Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 1, 504 - 512, 01.03.2023
https://doi.org/10.21597/jist.1211014

Abstract

References

  • Ağaoğullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M. L., Akarsubası, A. T., Bilgic, D., Oktar, F. N. (2012). Bioceramic production from Sea Urchins. Acta Physica Polonica A, 121, 23–26.
  • Alkaya, D. B., Cesur, S., Seyhan, S. A. (2022). Characterization and in vitro release kinetics of chitosan based biocomposites from Scotch Bonnets. Journal of the Indian Chemical Society, 100525. https://doi.org/10.1016/j.jics.2022.100525
  • Antoniac, V. I., Lesci, I. G., Blajan, A., Vitioanu, G., Antoniac, A. (2015). Bioceramics and biocomposites from marine sources. Key Engineering Materials, 672, 276-292. https://doi.org/10.4028/www.scientific.net/KEM.672.276
  • Bhattacharjee, B. N., Mishra, V. K., Rai, S. B., Parkash, O., Kumar, D. (2019). Structure of apatite nanoparticles derived from marine animal (crab) shells: An environment-friendly and cost-effective novel approach to recycle seafood waste. ACS Omega, 26, 4(7), 12753–12758. https://doi.org/10.1021/acsomega.9b00134
  • Castro, M. A. M., Portela, T. O., Correa, G. S., Oliveira, M. M., Rangel, J. H. G., Rodrigues, S. F., Mercury, J. M. R. (2020). Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time. Boletín de la Sociedad Española de Cerámica y Vidrio, 6(1), 35-41. https://doi.org/10.1016/j.bsecv.2020.06.003
  • Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., Ege, Z. R., Lin, C. C., Kuruca, S. E., Erdemir, G. (2020). Preparation and characterization of electrospun polylactic acid/sodium alginate/Orange Oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 56, 533–543. https://doi.org/10.1007/s41779-019-00363-1
  • Eliaz, N., Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4), 334. doi:10.3390/ma10040334
  • Fathi, M., El Yacoubi. A., Massit, A., El Idrissi, B. C. (2015). Wet chemical method for preparing high purity β and α- tricalcium phosphate crystalline powders. International Journal of Scientific Engineering Research, 6(6), 139-42.
  • Gunduz, O., Sahin, Y. M., Agathopoulos, S., Ben-Nissan, B., Oktar, F. N. (2014). A new method for fabrication of nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum. Journal of Nanomaterials, 2014, 382861. https://doi.org/10.1155/2014/382861
  • Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ağaoğulları, D., Gökçe, H., Kayali, E. S., Aktas, C., Ben-Nissan, B., Oktar, F. N. (2013). Nano calcium phosphate powder production through chemical agitation from Atlantic Deer Cowrie shells (Cypraea cervus Linnaeus). Key Engineering Materials, 587, 80–85. https://doi.org/10.4028/www.scientific.net/KEM.587.80
  • Hassan, M. N., Mahmoud, M. M., El-Fattah, A. A., Kandil, S. (2016). Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceramics International, 42(3), 3725-3744. https://doi.org/10.1016/j.ceramint.2015.11.044
  • Kel, D., Gökçe, H., Bilgiç, D., Ağaoğulları, D., Duman, I., Öveçoğlu, M. L., Kayali, E. S., Kiyici, I. A., Agathopoulos, S., Oktar, F. N. (2012). Production of natural bioceramic from land snails. Key Engineering Materials, 493-494, 287-292. https://doi.org/10.4028/www.scientific.net/KEM.493-494.287
  • Pena, J., Le Geros. R. Z., Rohanizadev, R., Le Geros, J.P. (2001). CaCO3/Ca-P biphasic materials prepared by microwave processing of natural aragonite and calcite. Key Engineering Materials, 192–195, 267–270. https://doi.org/10.4028/www.scientific.net/KEM.192-195.267
  • Sadjadi, M. S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., Zare, K. (2010). In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Materials Chemistry and Physics, 124(1), 217–222. https://doi.org/10.1016/j.matchemphys.2010.06.022
  • Şahin, Y. M, Gündüz, O., Bulut, B., Özyeğin, L., Gökçe, H., Ağaoğulları, D., Chou, J., Kayalı, E., Ben-Nissan, B., Oktar, F. N. (2015). Nano-Bioceramic Synthesis from Tropical Sea Snail Shells (Tiger Cowrie - Cypraea Tigris) with Simple Chemical Treatment. Acta Physica Polonica A, 127, 1055–1058. DOI: 10.12693/APhysPolA.127.1055
  • Seyhan, S. A., Alkaya, D. B., Cesur, S., Oktar, F. N., Gunduz, O. (2022). Preparation and characterization of pure natural hydroxyapatite derived from seashells for controlled drug delivery. Journal of the Australian Ceramic Society, 58 (4), 1231–1240. 1231–1240
  • Shaala, L. A., Asfour, H. Z., Youssef, D. T., Żółtowska-Aksamitowska, S., Wysokowski, M., Tsurkan, M., Galli, R., Meissner, H., Petrenko, I., Tabachnick, K. (2019). New source of 3D chitin scaffolds: The Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Marine Drugs, 17, 92. https://doi.org/10.3390/md17020092
  • Tamasan, M., Ozyegin, L. S., Oktar, F. N., Simon, V. (2013). Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Materials Science and Engineering C, 33, 2569–2577. https://doi.org/10.1016/j.msec.2013.02.019
  • Wan, M. C., Qin, W., Lei, C., Li, Q. H., Meng, M., Fang, M., Song, W., Chen, J. H., Tay, F., Niu, L. N. (2021). Biomaterials from the sea: Future building blocks for biomedical applications. Bioactive Materials, 6, 4255–4285. https://doi.org/10.1016/j.bioactmat.2021.04.028
  • Zhou, H., Yang, L., Gbureck, U., Bhaduri, S. B., Sikder, P. (2021). Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomaterialia, 127, 41–55. https://doi.org/10.1016/j.actbio.2021.03.050.

Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus

Year 2023, Volume: 13 Issue: 1, 504 - 512, 01.03.2023
https://doi.org/10.21597/jist.1211014

Abstract

In the last decade, the processes involved in biomineralization has greatly developed, leading to the production of a new generation of biomaterials. Calcium phosphate ceramic materials attract special interest due to their bioactive and biocompatible properties in biomaterials. Most of marine structures contains calcium carbonate (calcite or aragonite) and they can be easily converted to bioceramic material. The application of calcium phosphate ceramics as useful biocompatible materials largely depends on the purity and morphology of the powder. In this study calcium phosphate bioceramics (as raw materials for bone-scaffolds) were obtained via hot-plate, ultrasound-assisted, and microwave assisted method using the sea shell Cyprae Annulus as a calcium source. The characterization of the produced materials was carried out via FT-IR, SEM, XRD analysis. It was found that the calcium phosphate powders (hydroxyapatite) produced by three different methods were predominantly monetite and hydroxyapatite as the secondary phase. According to the SEM results, the overall morphology for CaP powder bioceramics shows the regular distribution of spherical and rice-shaped and CP powders produced by microwave assisted method have better morphology. The used methods are safe and inexpensive. Moreover, the raw materials (Cypraea Annulus) feature the advantages of the unlimited source as well as the biological origin. These methods were compared takes attention due to it is economical and easy method to obtain hydroxyapatite.

