Research Article
BibTex RIS Cite

2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları

Year 2023, Volume: 13 Issue: 1, 268 - 277, 01.03.2023
https://doi.org/10.21597/jist.1206903

Abstract

Bu makalede Yoğunluk Fonksiyonel Kuramı kullanılarak 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-Tiyokromen bileşiğinin yapısal ve elektronik özellikleri teorik olarak incelendi. Molekülünün stabilitesi HOMO-LUMO moleküler orbital analizi yardımıyla tartışılmıştır. Başlıkta adı geçen bileşiğin kristal yapısındaki molekül içi ve moleküller arası etkileşimler hirshfeld yüzey analizi ile görselleştirilerek incelendi. Lipinski'nin beş kuralı, 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-Tiyokromen molekülünün oral olarak aktif bir aday olduğunu ve yeni ilaç tasarım süreci için uygun olabileceğini gösterdi. Çalışmanın son bölümünde moleküler kenetlenme yöntemi ile 4RJ3 PDB kodlu proteinin liganda (incelenen molekül) en iyi bağlanma pozu tespit edilerek bağlanma enerjisi ve bağlanma mekanizması incelendi.

Supporting Institution

Pamukkale Üniversitesi

Project Number

Hibe No: 2013FBE013

Thanks

Bu çalışma (Hibe No: 2013FBE013) numaralı proje tarafından desteklenmiştir.

References

  • Barakat, A., Islam, M. S., Ali, M., Al-Majid, A. M., Alshahrani, S., Alamary, A. S., . . . Choudhary, M. I. (2021). Regio-and stereoselective synthesis of a new series of spirooxindole pyrrolidine grafted thiochromene scaffolds as potential anticancer agents. Symmetry, 13(8), 1426.
  • Biovia, D. S. (2020). BIOVIA discovery studio. Dassault Systèmes.
  • Breda, S., Reva, I., Lapinski, L., Nowak, M., & Fausto, R. (2006). Infrared spectra of pyrazine, pyrimidine and pyridazine in solid argon. Journal of Molecular Structure, 786(2-3), 193-206.
  • Cui, S.-L., Wang, J., & Wang, Y.-G. (2008). Efficient synthesis of 2-imino-1, 2-dihydroquinolines and 2-imino-thiochromenes via copper-catalyzed domino reaction. Tetrahedron, 64(3), 487-492.
  • Frisch, E., Hratchian, H. P., & Dennington, R. (2009). II, et al., Gaussview, Version 5.0. 8, Gaussian. Inc. Wallingford CT.
  • Frisch, M. e., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., . . . Nakatsuji, H. (2016). Gaussian 16: Gaussian, Inc. Wallingford, CT.
  • Govindarao, K., Srinivasan, N., Suresh, R., Raheja, R., Annadurai, S., Bhandare, R. R., & Shaik, A. B. (2022). Quinoline conjugated 2-azetidinone derivatives as prospective anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies. Journal of Saudi Chemical Society, 26(3), 101471.
  • Harris, R., Olson, A. J., & Goodsell, D. S. (2008). Automated prediction of ligand‐binding sites in proteins. Proteins: structure, function, and bioinformatics, 70(4), 1506-1517.
  • Lee, M. J., Albert, S. Y., Gardino, A. K., Heijink, A. M., Sorger, P. K., MacBeath, G., & Yaffe, M. B. (2012). Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149(4), 780-794.
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341.
  • Luque-Agudo, V., Albarrán-Velo, J., Fernández-Bolaños, J., López, O., Light, M., Padrón, J., . . . Gil, M. (2017). Synthesis and antiproliferative activity of sulfa-Michael adducts and thiochromenes derived from carbohydrates. New Journal of Chemistry, 41(8), 3154-3162.
  • Ortiz, C., Echeverri, F., Robledo, S., Lanari, D., Curini, M., Quiñones, W., & Vargas, E. (2020). Synthesis and Evaluation of Antileishmanial and Cytotoxic Activity of Benzothiopyrane Derivatives. Molecules, 25(4), 800.
  • Pham, C. T., Mac, D. H., & Bui, T. T. T. (2019). Crystal structures of 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene. Acta Crystallographica Section E: Crystallographic Communications, 75(11), 1783-1786.
  • Puppala, M., Zhao, X., Casemore, D., Zhou, B., Aridoss, G., Narayanapillai, S., & Xing, C. (2016). 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions. Bioorganic & medicinal chemistry, 24(6), 1292-1297.
  • Roy, R., Rakshit, S., Bhowmik, T., Khan, S., Ghatak, A., & Bhar, S. (2014). Substituted 3-E-styryl-2 H-chromenes and 3-E-styryl-2 H-thiochromenes: synthesis, photophysical studies, anticancer activity, and exploration to tricyclic benzopyran skeleton. The Journal of Organic Chemistry, 79(14), 6603-6614.
  • Sajadikhah, S. S., & Nassiri, M. (2021). Synthesis of 2H-thiochromene derivatives (microreview). Chemistry of Heterocyclic Compounds, 57(11), 1073-1075.
  • Shahidha, R., Al-Saadi, A. A., & Muthu, S. (2015). Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 127-142.
  • Singh, S. K., Yadav, M. S., Singh, A. S., Agrahari, A. K., Mishra, N., Kumar, S., & Tiwari, V. K. (2021). d-Glucosamine as the Green Ligand for Cu (I)-Catalyzed Regio-and Stereoselective Domino Synthesis of (Z)-3 Methyleneisoindoline-1-ones and (E)-N-Aryl-4 H-thiochromen-4-imines. ACS omega, 6(32), 21125-21138.
  • Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  • Tasli, P. T., Soganci, T., Kart, S. O., Kart, H. H., & Ak, M. (2021). Quantum mechanical calculations of different monomeric structures with the same electroactive group to clarify the relationship between structure and ultimate optical and electrochemical properties of their conjugated polymers. Journal of Physics and Chemistry of Solids, 149, 109720.
  • Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D., & Spackman, M. (2012). CrystalExplorer (Version 3.1). University of Western Australia.
  • Zhang, H., Berezov, A., Wang, Q., Zhang, G., Drebin, J., Murali, R., & Greene, M. I. (2007). ErbB receptors: from oncogenes to targeted cancer therapies. The Journal of clinical investigation, 117(8), 2051-2058.

