ systems, respectively. Differential cross sections and rate constants were found in a broad range of energy and temperature for He, Ne and Ar rare gaseous. The rank order of the magnitudes of the rotational transition rate coefficients was compared and it was found that they can differ slightly for a few temperatures. Integral cross sections and collision rate constants were compared to those of experimental and theoretical studies in literature and they were found to be well agreed.

Thanks

I would like to thank to my advisor Niyazi Bulut and to Cahit Orek for all contributions.

References

  • Adler TB, Knizia G, Werner HJ, 2007. A simple and efficient CCSD(T)-F12 approximation. Journal of Chemical Physics, 127. doi: 10.1063/1.2817618.
  • Albritton DL, Schmeltekop AL, Zare RN, 1979. Potential energy curves for NO+. Journal of Chemical Physics, 71(8). doi: 10.1063/1.438757.
  • Arthurs AM, Dalgarno A, 1960. The Theory of Scattering by a Rigid Rotator. Proceedings of the Royal Society A, 256: 540–551. doi: 10.1098/rspa.1960.0125.
  • Boys SF, Bernardi F, 1970. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19: 553–556. doi: 10.1080/00268977000101561.
  • Bush AM, Wright TG, Spirko V, Jurek M, 1997. The intermolecular potential energy surface of the Ar⋅NO+ cationic complex. Journal of Chemical Physics, 106: 4531. doi: 10.1063/1.473496.
  • Cernicharo J, Bailleux S, Alekseev E, Fuente A, Roueff E, Gerin M, Tercero B, Treviño-Morales SP, Marcelino N, Bachiller R, 2014. Tentative detection of the nitrosylium ion in space. Astrophysical Journal, 795(1). doi: 10.1088/0004-637X/795/1/40.
  • Denis-Alpizar O, Stoecklin T, 2015. Rovibrational rate coefficients of NO+ in collision with He. Monthly Notices of the Royal Astronomical Society, 451: 2986–2990. doi: 10.1093/mnras/stv1137.
  • Fourré I, Raoult M, 1995. Vibrational structure of the ArNO+ van de Waals cation. Journal of Chemical Physics, 199: 215. doi: 10.1016/0301-0104(95)99001-L.
  • Halvick P, Stoecklin T, Lique F, Hochlaf M, 2011. Explicitly correlated treatment of the Ar–NO+ cation. Journal of Chemical Physics, 135(4): 044312. doi: 10.1063/1.3614502.
  • Herbst E, Klemperer W, 1973. The Formation and Depletion of Molecules in Dense Interstellar Clouds. The Astrophysical Journal, 185. doi: 10.1086/152436.
  • Hirst DM, 1985. Potential Energy Surfaces: Molecular Structure and Reaction Dynamics. UK: Taylor & Francis group, UK.
  • Hutson JM, Green S, 2012. MOLSCAT: MOLecular SCATtering v.14. http://adsabs.harvard.edu/abs/2012ascl.soft06004H. (Date of access: 20 June 2018).
  • Irikura KK, 2007. Experimental vibrational zero-point energies: Diatomic molecules. Journal of Physical and Chemical Reference Data, 36(2). doi: 10.1063/1.2436891.
  • Knizia G, Adler TB, Werner HJ, 2009. Simplified CCSD(T)-F12 methods: Theory and benchmarks. Journal of Chemical Physics, 130. doi: 10.1063/1.3054300.
  • Lee EPF, Gamblin SD, Wright TG, 2000. The interaction energies of the Rg·NO cationic complexes: Rg·NO. Chemical Physics Letters, 322: 377. doi: 10.1016/S0009-2614(00)00430-9.
  • Lee EPF, Soldan P, Wright TG, 1998. Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg=He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 102: 6858–6864. doi: 10.1021/jp981696+.
  • Orek C, Klos J, Lique F, Bulut N, 2016. Ab initio studies of the Rg–NO+(X1Σ+) van der Waals complexes (Rg=He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 144(20): 204303. doi: 10.1063/1.4950813.
  • Pickles JB, Williams DA, 1977. Model for surface reactions on interstellar grains - A numerical study. Astrophysics and Space Science, 52(2). doi: 10.1007/BF01093879.
  • Robbe JM, Bencheikh M, Flament JP, 1993. Ab initio investigation of the ground state potential surfaces of He-NO+ and Ar-NO+. Chemical Physics Letters, 210(1–3): 170–174. doi: 10.1016/0009-2614(93)89119-3.
  • Sato K, Achiba Y, Kimura K, 1984. The Ar-NO van der Waals complex studied by resonant multiphoton ionization spectroscopy involving photoion and photoelectron measurements. Journal of Chemical Physics, 81(57). doi: 10.1063/1.447346.
  • Si-sheng, W, Rui-hong K, Liu-si S, Li-qing H, Shi-Kang Z, Zhen-ya W, 2007. Theoretical study of RgNO (Rg=He, Ne, Ar and Kr) complexes. Journal of Chemical Physics, 20(113). doi: 10.1360/cjcp2007.20(2).113.6.
  • Singh PD, Maciel WJ, 1980. On the possibility of the existence of NO+ in interstellar space. Astrophysics and Space Science, 68(1). doi: 10.1007/BF00641645.
  • Soldan P, Lee E, Wright T, 2002. The intermolecular potential energy surface of the He⋅NO+ cationic complex. Journal of Chemical Physics, 116: 2395. doi: 10.1063/1.1433507.
  • Stoecklin T, Voronin A, 2011. Vibrational and rotational cooling of NO+ in collisions with He. Journal of Chemical Physics, 134(204312). doi: 10.1063/1.3590917.
  • Takahashi M, 1992. Two-color (2+1′) multiphoton ionization threshold photoelectron study of the Ar-NO van der Waals complex: Observation of intermolecular vibrational progressions of the Ar-NO+ cation. The Journal of Chemical Physics, 96(4). doi: 10.1063/1.462010.
  • Werner, HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, 2012. Molpro: a general-purpose quantum chemistry program package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(2): 242–253. doi: 10.1002/wcms.82.
  • Wright TG, 1996. Geometric structure of Ar⋅NO+: Revisited. A failure of density functional theory. Journal of Chemical Physics, 105: 7579. doi: 10.1063/1.472597.
  • Wright TG, Spirko V, Hobza P, 1994. Ab initio calculations on Ar-NO+: Structure and vibrational frequencies. Journal of Chemical Physics, 100: 5403–5410. doi: 10.1063/1.467157.
Year 2022, Volume: 12 Issue: 3, 1518 - 1528, 01.09.2022
https://doi.org/10.21597/jist.1103258

