Bu çalışmada, nar posası (NP) atıkları kullanılarak eş zamanlı hidrotermal karbonizasyon (HTK) ve manyetizasyon yöntemi ile yeni bir kompozit malzeme (MNPHK) geliştirilmiştir. Karbonizasyon sıcaklığının ve süresinin atomik karbon içeriği, enerji yoğunluğu ve üst ısıl değer gibi hidrokömürün fizikokimyasal özellikleri üzerindeki etkileri araştırılmıştır. Optimum üretim koşulları belirlenerek bu koşullar altında NP'nin eş zamanlı HTK ve manyetizasyonu gerçekleştirilmiştir. Optimum koşullarda üretilen MNPHK XRF, XPS, SEM/EDX, FTIR ve VSM gibi çeşitli spektral yöntemlerle karakterize edilmiştir. Üretilen MNPHK’nın atık sulardan kirlilik giderme performansını belirlemek amacıyla kesikli sistemde kurşun (Pb(II)) iyonlarının uzaklaştırılmasında adsorban malzeme olarak kullanılmıştır. Adsorpsiyon sürecini etkileyen pH, denge-temas süresi (kinetik) ve sıcaklık (izoterm) faktörleri incelenerek elde edilen deneysel veriler yaygın kullanılan kinetik (yalancı birinci ve ikinci dereceden kinetik model) ve izoterm (Langmuir ve Freundlich izoterm model) modellerde değerlendirilmiştir. Adsorpsiyon kinetiğinin, yalancı ikinci dereceden kinetik modelini (YİD) (R2: 0.9840) takip ettiği ve deneysel verilerin Langmuir izoterm modeli (R2: 0.9992) ile iyi bir uyum gösterdiği tespit edilmiştir. MNPHK'nın maksimum adsorpsiyon kapasitesi (qmaks) Langmuir izoterm modeline göre 98.45 mg g-1 olarak hesaplanmıştır. Termodinamik çalışmalar, Pb(II) iyonlarının MNPHK üzerine endotermik ve kendiliğinden adsorpsiyonunu göstermiştir. Yapılan çalışma sonucunda elde edilen bulgularla MNPHK'nın atık sulardan Pb(II) iyonlarının uzaklaştırılmasında düşük maliyetli, etkili ve doğal bir malzeme olarak kullanılabileceği ortaya konulmuştur.
Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Project Number
BTÜBAP-2018-MMF-3
Thanks
Bu çalışma, Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından “BTÜBAP-2018-MMF-3” kodlu proje ile desteklenmiştir.
References
Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya, G, 2003. Removal of Lead from Contaminated Water Bodies Using Sea Nodule as an Adsorbent. Water Research, 37 (16): 3954-3966.
El-Nemr SE, Ismail IA, Ragab M, 1990. Chemical Composition of Juice and Seeds of Pomegranate Fruit. Nahrung, 7: 601-606.
Fatimah I, Citradewi PW, Fadillah G, Sahroni I, Purwiandono G, Dong R, 2021. Enhanced Performance of Magnetic Montmorillonite Nanocomposite as Adsorbent for Cu(II) by Hydrothermal Synthesis. Journal of Environmental Chemical Engineering, 9: 104968.
Freundlich HMF, 1906. Over the Adsorption in Solution. The Journal of Physical Chemistry, 57: 385-470.
Han F, Ma L, Sun Q, Lei C, Lu A, 2014. Rationally Designed Carbon-coated Fe3O4 Coaxial Nanotubes with Hierarchical Porosity as High-rate Anodes for Lithium Ion Batteries. Nano Research, 7: 1706-1717.
Ho YS, McKay G, 1998. Sorption of Dye from Aqueous Solution by Peat. Chemical Engineering Journal, 70: 115-124.
Jain A, Balasubramanian R, Srinivasan MP, 2016. Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A review. Chemical Engineering Journal, 283: 789-805.
Khan M, Alqadami AA, Wabaidur SM, Siddiqui MR, Jeon B-H, Alshareef SA, Alothman ZA, 2020. Oil Industry Waste Based Non-magnetic and Magnetic Hydrochar to Sequester Potentially Toxic Post-transition Metal Ions from Water. Journal of Hazardous Materials, 400: 123247.
Lagergren S, 1898. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 24: 1-39.
Langmuir I, 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40 (9): 1361-1403.
Ma Q, Cui L, Zhou S, Li Y, Shi W, Ai S, 2018. Iron Nanoparticles in situ Encapsulated in Lignin-derived Hydrochar as an Effective Catalyst for Phenol Removal. Environmental Science and Pollution Research, 25: 20833-20840.
Perez-Martin AB, Zapata VM, Ortuno JF, Aguilar M, Lıorens JM, 2007. Removal of Cadmium from Aqueous Solutions by Adsorption onto Orange Waste. Journal of Hazardous Materials, 139: 122-131.
Pholosi A, Naidoo EB, Ofomaja AE, 2019. Enhanced Arsenic (III) Adsorption from Aqueous Solution by Magnetic Pine Cone Biomass. Materials Chemistry and Physics, 222: 20-30.