Chemical Activity, Hirshfeld Surface Analysis and Molecular Docking Studies of 2-(2-Bromo-5-Fluorophenyl)-7-Methoxy-3-Nitro-2H-Thiochromene Molecule

Year 2023, Volume: 13 Issue: 1, 268 - 277, 01.03.2023
https://doi.org/10.21597/jist.1206903

Abstract

In this article, the structural and electronic properties of 2-(2-Bromo-5-Fluorophenyl)-7-Methoxy-3-Nitro-2H-Thiochromene were investigated theoretically using density functional theory. Molecular orbital analysis HOMO-LUMO was used to investigate the stability of the molecule. Intramolecular and intermolecular interactions in the crystal structure of the title compound were visualized by hirshfeld surface analysis and examined. Lipinski's rule of five showed that the 2-(2-Bromo-5-Fluorophenyl)-7-Methoxy-3-Nitro-2H-Thiochromene molecule is an orally active candidate and may be suitable for new drug design. In the last part of the study, the best binding pose of 4RJ3 PDB encoded protein to the ligand (the molecule under study) was determined by molecular docking method, and the binding energy and binding mechanism were examined.

Project Number

Hibe No: 2013FBE013

References

  • Barakat, A., Islam, M. S., Ali, M., Al-Majid, A. M., Alshahrani, S., Alamary, A. S., . . . Choudhary, M. I. (2021). Regio-and stereoselective synthesis of a new series of spirooxindole pyrrolidine grafted thiochromene scaffolds as potential anticancer agents. Symmetry, 13(8), 1426.
  • Biovia, D. S. (2020). BIOVIA discovery studio. Dassault Systèmes.
  • Breda, S., Reva, I., Lapinski, L., Nowak, M., & Fausto, R. (2006). Infrared spectra of pyrazine, pyrimidine and pyridazine in solid argon. Journal of Molecular Structure, 786(2-3), 193-206.
  • Cui, S.-L., Wang, J., & Wang, Y.-G. (2008). Efficient synthesis of 2-imino-1, 2-dihydroquinolines and 2-imino-thiochromenes via copper-catalyzed domino reaction. Tetrahedron, 64(3), 487-492.
  • Frisch, E., Hratchian, H. P., & Dennington, R. (2009). II, et al., Gaussview, Version 5.0. 8, Gaussian. Inc. Wallingford CT.
  • Frisch, M. e., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., . . . Nakatsuji, H. (2016). Gaussian 16: Gaussian, Inc. Wallingford, CT.
  • Govindarao, K., Srinivasan, N., Suresh, R., Raheja, R., Annadurai, S., Bhandare, R. R., & Shaik, A. B. (2022). Quinoline conjugated 2-azetidinone derivatives as prospective anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies. Journal of Saudi Chemical Society, 26(3), 101471.
  • Harris, R., Olson, A. J., & Goodsell, D. S. (2008). Automated prediction of ligand‐binding sites in proteins. Proteins: structure, function, and bioinformatics, 70(4), 1506-1517.
  • Lee, M. J., Albert, S. Y., Gardino, A. K., Heijink, A. M., Sorger, P. K., MacBeath, G., & Yaffe, M. B. (2012). Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell, 149(4), 780-794.
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: the rule-of-five revolution. Drug discovery today: Technologies, 1(4), 337-341.
  • Luque-Agudo, V., Albarrán-Velo, J., Fernández-Bolaños, J., López, O., Light, M., Padrón, J., . . . Gil, M. (2017). Synthesis and antiproliferative activity of sulfa-Michael adducts and thiochromenes derived from carbohydrates. New Journal of Chemistry, 41(8), 3154-3162.
  • Ortiz, C., Echeverri, F., Robledo, S., Lanari, D., Curini, M., Quiñones, W., & Vargas, E. (2020). Synthesis and Evaluation of Antileishmanial and Cytotoxic Activity of Benzothiopyrane Derivatives. Molecules, 25(4), 800.
  • Pham, C. T., Mac, D. H., & Bui, T. T. T. (2019). Crystal structures of 2-(2-bromo-5-fluorophenyl)-8-ethoxy-3-nitro-2H-thiochromene and 2-(2-bromo-5-fluorophenyl)-7-methoxy-3-nitro-2H-thiochromene. Acta Crystallographica Section E: Crystallographic Communications, 75(11), 1783-1786.
  • Puppala, M., Zhao, X., Casemore, D., Zhou, B., Aridoss, G., Narayanapillai, S., & Xing, C. (2016). 4H-Chromene-based anticancer agents towards multi-drug resistant HL60/MX2 human leukemia: SAR at the 4th and 6th positions. Bioorganic & medicinal chemistry, 24(6), 1292-1297.
