Research Article
BibTex RIS Cite

Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü

Year 2022, Volume: 12 Issue: 4, 2054 - 2063, 01.12.2022
https://doi.org/10.21597/jist.1167022

Abstract

Bu çalışma, sentetik olarak hazırlanmış atık sudan Metilen Mavisi boyasının anot malzemesi olarak Ti/IrO2/RuO2 ve katot malzemesi olarak paslanmaz çelik kullanılarak laboratuvar ölçekli bir elektrooksidasyon prosesi (EOP) ile giderimini araştırmak için yapılmıştır. Atıksuyun başlangıç pH değeri (3.0, doğal pH (≈ 5.0), 7.0, 9.0 ve 11.0), akım yoğunluğu (1.0 mA cm-2, 1.5 mA cm-2, 2.0 mA cm-2 ve 2.5 mA cm-2), destek elektrolit türü (NaCI, KCI, Na2SO4 ve NaNO3) ve destek elektrolit konsantrasyonu (1.0 mM, 1.5 mM, 2.0 mM ve 2.5 mM) dahil olmak üzere proses değişkenlerinin Metilen Mavisi boya giderme verimliliği üzerindeki etkisi incelenmiştir. 30 dakikalık elektrokimyasal işlemde, Metilen Mavisi boyasının gideriminde en yüksek giderim (%78.31) doğal pH değerinde (≈5) elde edilmiştir. Destek elektrolit türü olarak %78.31’lik giderim verimi ile NaCI en iyi destek elektrolit olarak belirlendikten sonra, NaCI’nın konsantrasyonunun 1.0 mM’den 2.5 mM’ye çıkarılmasıyla giderim verimi %78.31’den %88.25’e kadar yükselmiştir. Giderimde etkisi incelenen son parametre olarak akım yoğunluğunun 1 mA cm-2’den 2.5 mA cm-2’ye artırılmasıyla Metilen Mavisi boya giderim verimi %78.31’den %88.98’e kadar artış görülmüştür. Deneysel sonuçlar Ti/IrO2/RuO2 anot kullanarak Metilen Mavisi boyasının etkin bir şekilde giderilmesinde elektrooksidasyon prosesinin uygunluğunu ortaya koymuştur. Özellikle dolaylı oksidasyonda Metilen Mavisi boyasının sadece redoks aracıları olarak görev yapan klorür iyonlarının varlığında elektroliz edildiği ve reaksiyonun klorür konsantrasyonundan ve uygulanan akım yoğunluğundan etkilendiği belirlenmiştir.