Abstract

References

  • Adler TB, Knizia G, Werner HJ, 2007. A simple and efficient CCSD(T)-F12 approximation. Journal of Chemical Physics, 127. doi: 10.1063/1.2817618.
  • Albritton DL, Schmeltekop AL, Zare RN, 1979. Potential energy curves for NO+. Journal of Chemical Physics, 71(8). doi: 10.1063/1.438757.
  • Arthurs AM, Dalgarno A, 1960. The Theory of Scattering by a Rigid Rotator. Proceedings of the Royal Society A, 256: 540–551. doi: 10.1098/rspa.1960.0125.
  • Boys SF, Bernardi F, 1970. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Molecular Physics, 19: 553–556. doi: 10.1080/00268977000101561.
  • Bush AM, Wright TG, Spirko V, Jurek M, 1997. The intermolecular potential energy surface of the Ar⋅NO+ cationic complex. Journal of Chemical Physics, 106: 4531. doi: 10.1063/1.473496.
  • Cernicharo J, Bailleux S, Alekseev E, Fuente A, Roueff E, Gerin M, Tercero B, Treviño-Morales SP, Marcelino N, Bachiller R, 2014. Tentative detection of the nitrosylium ion in space. Astrophysical Journal, 795(1). doi: 10.1088/0004-637X/795/1/40.
  • Denis-Alpizar O, Stoecklin T, 2015. Rovibrational rate coefficients of NO+ in collision with He. Monthly Notices of the Royal Astronomical Society, 451: 2986–2990. doi: 10.1093/mnras/stv1137.
  • Fourré I, Raoult M, 1995. Vibrational structure of the ArNO+ van de Waals cation. Journal of Chemical Physics, 199: 215. doi: 10.1016/0301-0104(95)99001-L.
  • Halvick P, Stoecklin T, Lique F, Hochlaf M, 2011. Explicitly correlated treatment of the Ar–NO+ cation. Journal of Chemical Physics, 135(4): 044312. doi: 10.1063/1.3614502.
  • Herbst E, Klemperer W, 1973. The Formation and Depletion of Molecules in Dense Interstellar Clouds. The Astrophysical Journal, 185. doi: 10.1086/152436.
  • Hirst DM, 1985. Potential Energy Surfaces: Molecular Structure and Reaction Dynamics. UK: Taylor & Francis group, UK.
  • Hutson JM, Green S, 2012. MOLSCAT: MOLecular SCATtering v.14. http://adsabs.harvard.edu/abs/2012ascl.soft06004H. (Date of access: 20 June 2018).
  • Irikura KK, 2007. Experimental vibrational zero-point energies: Diatomic molecules. Journal of Physical and Chemical Reference Data, 36(2). doi: 10.1063/1.2436891.
  • Knizia G, Adler TB, Werner HJ, 2009. Simplified CCSD(T)-F12 methods: Theory and benchmarks. Journal of Chemical Physics, 130. doi: 10.1063/1.3054300.
  • Lee EPF, Gamblin SD, Wright TG, 2000. The interaction energies of the Rg·NO cationic complexes: Rg·NO. Chemical Physics Letters, 322: 377. doi: 10.1016/S0009-2614(00)00430-9.
  • Lee EPF, Soldan P, Wright TG, 1998. Geometries and Binding Energies of Rg·NO+ Cationic Complexes (Rg=He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 102: 6858–6864. doi: 10.1021/jp981696+.
  • Orek C, Klos J, Lique F, Bulut N, 2016. Ab initio studies of the Rg–NO+(X1Σ+) van der Waals complexes (Rg=He, Ne, Ar, Kr, and Xe). Journal of Chemical Physics, 144(20): 204303. doi: 10.1063/1.4950813.
  • Pickles JB, Williams DA, 1977. Model for surface reactions on interstellar grains - A numerical study. Astrophysics and Space Science, 52(2). doi: 10.1007/BF01093879.
  • Robbe JM, Bencheikh M, Flament JP, 1993. Ab initio investigation of the ground state potential surfaces of He-NO+ and Ar-NO+. Chemical Physics Letters, 210(1–3): 170–174. doi: 10.1016/0009-2614(93)89119-3.
  • Sato K, Achiba Y, Kimura K, 1984. The Ar-NO van der Waals complex studied by resonant multiphoton ionization spectroscopy involving photoion and photoelectron measurements. Journal of Chemical Physics, 81(57). doi: 10.1063/1.447346.
  • Si-sheng, W, Rui-hong K, Liu-si S, Li-qing H, Shi-Kang Z, Zhen-ya W, 2007. Theoretical study of RgNO (Rg=He, Ne, Ar and Kr) complexes. Journal of Chemical Physics, 20(113). doi: 10.1360/cjcp2007.20(2).113.6.
  • Singh PD, Maciel WJ, 1980. On the possibility of the existence of NO+ in interstellar space. Astrophysics and Space Science, 68(1). doi: 10.1007/BF00641645.
  • Soldan P, Lee E, Wright T, 2002. The intermolecular potential energy surface of the He⋅NO+ cationic complex. Journal of Chemical Physics, 116: 2395. doi: 10.1063/1.1433507.
  • Stoecklin T, Voronin A, 2011. Vibrational and rotational cooling of NO+ in collisions with He. Journal of Chemical Physics, 134(204312). doi: 10.1063/1.3590917.
  • Takahashi M, 1992. Two-color (2+1′) multiphoton ionization threshold photoelectron study of the Ar-NO van der Waals complex: Observation of intermolecular vibrational progressions of the Ar-NO+ cation. The Journal of Chemical Physics, 96(4). doi: 10.1063/1.462010.
  • Werner, HJ, Knowles PJ, Knizia G, Manby FR, Schütz M, 2012. Molpro: a general-purpose quantum chemistry program package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(2): 242–253. doi: 10.1002/wcms.82.
  • Wright TG, 1996. Geometric structure of Ar⋅NO+: Revisited. A failure of density functional theory. Journal of Chemical Physics, 105: 7579. doi: 10.1063/1.472597.
  • Wright TG, Spirko V, Hobza P, 1994. Ab initio calculations on Ar-NO+: Structure and vibrational frequencies. Journal of Chemical Physics, 100: 5403–5410. doi: 10.1063/1.467157.
There are 28 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Fatih Özkalaycı 0000-0001-5711-1068

