Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 1, 494 - 503, 01.03.2023
https://doi.org/10.21597/jist.1178152

Abstract

References

  • Abdulrazzaq, M., Ozkut, M. I., Gokce, G., Ertan, S., Tutuncu, E., & Cihaner, A. (2017). A low band gap polymer based on Selenophene and Benzobis (thiadiazole). Electrochimica Acta, 249, 189-197.
  • Badran, H. A., Hussain, H. F., & Ajeel, K. I. (2016). Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity. Optik, 127(13), 5301-5309.
  • Bathula, C., Badgujar, S., Belavagi, N. S., Lee, S. K., Kang, Y., & Khazi, I. A. M. (2016). Synthesis, characterization and optoelectronic properties of Benzodithiophene based copolymers for application in solar cells. Journal of fluorescence, 26(1), 371-376.
  • Ben Halima, T., Zhang, W., Yalaoui, I., Hong, X., Yang, Y. F., Houk, K. N., & Newman, S. G. (2017). Palladium-catalyzed Suzuki–Miyaura coupling of aryl esters. Journal of the American Chemical Society, 139(3), 1311-1318. Cetin, A. and Korkmaz, A. (2018). Synthesis, optical and morphological properties of novel pyrazole-based oligoamide film. Optical Materials, 85, 79-85.
  • Cetin, A., Gündüz, B., Menges, N., & Bildirici, I. (2017). Unsymmetrical pyrazole-based new semiconductor oligomer: synthesis and optical properties. Polymer Bulletin, 74(7), 2593-2604.
  • Cetin, A., Korkmaz, A., Erdoğan, E., & Kösemen, A. (2019). A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films. Materials Chemistry and Physics, 222, 37-44.
  • Chen, L., Wang, K., Mahmoud, S. M., Li, Y., Huang, H., Huang, W., ... & Pietrangelo, A. (2015). Effects of replacing thiophene with 5, 5-dimethylcyclopentadiene in alternating poly (phenylene), poly (3-hexylthiophene), and poly (fluorene) copolymer derivatives. Polymer Chemistry, 6(43), 7533-7542.
  • Choi, H., Ko, S. J., Kim, T., Morin, P. O., Walker, B., Lee, B. H., ... & Heeger, A. J. (2015). Small‐bandgap polymer solar cells with unprecedented short‐circuit current density and high fill factor. Advanced Materials, 27(21), 3318-3324.
  • Das, P., and Linert, W. (2016). Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coordination Chemistry Reviews, 311, 1-23.
  • Durak, L. J., Payne, J. T., & Lewis, J. C. (2016). Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS catalysis, 6(3), 1451-1454.
  • Graham, K. R., Cabanetos, C., Jahnke, J. P., Idso, M. N., El Labban, A., Ngongang Ndjawa, G. O., ... & McGehee, M. D. (2014). Importance of the donor: fullerene intermolecular arrangement for high-efficiency organic photovoltaics. Journal of the American Chemical Society, 136(27), 9608-9618.
  • Hu, Y., Hu, D., Ming, S., Duan, X., Zhao, F., Hou, J., ... & Jiang, F. (2016). Synthesis of polyether-bridged bithiophenes and their electrochemical polymerization to electrochromic property. Electrochimica Acta, 189, 64-73.
  • Isley, N. A., Gallou, F., & Lipshutz, B. H. (2013). Transforming Suzuki–Miyaura cross-couplings of MIDA boronates into a green technology: no organic solvents. Journal of the American Chemical Society, 135(47), 17707-17710.
  • Jung, I. H., Jung, Y. K., Lee, J., Park, J. H., Woo, H. Y., Lee, J. I., ... & Shim, H. K. (2008). Synthesis and electroluminescent properties of fluorene‐based copolymers containing electron‐withdrawing thiazole derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 46(21), 7148-7161.
  • Kaya, E., Kurtay, G., & Korkmaz, A. (2020). Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions. Journal of Polymer Research, 27(5), 1-11.
  • Kotha, S., Lahiri, K., & Kashinath, D., (2002). Recent Applications of the Suzuki-Miyaura Cross-coupling Reaction in Organic Synthesis. Tetrahedron, 58(48), 9633-9695.
  • Kuipers, B. J. and Gruppen, H. (2007). Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. Journal of agricultural and food chemistry, 55(14), 5445-5451.
  • Lakhwani, G., Rao, A., & Friend, R. H. (2014). Bimolecular recombination in organic photovoltaics. Annual review of physical chemistry, 65, 557-581.