Román S, Libra J, Berge N, Sabio E, Ro K, Li L, Ledesma B, Álvarez A, Bae S, 2018. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A review. Energies, 11: 216.
Sayğılı GA, Sayğılı H, 2022. Fabrication of a magnetic hydrochar composite via an in situ one-pot hydrocarbonization strategy for efficient herbicide removal. Diamond and Related Materials, 128: 109302.
Sayğılı H, 2019. Hydrothermal Synthesis of Magnetic Nanocomposite from Biowaste Matrix by a Green and One-step Route: Characterization and Pollutant Removal Ability. Bioresource Technology, 278: 242-247.
Sengil IA, Ozacar M, 2009. Competitive Biosorption of Pb2+, Cu2+ and Zn2+ Ions from Aqueous Solutions onto Valonia Tannin Resin. Journal of Hazardous Materials, 1661 (2-3): 488-1494.
Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J, 2016. Biochar-based Nano-composites for The Decontamination of Wastewater: A review. Bioresource Technology, 212: 318-333.
Vilar VJP, Sebesta F, Botelho CMS, Boaventura RAR, 2005. Equilibrium and Kinetic Modeling of Pb2+ Biosorption by Granulated Agar Extraction Algal Waste. Process Biochemistry, 40 (10): 3276-3284.
Wong S, Ngadi N, Inuwa IM, Hassan O, 2018. Recent Advances in Applications of Activated Carbon from Biowaste for Wastewater Treatment: A short review. Journal of Cleaner Production, 175: 361-375.
Wu H, Gong L, Zhang X, He F, Li Z, 2021. Bifunctional Porous Polyethyleneimine-grafted Lignin Microspheres for Efficient Adsorption of 2,4-Dichlorophenoxyacetic Acid over a Wide pH Range and Controlled Release. Chemical Engineering Journal, 411: 128539.
Potential of Magnetic Hydrochar Composite Produced from Pomegranate Residue to Remove Pb(II) Ions from Aqueous Solution
Year 2023,
Volume: 13 Issue: 1, 213 - 224, 01.03.2023
In this study, a new composite material (MNPHK) was developed with simultaneous hydrothermal carbonization (HTC) and magnetization method using pomegranate pulp (PP) wastes. The effects of carbonization temperature and time on the physicochemical properties of hydrochar such as atomic carbon content, energy density and higher heating value, were investigated. By determining the optimum production conditions, simultaneous HTC and magnetization of the PP were performed under these conditions. MNPHK produced under optimum conditions has been characterized by various spectral methods such as XRF, XPS, SEM/EDX, FTIR and VSM. To determine the pollution removal performance of the produced MNPHK from wastewater, it was used as an adsorbent material in the removal of lead (Pb(II)) ions in the batch system. The experimental data obtained by examining the pH, contact time (kinetic) and temperature (isotherm) factors affecting the adsorption process were evaluated in widely used kinetic (pseudo-first and second-order kinetic model) and isotherm (Langmuir and Freundlich isotherm model) models. It was found that the adsorption kinetics followed the pseudo-second-order kinetic model (PSO) (R2: 0.9840) and the experimental data showed good agreement with the Langmuir isotherm model (R2: 0.9992). The maximum adsorption capacity (qmax) of MNPHK was calculated as 98.45 mg g-1 according to the Langmuir isotherm model. Thermodynamic studies have shown endothermic and spontaneous adsorption of Pb(II) ions on MNPHK. With the findings obtained as a result of the study, it has been revealed that MNPHK can be used as a low-cost, effective and natural material for the removal of Pb(II) ions from wastewater.
Bhattacharjee S, Chakrabarty S, Maity S, Kar S, Thakur P, Bhattacharyya, G, 2003. Removal of Lead from Contaminated Water Bodies Using Sea Nodule as an Adsorbent. Water Research, 37 (16): 3954-3966.
El-Nemr SE, Ismail IA, Ragab M, 1990. Chemical Composition of Juice and Seeds of Pomegranate Fruit. Nahrung, 7: 601-606.
Fatimah I, Citradewi PW, Fadillah G, Sahroni I, Purwiandono G, Dong R, 2021. Enhanced Performance of Magnetic Montmorillonite Nanocomposite as Adsorbent for Cu(II) by Hydrothermal Synthesis. Journal of Environmental Chemical Engineering, 9: 104968.
Freundlich HMF, 1906. Over the Adsorption in Solution. The Journal of Physical Chemistry, 57: 385-470.
Han F, Ma L, Sun Q, Lei C, Lu A, 2014. Rationally Designed Carbon-coated Fe3O4 Coaxial Nanotubes with Hierarchical Porosity as High-rate Anodes for Lithium Ion Batteries. Nano Research, 7: 1706-1717.
Ho YS, McKay G, 1998. Sorption of Dye from Aqueous Solution by Peat. Chemical Engineering Journal, 70: 115-124.
Jain A, Balasubramanian R, Srinivasan MP, 2016. Hydrothermal Conversion of Biomass Waste to Activated Carbon with High Porosity: A review. Chemical Engineering Journal, 283: 789-805.