Early Pub Date August 26, 2022
Publication Date September 1, 2022
Submission Date April 14, 2022
Acceptance Date July 5, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Özkalaycı, F. (2022). Dynamic Investigations of Rare Gas-NO+ Interactions. Journal of the Institute of Science and Technology, 12(3), 1518-1528. https://doi.org/10.21597/jist.1103258
AMA Özkalaycı F. Dynamic Investigations of Rare Gas-NO+ Interactions. J. Inst. Sci. and Tech. September 2022;12(3):1518-1528. doi:10.21597/jist.1103258
Chicago Özkalaycı, Fatih. “Dynamic Investigations of Rare Gas-NO+ Interactions”. Journal of the Institute of Science and Technology 12, no. 3 (September 2022): 1518-28. https://doi.org/10.21597/jist.1103258.
EndNote Özkalaycı F (September 1, 2022) Dynamic Investigations of Rare Gas-NO+ Interactions. Journal of the Institute of Science and Technology 12 3 1518–1528.
IEEE F. Özkalaycı, “Dynamic Investigations of Rare Gas-NO+ Interactions”, J. Inst. Sci. and Tech., vol. 12, no. 3, pp. 1518–1528, 2022, doi: 10.21597/jist.1103258.
ISNAD Özkalaycı, Fatih. “Dynamic Investigations of Rare Gas-NO+ Interactions”. Journal of the Institute of Science and Technology 12/3 (September 2022), 1518-1528. https://doi.org/10.21597/jist.1103258.
JAMA Özkalaycı F. Dynamic Investigations of Rare Gas-NO+ Interactions. J. Inst. Sci. and Tech. 2022;12:1518–1528.
MLA Özkalaycı, Fatih. “Dynamic Investigations of Rare Gas-NO+ Interactions”. Journal of the Institute of Science and Technology, vol. 12, no. 3, 2022, pp. 1518-2, doi:10.21597/jist.1103258.
Vancouver Özkalaycı F. Dynamic Investigations of Rare Gas-NO+ Interactions. J. Inst. Sci. and Tech. 2022;12(3):1518-2.