  • Roy, R., Rakshit, S., Bhowmik, T., Khan, S., Ghatak, A., & Bhar, S. (2014). Substituted 3-E-styryl-2 H-chromenes and 3-E-styryl-2 H-thiochromenes: synthesis, photophysical studies, anticancer activity, and exploration to tricyclic benzopyran skeleton. The Journal of Organic Chemistry, 79(14), 6603-6614.
  • Sajadikhah, S. S., & Nassiri, M. (2021). Synthesis of 2H-thiochromene derivatives (microreview). Chemistry of Heterocyclic Compounds, 57(11), 1073-1075.
  • Shahidha, R., Al-Saadi, A. A., & Muthu, S. (2015). Vibrational spectroscopic studies, normal co-ordinate analysis, first order hyperpolarizability, HOMO–LUMO of midodrine by using density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 127-142.
  • Singh, S. K., Yadav, M. S., Singh, A. S., Agrahari, A. K., Mishra, N., Kumar, S., & Tiwari, V. K. (2021). d-Glucosamine as the Green Ligand for Cu (I)-Catalyzed Regio-and Stereoselective Domino Synthesis of (Z)-3 Methyleneisoindoline-1-ones and (E)-N-Aryl-4 H-thiochromen-4-imines. ACS omega, 6(32), 21125-21138.
  • Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392.
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  • Tasli, P. T., Soganci, T., Kart, S. O., Kart, H. H., & Ak, M. (2021). Quantum mechanical calculations of different monomeric structures with the same electroactive group to clarify the relationship between structure and ultimate optical and electrochemical properties of their conjugated polymers. Journal of Physics and Chemistry of Solids, 149, 109720.
  • Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D., & Spackman, M. (2012). CrystalExplorer (Version 3.1). University of Western Australia.
  • Zhang, H., Berezov, A., Wang, Q., Zhang, G., Drebin, J., Murali, R., & Greene, M. I. (2007). ErbB receptors: from oncogenes to targeted cancer therapies. The Journal of clinical investigation, 117(8), 2051-2058.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Alpaslan Bayrakdar 0000-0001-7967-2245

Project Number Hibe No: 2013FBE013
Early Pub Date February 24, 2023
Publication Date March 1, 2023
Submission Date November 18, 2022
Acceptance Date December 12, 2022
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Bayrakdar, A. (2023). 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. Journal of the Institute of Science and Technology, 13(1), 268-277. https://doi.org/10.21597/jist.1206903
AMA Bayrakdar A. 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. J. Inst. Sci. and Tech. March 2023;13(1):268-277. doi:10.21597/jist.1206903
Chicago Bayrakdar, Alpaslan. “2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi Ve Moleküler Kenetleme Çalışmaları”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 268-77. https://doi.org/10.21597/jist.1206903.
EndNote Bayrakdar A (March 1, 2023) 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. Journal of the Institute of Science and Technology 13 1 268–277.
IEEE A. Bayrakdar, “2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 268–277, 2023, doi: 10.21597/jist.1206903.
ISNAD Bayrakdar, Alpaslan. “2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi Ve Moleküler Kenetleme Çalışmaları”. Journal of the Institute of Science and Technology 13/1 (March 2023), 268-277. https://doi.org/10.21597/jist.1206903.
JAMA Bayrakdar A. 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. J. Inst. Sci. and Tech. 2023;13:268–277.
MLA Bayrakdar, Alpaslan. “2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi Ve Moleküler Kenetleme Çalışmaları”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 268-77, doi:10.21597/jist.1206903.
Vancouver Bayrakdar A. 2-(2-Bromo-5-Florofenil)-7-Metoksi-3-Nitro-2H-TiyokromenMolekülünün Kimyasal Aktivitesi, Hirshfeld Yüzey Analizi ve Moleküler Kenetleme Çalışmaları. J. Inst. Sci. and Tech. 2023;13(1):268-77.