References

  • Ağaoğullari, D., Kel, D., Gökçe, H., Duman, I., Öveçoğlu, M. L., Akarsubası, A. T., Bilgic, D., Oktar, F. N. (2012). Bioceramic production from Sea Urchins. Acta Physica Polonica A, 121, 23–26.
  • Alkaya, D. B., Cesur, S., Seyhan, S. A. (2022). Characterization and in vitro release kinetics of chitosan based biocomposites from Scotch Bonnets. Journal of the Indian Chemical Society, 100525. https://doi.org/10.1016/j.jics.2022.100525
  • Antoniac, V. I., Lesci, I. G., Blajan, A., Vitioanu, G., Antoniac, A. (2015). Bioceramics and biocomposites from marine sources. Key Engineering Materials, 672, 276-292. https://doi.org/10.4028/www.scientific.net/KEM.672.276
  • Bhattacharjee, B. N., Mishra, V. K., Rai, S. B., Parkash, O., Kumar, D. (2019). Structure of apatite nanoparticles derived from marine animal (crab) shells: An environment-friendly and cost-effective novel approach to recycle seafood waste. ACS Omega, 26, 4(7), 12753–12758. https://doi.org/10.1021/acsomega.9b00134
  • Castro, M. A. M., Portela, T. O., Correa, G. S., Oliveira, M. M., Rangel, J. H. G., Rodrigues, S. F., Mercury, J. M. R. (2020). Synthesis of hydroxyapatite by hydrothermal and microwave irradiation methods from biogenic calcium source varying pH and synthesis time. Boletín de la Sociedad Española de Cerámica y Vidrio, 6(1), 35-41. https://doi.org/10.1016/j.bsecv.2020.06.003
  • Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., Ege, Z. R., Lin, C. C., Kuruca, S. E., Erdemir, G. (2020). Preparation and characterization of electrospun polylactic acid/sodium alginate/Orange Oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 56, 533–543. https://doi.org/10.1007/s41779-019-00363-1
  • Eliaz, N., Metoki, N. (2017). Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials, 10(4), 334. doi:10.3390/ma10040334
  • Fathi, M., El Yacoubi. A., Massit, A., El Idrissi, B. C. (2015). Wet chemical method for preparing high purity β and α- tricalcium phosphate crystalline powders. International Journal of Scientific Engineering Research, 6(6), 139-42.
  • Gunduz, O., Sahin, Y. M., Agathopoulos, S., Ben-Nissan, B., Oktar, F. N. (2014). A new method for fabrication of nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum. Journal of Nanomaterials, 2014, 382861. https://doi.org/10.1155/2014/382861
  • Gunduz, O., Sahin, Y.M., Agathopoulos, S., Ağaoğulları, D., Gökçe, H., Kayali, E. S., Aktas, C., Ben-Nissan, B., Oktar, F. N. (2013). Nano calcium phosphate powder production through chemical agitation from Atlantic Deer Cowrie shells (Cypraea cervus Linnaeus). Key Engineering Materials, 587, 80–85. https://doi.org/10.4028/www.scientific.net/KEM.587.80
  • Hassan, M. N., Mahmoud, M. M., El-Fattah, A. A., Kandil, S. (2016). Microwave-assisted preparation of nano-hydroxyapatite for bone substitutes. Ceramics International, 42(3), 3725-3744. https://doi.org/10.1016/j.ceramint.2015.11.044
  • Kel, D., Gökçe, H., Bilgiç, D., Ağaoğulları, D., Duman, I., Öveçoğlu, M. L., Kayali, E. S., Kiyici, I. A., Agathopoulos, S., Oktar, F. N. (2012). Production of natural bioceramic from land snails. Key Engineering Materials, 493-494, 287-292. https://doi.org/10.4028/www.scientific.net/KEM.493-494.287
  • Pena, J., Le Geros. R. Z., Rohanizadev, R., Le Geros, J.P. (2001). CaCO3/Ca-P biphasic materials prepared by microwave processing of natural aragonite and calcite. Key Engineering Materials, 192–195, 267–270. https://doi.org/10.4028/www.scientific.net/KEM.192-195.267
  • Sadjadi, M. S., Meskinfam, M., Sadeghi, B., Jazdarreh, H., Zare, K. (2010). In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix. Materials Chemistry and Physics, 124(1), 217–222. https://doi.org/10.1016/j.matchemphys.2010.06.022
  • Şahin, Y. M, Gündüz, O., Bulut, B., Özyeğin, L., Gökçe, H., Ağaoğulları, D., Chou, J., Kayalı, E., Ben-Nissan, B., Oktar, F. N. (2015). Nano-Bioceramic Synthesis from Tropical Sea Snail Shells (Tiger Cowrie - Cypraea Tigris) with Simple Chemical Treatment. Acta Physica Polonica A, 127, 1055–1058. DOI: 10.12693/APhysPolA.127.1055
  • Seyhan, S. A., Alkaya, D. B., Cesur, S., Oktar, F. N., Gunduz, O. (2022). Preparation and characterization of pure natural hydroxyapatite derived from seashells for controlled drug delivery. Journal of the Australian Ceramic Society, 58 (4), 1231–1240. 1231–1240
  • Shaala, L. A., Asfour, H. Z., Youssef, D. T., Żółtowska-Aksamitowska, S., Wysokowski, M., Tsurkan, M., Galli, R., Meissner, H., Petrenko, I., Tabachnick, K. (2019). New source of 3D chitin scaffolds: The Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Marine Drugs, 17, 92. https://doi.org/10.3390/md17020092
  • Tamasan, M., Ozyegin, L. S., Oktar, F. N., Simon, V. (2013). Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells. Materials Science and Engineering C, 33, 2569–2577. https://doi.org/10.1016/j.msec.2013.02.019
  • Wan, M. C., Qin, W., Lei, C., Li, Q. H., Meng, M., Fang, M., Song, W., Chen, J. H., Tay, F., Niu, L. N. (2021). Biomaterials from the sea: Future building blocks for biomedical applications. Bioactive Materials, 6, 4255–4285. https://doi.org/10.1016/j.bioactmat.2021.04.028
  • Zhou, H., Yang, L., Gbureck, U., Bhaduri, S. B., Sikder, P. (2021). Monetite, an important calcium phosphate compound–Its synthesis, properties and applications in orthopedics. Acta Biomaterialia, 127, 41–55. https://doi.org/10.1016/j.actbio.2021.03.050.
There are 20 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Kimya / Chemistry
Authors