References

  • Ahmed DN, Naji LA, Faisal AAH., Al-Ansari N, Naushad M, 2020. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Scientific Reports, 10(1): 1–12.
  • Ali H, 2010. Biodegradation of synthetic dyes—a review. Water, Air, ve Soil Pollution, 213(1): 251–273. Alver E, Metin AÜ, Brouers F, 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154: 104–113.
  • Arora S, 2014. Textile dyes: it’s impact on environment and its treatment. Journal of Bioremediation ve Biodegredation, 5(3): 1.
  • Chankhanittha T, Nanan S, 2021. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. Journal of Colloid and Interface Science, 582: 412–427.
  • Dominguez CM, Oturan N, Romero A, Santos A, Oturan MA, 2018. Lindane degradation by electrooxidation process: effect of electrode materials on oxidation and mineralization kinetics. Water Research, 135: 220–230.
  • Dotto J, Fagundes-Klen MR, Veit MT, Palacio SM, Bergamasco R, 2019. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208: 656–665.
  • Fil BA, Özmetin C, Korkmaz M, 2012. Cationic dye (methylene blue) removal from aqueous solution by montmorillonite. Fu F, Wang Q, Tang B, 2010. Effective degradation of CI Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174(1–3): 17–22.
  • Gharibian S, Hazrati H, Rostamizadeh M, 2020. Continuous electrooxidation of Methylene Blue in filter press electrochemical flowcell: CFD simulation and RTD validation. Chemical Engineering and Processing - Process Intensification, 150: 107880.
  • Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y, 2022. Electrochemical degradation of methylene blue by Pb modified porous SnO2 anode. Chemosphere, 305: 135447.
  • Ingelsson M, Yasri N, Roberts EPL, 2020. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review. Water Research, 187: 116433.
  • İrdemez Ş, Özyay G, Torun FE, Kul S, Bingül Z, 2022. Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecological Chemistry and Engineering S, 29(2): 199–216.
  • Jawad NH, Najim ST, 2018. Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode. IOP Conference Series: Materials Science and Engineering, 454: 012023.
  • Kawde AN, Morsy MA, Odewunmi N, Mahfouz W, 2013. From Electrode Surface Fouling to Sensitive Electroanalytical Determination of Phenols. Electroanalysis, 25(6):1547–1555.
  • Kornaros M, Lyberatos G, 2006. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136(1): 95–102.
  • Kul S, Boncukcuoglu R, Yilmaz, AE, Fil BA, 2015. Treatment of Olive Mill Wastewater with Electro-Oxidation Method. Journal of the Electrochemical Society, 162(8): 41-47.
  • Liu X, You S, Ma F, Zhou H, 2021. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant. Frontiers of Environmental Science ve Engineering, 15(4): 1–10.
  • Mamián M, Torres W, Larmat FE, 2009. Electrochemical degradation of atrazine in aqueous solution at a platinum electrode. Port Electrochim Acta, 27(3): 371–379.
  • Martínez-Huitle CA, Brillas, E, 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87(3–4): 105–145.
  • Moreira FC, Boaventura RAR, Brillas E, Vilar VJP, 2017. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202: 217–261.
  • Niu J, Bao Y, Li Y, Chai Z, 2013. Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes. Chemosphere, 92(11): 1571–1577.
  • Pavithra KG, Jaikumar V, 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75: 1–19.
  • Periyasamy S, Muthuchamy M, 2018. Electrochemical oxidation of paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density. Journal of Environmental Chemical Engineering, 6(6): 7358–7367.
  • Piaskowski K, Świderska-Dąbrowska R, Zarzycki PK, 2018. Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. Journal of AOAC International, 101(5): 1371–1384.
  • Pinto C, Fernandes A, Lopes A, Nunes MJ, Baía A, Ciríaco L, Pacheco MJ, 2022. Reuse of Textile Dyeing Wastewater Treated by Electrooxidation. Water, 14(7): 1084.
  • Qiu J, Feng Y, Zhang X, Jia M, Yao J, 2017. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. Journal of Colloid and Interface Science, 499: 151–158.
  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A, 2010. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1–3): 70–80.
  • Rajkumar D, Song BJ, Kim JG, 2007. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments, 72(1): 1–7.
  • Rodríguez FA, Mateo MN, Aceves JM, Rivero EP, González I. 2013. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor. Environmental Technology, 34(5): 573–583.
  • Saaidia S, Delimi R, Benredjem Z, Mehellou A, Djemel A, Barbari K, 2017. Use of a PbO2 electrode of a lead-acid battery for the electrochemical degradation of methylene blue. Separation Science and Technology, 52(9): 1602–1614.
  • Sakalis A, Mpoulmpasakos K, Nickel U, Fytianos K, Voulgaropoulos A, 2005. Evaluation of a novel electrochemical pilot plant process for azo dyes removal from textile wastewater. Chemical Engineering Journal, 111(1): 63–70.
  • Sala M., López-Grimau V, Gutiérrez-Bouzán C, 2014. Photo-electrochemical treatment of reactive dyes in wastewater and reuse of the effluent: Method optimization. Materials, 7(11): 7349–7365.
  • Särkkä H, Bhatnagar A, Sillanpää M. 2015. Recent developments of electro-oxidation in water treatment — A review. Journal of Electroanalytical Chemistry, 754: 46–56.
  • Scialdone O, Randazzo S, Galia A, Silvestri G, 2009. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research, 43(8): 2260–2272.
  • Shahnaz T, Bedadeep D, Narayanasamy S, 2022. Investigation of the adsorptive removal of methylene blue using modified nanocellulose. International Journal of Biological Macromolecules, 200: 162–171.
  • Skіba M, Vorobyova V, Kovalenko I, Makarshenko N, 2020. Synthesis silver nanoparticles and its application for wastewater treatment: catalytic and photocatalytic degradation methylene blue. Water and Water Purıfıcatıon Technologıes and Technical News, 27: 2
  • Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X, 2010. Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochimica Acta, 55(11): 3606–3613.
  • Sözüdoğru O, Fil BA, Boncukcuoğlu R, Aladağ E, Kul S, 2016. Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis. Particulate Science and Technology, 34(1): 103–111.
  • Titchou FE, Zazou H, Afanga H, Gaayda JEl, Ait Akbour R, Nidheesh PV, Hamdani M, 2021. An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes. Journal of Water Process Engineering, 41: 102040.
  • Wang Y, Lin H, Jin F, Niu J, Zhao J, Bi Y, Li Y, 2016. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of The Total Environment, 557: 542–550.
  • Wiratini NM, Triyono T, Trisunaryanti W, Kuncaka A, 2021. Graphite/NiO/Ni Electrode for Electro-oxidation of the Remazol Black 5 Dye. Bulletin of Chemical Reaction Engineering ve Catalysis, 16(4): 847.
  • Wu W, Huang ZH, Lim TT, 2014. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480: 58–78.
  • Yang K, Liu Y, Qiao J, 2017. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Separation and Purification Technology, 189: 459–466.
  • Yao Y, Chen Q, Zhou J, 2022. Influence of typical electrolytes on electrooxidation of bio-refractory reactive dye. International Journal of Environmental Science and Technology, 19(3): 1799–1810.
  • Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B, 2019. Covalent organic frameworks for membrane separation. Chemical Society Reviews, 48(10): 2665–2681.
  • Zhang Q, Huang W, Hong J, Chen BY, 2018. Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2. Chemical Engineering Journal, 343: 662–675.
  • Zhuo Q, Wang J, Niu J, Yang B, Yang Y, 2020. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chemical Engineering Journal, 379: 122280.