  • Lennox, A. J. and Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki–Miyaura coupling. Chemical Society Reviews, 43(1), 412-443.
  • Li, K. and Liu, B. (2014). Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chemical Society Reviews, 43(18), 6570-6597.
  • Mehmood, U., Al-Ahmed, A., & Hussein, I. A. (2016). Review on recent advances in polythiophene based photovoltaic devices. Renewable and Sustainable Energy Reviews, 57, 550-561.
  • Miyaura, N., and Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, 95(7), 2457-2483.
  • Muthuraj, B., Mukherjee, S., Patra, C. R., & Iyer, P. K. (2016). Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics. ACS Applied Materials & Interfaces, 8(47), 32220-32229.
  • Naga, N., Miyanaga, T., & Furukawa, H. (2014). Synthesis and optical properties of organic–inorganic hybrid semi‐interpenetrating polymer network gels containing polyfluorenes. Journal of Polymer Science Part A: Polymer Chemistry, 52(7), 973-984.
  • Rivnay, J., Owens, R. M., & Malliaras, G. G. (2014). The rise of organic bioelectronics. Chemistry of Materials, 26(1), 679-685.
  • Samsonidze, G., Ribeiro, F. J., Cohen, M. L., & Louie, S. G. (2014). Quasiparticle and optical properties of polythiophene-derived polymers. Physical Review B, 90(3), 035123.
  • Santos, B. P. S., Lima, A. B., de Araujo, F. L., Mota, I. C., de Castro Ribeiro, A., Nogueira, A. F., ... & Monteiro, S. N. (2021). Synthesis of novel low bandgap random and block terpolymers with improved performance in organic solar cells. Journal of Materials Research and Technology, 10, 51-65.
  • Sharma, T., Kumar, G. S., Chon, B. H., & Sangwai, J. S. (2015). Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer. Journal of Industrial and Engineering Chemistry, 22, 324-334.
  • Staudt, M., Cetin, A., & Bunch, L. (2022). Transition Metal‐Free Synthesis of meta‐Bromo‐and meta‐Trifluoromethylanilines from Cyclopentanones by a Cascade Reaction. Chemistry–A European Journal, 28(10), e202102998.
  • Sui, A., Shi, X., Tian, H., Geng, Y., & Wang, F. (2014). Suzuki–Miyaura catalyst-transfer polycondensation with Pd (IPr)(OAc) 2 as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polymer Chemistry, 5(24), 7072-7080.
  • Sun, M. M., Wang, W., Liang, L. Y., Yan, S. H., Zhou, M. L., & Ling, Q. D. (2015). Substituent effects on direct arylation polycondensation and optical properties of alternating fluorene-thiophene copolymers. Chinese Journal of Polymer Science, 33(5), 783-791.
  • Tong, J., An, L., Li, J., Zhang, P., Guo, P., Yang, C., ... & Xia, Y. (2017). Large branched alkylthienyl bridged naphtho [1, 2-c: 5, 6-c′] bis [1, 2, 5] thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. Journal of Macromolecular Science, Part A, 54(3), 176-185.
  • Wei, S., Xia, J., Dell, E. J., Jiang, Y., Song, R., Lee, H., ... & Campos, L. M. (2014). Bandgap engineering through controlled oxidation of polythiophenes. Angewandte Chemie, 126(7), 1863-1867.
  • Wilson, Z. E., Fenner, S., & Ley, S. V. (2015). Total syntheses of linear polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin B. Angewandte Chemie, 127(4), 1300-1304.
  • Wu, T. Y. and Li, J. L. (2016). Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1, 2, 5-thiadiazole-based poly (2, 5-dithienylpyrrole) derivatives. RSC advances, 6(19), 15988-15998.
  • Xiang, C., Wan, H., Zhu, M., Chen, Y., Peng, J., & Zhou, G. (2017). Dipicolylamine functionalized Polyfluorene based gel with lower critical solution temperature: preparation, characterization, and application. ACS Applied Materials & Interfaces, 9(10), 8872-8879.
  • Ye, Y. X., Liu, W. L., & Ye, B. H. (2017). A highly efficient and recyclable Pd (II) metallogel catalyst: A new scaffold for Suzuki-Miyaura coupling. Catalysis Communications, 89, 100-105.
  • Zhang, Q., Li, Y., Lu, Y., Zhang, H., Li, M., Yang, Y., ... & Li, C. (2015). Pd-catalysed oxidative C–H/C–H coupling polymerization for polythiazole-based derivatives. Polymer, 68, 227-233.

Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties

Year 2023, Volume: 13 Issue: 1, 494 - 503, 01.03.2023
https://doi.org/10.21597/jist.1178152

Abstract

The new thiazole-based polymer was synthesized by the Suzuki-Miyaura crossing-coupling reaction of 5-bromo-N-(3-bromophenyl)thiazol-2-amine and 9,9-dioctyl-9H-fluorene-2,7-diboronic acid bis(pinacol) ester. The synthesized monomer and poly[N,N'(1,3-phenylene)bis(thiazol-2-amine)-co9,9’dioctylfluorene] (Poly[Tm]) were characterized by the Elemental analysis, Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance spectroscopy, Thermogravimetric analysis and Gel Permission chromatography. Furthermore, the optical properties of the Poly[Tm] were studied at three concentrations of 0.625, 1.25 and 2.5 mM in solution. The absorption band edge values of Poly[Tm] decreased with the increasing concentration of the solutions. When the concentration of the Poly[Tm] solution was increased, transmittance values of the Poly[Tm] were increased, and its molar extinction coefficient was resulted in higher absorbance values. Synthesized Poly[Tm] could provide a novel concept for the design of transistors and photovoltaics.

References

  • Abdulrazzaq, M., Ozkut, M. I., Gokce, G., Ertan, S., Tutuncu, E., & Cihaner, A. (2017). A low band gap polymer based on Selenophene and Benzobis (thiadiazole). Electrochimica Acta, 249, 189-197.
  • Badran, H. A., Hussain, H. F., & Ajeel, K. I. (2016). Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity. Optik, 127(13), 5301-5309.
  • Bathula, C., Badgujar, S., Belavagi, N. S., Lee, S. K., Kang, Y., & Khazi, I. A. M. (2016). Synthesis, characterization and optoelectronic properties of Benzodithiophene based copolymers for application in solar cells. Journal of fluorescence, 26(1), 371-376.
  • Ben Halima, T., Zhang, W., Yalaoui, I., Hong, X., Yang, Y. F., Houk, K. N., & Newman, S. G. (2017). Palladium-catalyzed Suzuki–Miyaura coupling of aryl esters. Journal of the American Chemical Society, 139(3), 1311-1318. Cetin, A. and Korkmaz, A. (2018). Synthesis, optical and morphological properties of novel pyrazole-based oligoamide film. Optical Materials, 85, 79-85.
  • Cetin, A., Gündüz, B., Menges, N., & Bildirici, I. (2017). Unsymmetrical pyrazole-based new semiconductor oligomer: synthesis and optical properties. Polymer Bulletin, 74(7), 2593-2604.
  • Cetin, A., Korkmaz, A., Erdoğan, E., & Kösemen, A. (2019). A study on synthesis, optical properties and surface morphological of novel conjugated oligo-pyrazole films. Materials Chemistry and Physics, 222, 37-44.
  • Chen, L., Wang, K., Mahmoud, S. M., Li, Y., Huang, H., Huang, W., ... & Pietrangelo, A. (2015). Effects of replacing thiophene with 5, 5-dimethylcyclopentadiene in alternating poly (phenylene), poly (3-hexylthiophene), and poly (fluorene) copolymer derivatives. Polymer Chemistry, 6(43), 7533-7542.
  • Choi, H., Ko, S. J., Kim, T., Morin, P. O., Walker, B., Lee, B. H., ... & Heeger, A. J. (2015). Small‐bandgap polymer solar cells with unprecedented short‐circuit current density and high fill factor. Advanced Materials, 27(21), 3318-3324.
  • Das, P., and Linert, W. (2016). Schiff base-derived homogeneous and heterogeneous palladium catalysts for the Suzuki–Miyaura reaction. Coordination Chemistry Reviews, 311, 1-23.
  • Durak, L. J., Payne, J. T., & Lewis, J. C. (2016). Late-stage diversification of biologically active molecules via chemoenzymatic C–H functionalization. ACS catalysis, 6(3), 1451-1454.
  • Graham, K. R., Cabanetos, C., Jahnke, J. P., Idso, M. N., El Labban, A., Ngongang Ndjawa, G. O., ... & McGehee, M. D. (2014). Importance of the donor: fullerene intermolecular arrangement for high-efficiency organic photovoltaics. Journal of the American Chemical Society, 136(27), 9608-9618.