Khan M, Alqadami AA, Wabaidur SM, Siddiqui MR, Jeon B-H, Alshareef SA, Alothman ZA, 2020. Oil Industry Waste Based Non-magnetic and Magnetic Hydrochar to Sequester Potentially Toxic Post-transition Metal Ions from Water. Journal of Hazardous Materials, 400: 123247.
Lagergren S, 1898. Zur Theorie Der Sogenannten Adsorption Gelöster Stoffe. Kungliga Svenska Vetenskapsakademiens, Handlingar 24: 1-39.
Langmuir I, 1918. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. Journal of the American Chemical Society, 40 (9): 1361-1403.
Ma Q, Cui L, Zhou S, Li Y, Shi W, Ai S, 2018. Iron Nanoparticles in situ Encapsulated in Lignin-derived Hydrochar as an Effective Catalyst for Phenol Removal. Environmental Science and Pollution Research, 25: 20833-20840.
Perez-Martin AB, Zapata VM, Ortuno JF, Aguilar M, Lıorens JM, 2007. Removal of Cadmium from Aqueous Solutions by Adsorption onto Orange Waste. Journal of Hazardous Materials, 139: 122-131.
Pholosi A, Naidoo EB, Ofomaja AE, 2019. Enhanced Arsenic (III) Adsorption from Aqueous Solution by Magnetic Pine Cone Biomass. Materials Chemistry and Physics, 222: 20-30.
Román S, Libra J, Berge N, Sabio E, Ro K, Li L, Ledesma B, Álvarez A, Bae S, 2018. Hydrothermal Carbonization: Modeling, Final Properties Design and Applications: A review. Energies, 11: 216.
Sayğılı GA, Sayğılı H, 2022. Fabrication of a magnetic hydrochar composite via an in situ one-pot hydrocarbonization strategy for efficient herbicide removal. Diamond and Related Materials, 128: 109302.
Sayğılı H, 2019. Hydrothermal Synthesis of Magnetic Nanocomposite from Biowaste Matrix by a Green and One-step Route: Characterization and Pollutant Removal Ability. Bioresource Technology, 278: 242-247.
Sengil IA, Ozacar M, 2009. Competitive Biosorption of Pb2+, Cu2+ and Zn2+ Ions from Aqueous Solutions onto Valonia Tannin Resin. Journal of Hazardous Materials, 1661 (2-3): 488-1494.
Tan X, Liu Y, Gu Y, Xu Y, Zeng G, Hu X, Liu S, Wang X, Liu S, Li J, 2016. Biochar-based Nano-composites for The Decontamination of Wastewater: A review. Bioresource Technology, 212: 318-333.
Vilar VJP, Sebesta F, Botelho CMS, Boaventura RAR, 2005. Equilibrium and Kinetic Modeling of Pb2+ Biosorption by Granulated Agar Extraction Algal Waste. Process Biochemistry, 40 (10): 3276-3284.
Wong S, Ngadi N, Inuwa IM, Hassan O, 2018. Recent Advances in Applications of Activated Carbon from Biowaste for Wastewater Treatment: A short review. Journal of Cleaner Production, 175: 361-375.
Wu H, Gong L, Zhang X, He F, Li Z, 2021. Bifunctional Porous Polyethyleneimine-grafted Lignin Microspheres for Efficient Adsorption of 2,4-Dichlorophenoxyacetic Acid over a Wide pH Range and Controlled Release. Chemical Engineering Journal, 411: 128539.
Sayğılı, H., & Akkaya Sayğılı, G. (2023). Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli. Journal of the Institute of Science and Technology, 13(1), 213-224. https://doi.org/10.21597/jist.1179348
AMA
Sayğılı H, Akkaya Sayğılı G. Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli. J. Inst. Sci. and Tech. March 2023;13(1):213-224. doi:10.21597/jist.1179348
Chicago
Sayğılı, Hasan, and Gülbahar Akkaya Sayğılı. “Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 213-24. https://doi.org/10.21597/jist.1179348.
EndNote
Sayğılı H, Akkaya Sayğılı G (March 1, 2023) Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli. Journal of the Institute of Science and Technology 13 1 213–224.
IEEE
H. Sayğılı and G. Akkaya Sayğılı, “Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 213–224, 2023, doi: 10.21597/jist.1179348.
ISNAD
Sayğılı, Hasan - Akkaya Sayğılı, Gülbahar. “Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli”. Journal of the Institute of Science and Technology 13/1 (March 2023), 213-224. https://doi.org/10.21597/jist.1179348.
JAMA
Sayğılı H, Akkaya Sayğılı G. Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli. J. Inst. Sci. and Tech. 2023;13:213–224.
MLA
Sayğılı, Hasan and Gülbahar Akkaya Sayğılı. “Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 213-24, doi:10.21597/jist.1179348.
Vancouver
Sayğılı H, Akkaya Sayğılı G. Nar Posasından Üretilen Manyetik Hidrokömür Kompozitin Sulu Çözeltiden Pb(II) İyonlarını Uzaklaştırma Potansiyeli. J. Inst. Sci. and Tech. 2023;13(1):213-24.