Methylene Blue Removal by Electrooxidation Process Using Ti/IrO2/RuO2 Anode and Stainless Steel Cathode: The Role of Operating Parameters

Year 2022, Volume: 12 Issue: 4, 2054 - 2063, 01.12.2022
https://doi.org/10.21597/jist.1167022

Abstract

This study was carried out to investigate the removal of Methyl Blue dye from synthetically prepared wastewater by a lab-scale electrooxidation process using Ti/IrO2/RuO2 as the anode material and stainless steel as the cathode material. The effect of operating variables, including wastewater initial pH (3.0, natural pH (≈ 5.0), 7.0, 9.0, and 11.0), current density (1.0 mA cm-2, 1.5 mA cm-2, 2.0 mA cm-2, and 2.5 mA cm-2), type of support electrolyte (NaCI, KCI, Na2SO4, and NaNO3), and concentration of support electrolyte (1.0 mM, 1.5 mM, 2.0 mM, and 2.5 mM) on Methyl Blue dye removal efficiency was investigated. In the 30-minute electrochemical treatment, the highest removal (78.31%) of the Methyl Blue dye was obtained at the natural pH (≈5). After determining NaCl as the best-supporting electrolyte with 78.31% removal efficiency as the supporting electrolyte type, the removal efficiency increased from 78.31% to 88.25% by increasing the concentration of NaCl from 1.0 mM to 2.5 mM. As the last parameter whose effect was examined, Methyl Blue dye removal efficiency increased from 78.31% to 88.98% by increasing from 1.0 mA cm-2 to 2.5 mA cm-2 the current density which is one of the operating parameters. Experimental results demonstrated the suitability of the electrooxidation process for the effective removal of Methyl Blue dye using Ti/IrO2/RuO2 anode. Especially in indirect oxidation, it was determined that Methyl Blue dye electrolyzes only in the presence of chloride ions, which act as a redox mediator. Also, it was confirmed that the reaction was affected by pH, chloride concentration and applied current density.