  • Hu, Y., Hu, D., Ming, S., Duan, X., Zhao, F., Hou, J., ... & Jiang, F. (2016). Synthesis of polyether-bridged bithiophenes and their electrochemical polymerization to electrochromic property. Electrochimica Acta, 189, 64-73.
  • Isley, N. A., Gallou, F., & Lipshutz, B. H. (2013). Transforming Suzuki–Miyaura cross-couplings of MIDA boronates into a green technology: no organic solvents. Journal of the American Chemical Society, 135(47), 17707-17710.
  • Jung, I. H., Jung, Y. K., Lee, J., Park, J. H., Woo, H. Y., Lee, J. I., ... & Shim, H. K. (2008). Synthesis and electroluminescent properties of fluorene‐based copolymers containing electron‐withdrawing thiazole derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 46(21), 7148-7161.
  • Kaya, E., Kurtay, G., & Korkmaz, A. (2020). Combined DFT-experimental investigation and preparation of two new Thiadiazole-based Bithiophene or Fluorene containing polymers via Suzuki-Miyaura reactions. Journal of Polymer Research, 27(5), 1-11.
  • Kotha, S., Lahiri, K., & Kashinath, D., (2002). Recent Applications of the Suzuki-Miyaura Cross-coupling Reaction in Organic Synthesis. Tetrahedron, 58(48), 9633-9695.
  • Kuipers, B. J. and Gruppen, H. (2007). Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. Journal of agricultural and food chemistry, 55(14), 5445-5451.
  • Lakhwani, G., Rao, A., & Friend, R. H. (2014). Bimolecular recombination in organic photovoltaics. Annual review of physical chemistry, 65, 557-581.
  • Lennox, A. J. and Lloyd-Jones, G. C. (2014). Selection of boron reagents for Suzuki–Miyaura coupling. Chemical Society Reviews, 43(1), 412-443.
  • Li, K. and Liu, B. (2014). Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chemical Society Reviews, 43(18), 6570-6597.
  • Mehmood, U., Al-Ahmed, A., & Hussein, I. A. (2016). Review on recent advances in polythiophene based photovoltaic devices. Renewable and Sustainable Energy Reviews, 57, 550-561.
  • Miyaura, N., and Suzuki, A. (1995). Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, 95(7), 2457-2483.
  • Muthuraj, B., Mukherjee, S., Patra, C. R., & Iyer, P. K. (2016). Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics. ACS Applied Materials & Interfaces, 8(47), 32220-32229.
  • Naga, N., Miyanaga, T., & Furukawa, H. (2014). Synthesis and optical properties of organic–inorganic hybrid semi‐interpenetrating polymer network gels containing polyfluorenes. Journal of Polymer Science Part A: Polymer Chemistry, 52(7), 973-984.
  • Rivnay, J., Owens, R. M., & Malliaras, G. G. (2014). The rise of organic bioelectronics. Chemistry of Materials, 26(1), 679-685.
  • Samsonidze, G., Ribeiro, F. J., Cohen, M. L., & Louie, S. G. (2014). Quasiparticle and optical properties of polythiophene-derived polymers. Physical Review B, 90(3), 035123.
  • Santos, B. P. S., Lima, A. B., de Araujo, F. L., Mota, I. C., de Castro Ribeiro, A., Nogueira, A. F., ... & Monteiro, S. N. (2021). Synthesis of novel low bandgap random and block terpolymers with improved performance in organic solar cells. Journal of Materials Research and Technology, 10, 51-65.
  • Sharma, T., Kumar, G. S., Chon, B. H., & Sangwai, J. S. (2015). Thermal stability of oil-in-water Pickering emulsion in the presence of nanoparticle, surfactant, and polymer. Journal of Industrial and Engineering Chemistry, 22, 324-334.
  • Staudt, M., Cetin, A., & Bunch, L. (2022). Transition Metal‐Free Synthesis of meta‐Bromo‐and meta‐Trifluoromethylanilines from Cyclopentanones by a Cascade Reaction. Chemistry–A European Journal, 28(10), e202102998.