References

  • Ahmed DN, Naji LA, Faisal AAH., Al-Ansari N, Naushad M, 2020. Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution. Scientific Reports, 10(1): 1–12.
  • Ali H, 2010. Biodegradation of synthetic dyes—a review. Water, Air, ve Soil Pollution, 213(1): 251–273. Alver E, Metin AÜ, Brouers F, 2020. Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154: 104–113.
  • Arora S, 2014. Textile dyes: it’s impact on environment and its treatment. Journal of Bioremediation ve Biodegredation, 5(3): 1.
  • Chankhanittha T, Nanan S, 2021. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction. Journal of Colloid and Interface Science, 582: 412–427.
  • Dominguez CM, Oturan N, Romero A, Santos A, Oturan MA, 2018. Lindane degradation by electrooxidation process: effect of electrode materials on oxidation and mineralization kinetics. Water Research, 135: 220–230.
  • Dotto J, Fagundes-Klen MR, Veit MT, Palacio SM, Bergamasco R, 2019. Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208: 656–665.
  • Fil BA, Özmetin C, Korkmaz M, 2012. Cationic dye (methylene blue) removal from aqueous solution by montmorillonite. Fu F, Wang Q, Tang B, 2010. Effective degradation of CI Acid Red 73 by advanced Fenton process. Journal of Hazardous Materials, 174(1–3): 17–22.
  • Gharibian S, Hazrati H, Rostamizadeh M, 2020. Continuous electrooxidation of Methylene Blue in filter press electrochemical flowcell: CFD simulation and RTD validation. Chemical Engineering and Processing - Process Intensification, 150: 107880.
  • Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y, 2022. Electrochemical degradation of methylene blue by Pb modified porous SnO2 anode. Chemosphere, 305: 135447.
  • Ingelsson M, Yasri N, Roberts EPL, 2020. Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review. Water Research, 187: 116433.
  • İrdemez Ş, Özyay G, Torun FE, Kul S, Bingül Z, 2022. Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells. Ecological Chemistry and Engineering S, 29(2): 199–216.
  • Jawad NH, Najim ST, 2018. Removal of Methylene Blue by Direct Electrochemical Oxidation Method Using a Graphite Anode. IOP Conference Series: Materials Science and Engineering, 454: 012023.
  • Kawde AN, Morsy MA, Odewunmi N, Mahfouz W, 2013. From Electrode Surface Fouling to Sensitive Electroanalytical Determination of Phenols. Electroanalysis, 25(6):1547–1555.
  • Kornaros M, Lyberatos G, 2006. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. Journal of Hazardous Materials, 136(1): 95–102.
  • Kul S, Boncukcuoglu R, Yilmaz, AE, Fil BA, 2015. Treatment of Olive Mill Wastewater with Electro-Oxidation Method. Journal of the Electrochemical Society, 162(8): 41-47.
  • Liu X, You S, Ma F, Zhou H, 2021. Characterization of electrode fouling during electrochemical oxidation of phenolic pollutant. Frontiers of Environmental Science ve Engineering, 15(4): 1–10.
  • Mamián M, Torres W, Larmat FE, 2009. Electrochemical degradation of atrazine in aqueous solution at a platinum electrode. Port Electrochim Acta, 27(3): 371–379.
  • Martínez-Huitle CA, Brillas, E, 2009. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87(3–4): 105–145.
  • Moreira FC, Boaventura RAR, Brillas E, Vilar VJP, 2017. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202: 217–261.
  • Niu J, Bao Y, Li Y, Chai Z, 2013. Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes. Chemosphere, 92(11): 1571–1577.
  • Pavithra KG, Jaikumar V, 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry, 75: 1–19.
  • Periyasamy S, Muthuchamy M, 2018. Electrochemical oxidation of paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density. Journal of Environmental Chemical Engineering, 6(6): 7358–7367.
  • Piaskowski K, Świderska-Dąbrowska R, Zarzycki PK, 2018. Dye Removal from Water and Wastewater Using Various Physical, Chemical, and Biological Processes. Journal of AOAC International, 101(5): 1371–1384.
  • Pinto C, Fernandes A, Lopes A, Nunes MJ, Baía A, Ciríaco L, Pacheco MJ, 2022. Reuse of Textile Dyeing Wastewater Treated by Electrooxidation. Water, 14(7): 1084.
  • Qiu J, Feng Y, Zhang X, Jia M, Yao J, 2017. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: Adsorption performance and mechanisms. Journal of Colloid and Interface Science, 499: 151–158.
  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A, 2010. Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177(1–3): 70–80.
  • Rajkumar D, Song BJ, Kim JG, 2007. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dyes and Pigments, 72(1): 1–7.
  • Rodríguez FA, Mateo MN, Aceves JM, Rivero EP, González I. 2013. Electrochemical oxidation of bio-refractory dye in a simulated textile industry effluent using DSA electrodes in a filter-press type FM01-LC reactor. Environmental Technology, 34(5): 573–583.
  • Saaidia S, Delimi R, Benredjem Z, Mehellou A, Djemel A, Barbari K, 2017. Use of a PbO2 electrode of a lead-acid battery for the electrochemical degradation of methylene blue. Separation Science and Technology, 52(9): 1602–1614.
  • Sakalis A, Mpoulmpasakos K, Nickel U, Fytianos K, Voulgaropoulos A, 2005. Evaluation of a novel electrochemical pilot plant process for azo dyes removal from textile wastewater. Chemical Engineering Journal, 111(1): 63–70.
  • Sala M., López-Grimau V, Gutiérrez-Bouzán C, 2014. Photo-electrochemical treatment of reactive dyes in wastewater and reuse of the effluent: Method optimization. Materials, 7(11): 7349–7365.
  • Särkkä H, Bhatnagar A, Sillanpää M. 2015. Recent developments of electro-oxidation in water treatment — A review. Journal of Electroanalytical Chemistry, 754: 46–56.
  • Scialdone O, Randazzo S, Galia A, Silvestri G, 2009. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research, 43(8): 2260–2272.
  • Shahnaz T, Bedadeep D, Narayanasamy S, 2022. Investigation of the adsorptive removal of methylene blue using modified nanocellulose. International Journal of Biological Macromolecules, 200: 162–171.
  • Skіba M, Vorobyova V, Kovalenko I, Makarshenko N, 2020. Synthesis silver nanoparticles and its application for wastewater treatment: catalytic and photocatalytic degradation methylene blue. Water and Water Purıfıcatıon Technologıes and Technical News, 27: 2
  • Song S, Fan J, He Z, Zhan L, Liu Z, Chen J, Xu X, 2010. Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochimica Acta, 55(11): 3606–3613.
  • Sözüdoğru O, Fil BA, Boncukcuoğlu R, Aladağ E, Kul S, 2016. Adsorptive removal of cationic (BY2) dye from aqueous solutions onto Turkish clay: Isotherm, kinetic, and thermodynamic analysis. Particulate Science and Technology, 34(1): 103–111.
  • Titchou FE, Zazou H, Afanga H, Gaayda JEl, Ait Akbour R, Nidheesh PV, Hamdani M, 2021. An overview on the elimination of organic contaminants from aqueous systems using electrochemical advanced oxidation processes. Journal of Water Process Engineering, 41: 102040.
  • Wang Y, Lin H, Jin F, Niu J, Zhao J, Bi Y, Li Y, 2016. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions. Science of The Total Environment, 557: 542–550.
  • Wiratini NM, Triyono T, Trisunaryanti W, Kuncaka A, 2021. Graphite/NiO/Ni Electrode for Electro-oxidation of the Remazol Black 5 Dye. Bulletin of Chemical Reaction Engineering ve Catalysis, 16(4): 847.
  • Wu W, Huang ZH, Lim TT, 2014. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480: 58–78.
  • Yang K, Liu Y, Qiao J, 2017. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water. Separation and Purification Technology, 189: 459–466.
  • Yao Y, Chen Q, Zhou J, 2022. Influence of typical electrolytes on electrooxidation of bio-refractory reactive dye. International Journal of Environmental Science and Technology, 19(3): 1799–1810.
  • Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B, 2019. Covalent organic frameworks for membrane separation. Chemical Society Reviews, 48(10): 2665–2681.
  • Zhang Q, Huang W, Hong J, Chen BY, 2018. Deciphering acetaminophen electrical catalytic degradation using single-form S doped graphene/Pt/TiO2. Chemical Engineering Journal, 343: 662–675.
  • Zhuo Q, Wang J, Niu J, Yang B, Yang Y, 2020. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chemical Engineering Journal, 379: 122280.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Çevre Mühendisliği / Environment Engineering
Authors

Onur Sözüdoğru 0000-0001-7885-2930

Early Pub Date November 25, 2022
Publication Date December 1, 2022
Submission Date August 25, 2022
Acceptance Date September 15, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Sözüdoğru, O. (2022). Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü. Journal of the Institute of Science and Technology, 12(4), 2054-2063. https://doi.org/10.21597/jist.1167022
AMA Sözüdoğru O. Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü. J. Inst. Sci. and Tech. December 2022;12(4):2054-2063. doi:10.21597/jist.1167022
Chicago Sözüdoğru, Onur. “Ti/IrO2/RuO2 Anot Ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi Ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü”. Journal of the Institute of Science and Technology 12, no. 4 (December 2022): 2054-63. https://doi.org/10.21597/jist.1167022.
EndNote Sözüdoğru O (December 1, 2022) Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü. Journal of the Institute of Science and Technology 12 4 2054–2063.
IEEE O. Sözüdoğru, “Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü”, J. Inst. Sci. and Tech., vol. 12, no. 4, pp. 2054–2063, 2022, doi: 10.21597/jist.1167022.
ISNAD Sözüdoğru, Onur. “Ti/IrO2/RuO2 Anot Ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi Ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü”. Journal of the Institute of Science and Technology 12/4 (December 2022), 2054-2063. https://doi.org/10.21597/jist.1167022.
JAMA Sözüdoğru O. Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü. J. Inst. Sci. and Tech. 2022;12:2054–2063.
MLA Sözüdoğru, Onur. “Ti/IrO2/RuO2 Anot Ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi Ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü”. Journal of the Institute of Science and Technology, vol. 12, no. 4, 2022, pp. 2054-63, doi:10.21597/jist.1167022.
Vancouver Sözüdoğru O. Ti/IrO2/RuO2 Anot ve Paslanmaz Çelik Katot Kullanılarak Elektrooksidasyon Prosesi ile Metilen Mavisi Boyası Giderimi: İşletme Parametrelerin Rolü. J. Inst. Sci. and Tech. 2022;12(4):2054-63.