  • Sui, A., Shi, X., Tian, H., Geng, Y., & Wang, F. (2014). Suzuki–Miyaura catalyst-transfer polycondensation with Pd (IPr)(OAc) 2 as the catalyst for the controlled synthesis of polyfluorenes and polythiophenes. Polymer Chemistry, 5(24), 7072-7080.
  • Sun, M. M., Wang, W., Liang, L. Y., Yan, S. H., Zhou, M. L., & Ling, Q. D. (2015). Substituent effects on direct arylation polycondensation and optical properties of alternating fluorene-thiophene copolymers. Chinese Journal of Polymer Science, 33(5), 783-791.
  • Tong, J., An, L., Li, J., Zhang, P., Guo, P., Yang, C., ... & Xia, Y. (2017). Large branched alkylthienyl bridged naphtho [1, 2-c: 5, 6-c′] bis [1, 2, 5] thiadiazole-containing low bandgap copolymers: Synthesis and photovoltaic application. Journal of Macromolecular Science, Part A, 54(3), 176-185.
  • Wei, S., Xia, J., Dell, E. J., Jiang, Y., Song, R., Lee, H., ... & Campos, L. M. (2014). Bandgap engineering through controlled oxidation of polythiophenes. Angewandte Chemie, 126(7), 1863-1867.
  • Wilson, Z. E., Fenner, S., & Ley, S. V. (2015). Total syntheses of linear polythiazole/oxazole plantazolicin A and its biosynthetic precursor plantazolicin B. Angewandte Chemie, 127(4), 1300-1304.
  • Wu, T. Y. and Li, J. L. (2016). Electrochemical synthesis, optical, electrochemical and electrochromic characterizations of indene and 1, 2, 5-thiadiazole-based poly (2, 5-dithienylpyrrole) derivatives. RSC advances, 6(19), 15988-15998.
  • Xiang, C., Wan, H., Zhu, M., Chen, Y., Peng, J., & Zhou, G. (2017). Dipicolylamine functionalized Polyfluorene based gel with lower critical solution temperature: preparation, characterization, and application. ACS Applied Materials & Interfaces, 9(10), 8872-8879.
  • Ye, Y. X., Liu, W. L., & Ye, B. H. (2017). A highly efficient and recyclable Pd (II) metallogel catalyst: A new scaffold for Suzuki-Miyaura coupling. Catalysis Communications, 89, 100-105.
  • Zhang, Q., Li, Y., Lu, Y., Zhang, H., Li, M., Yang, Y., ... & Li, C. (2015). Pd-catalysed oxidative C–H/C–H coupling polymerization for polythiazole-based derivatives. Polymer, 68, 227-233.
There are 38 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Adnan Çetin 0000-0003-4838-1503

Early Pub Date February 24, 2023
Publication Date March 1, 2023
Submission Date September 21, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Çetin, A. (2023). Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. Journal of the Institute of Science and Technology, 13(1), 494-503. https://doi.org/10.21597/jist.1178152
AMA Çetin A. Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. J. Inst. Sci. and Tech. March 2023;13(1):494-503. doi:10.21597/jist.1178152
Chicago Çetin, Adnan. “Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 494-503. https://doi.org/10.21597/jist.1178152.
EndNote Çetin A (March 1, 2023) Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. Journal of the Institute of Science and Technology 13 1 494–503.
IEEE A. Çetin, “Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 494–503, 2023, doi: 10.21597/jist.1178152.
ISNAD Çetin, Adnan. “Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties”. Journal of the Institute of Science and Technology 13/1 (March 2023), 494-503. https://doi.org/10.21597/jist.1178152.
JAMA Çetin A. Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. J. Inst. Sci. and Tech. 2023;13:494–503.
MLA Çetin, Adnan. “Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 494-03, doi:10.21597/jist.1178152.
Vancouver Çetin A. Suzuki-Miyaura Coupling Polymerization: Synthesis, Characterization and Optical Properties. J. Inst. Sci. and Tech. 2023;13(1):494-503.