Serap Ayaz Seyhan 0000-0001-5908-2766

Dilek Bilgiç Alkaya 0000-0002-7837-0250

Early Pub Date February 24, 2023
Publication Date March 1, 2023
Submission Date November 28, 2022
Acceptance Date December 29, 2022
Published in Issue Year 2023 Volume: 13 Issue: 1

Cite

APA Ayaz Seyhan, S., & Bilgiç Alkaya, D. (2023). Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus. Journal of the Institute of Science and Technology, 13(1), 504-512. https://doi.org/10.21597/jist.1211014
AMA Ayaz Seyhan S, Bilgiç Alkaya D. Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus. J. Inst. Sci. and Tech. March 2023;13(1):504-512. doi:10.21597/jist.1211014
Chicago Ayaz Seyhan, Serap, and Dilek Bilgiç Alkaya. “Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus”. Journal of the Institute of Science and Technology 13, no. 1 (March 2023): 504-12. https://doi.org/10.21597/jist.1211014.
EndNote Ayaz Seyhan S, Bilgiç Alkaya D (March 1, 2023) Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus. Journal of the Institute of Science and Technology 13 1 504–512.
IEEE S. Ayaz Seyhan and D. Bilgiç Alkaya, “Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus”, J. Inst. Sci. and Tech., vol. 13, no. 1, pp. 504–512, 2023, doi: 10.21597/jist.1211014.
ISNAD Ayaz Seyhan, Serap - Bilgiç Alkaya, Dilek. “Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus”. Journal of the Institute of Science and Technology 13/1 (March 2023), 504-512. https://doi.org/10.21597/jist.1211014.
JAMA Ayaz Seyhan S, Bilgiç Alkaya D. Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus. J. Inst. Sci. and Tech. 2023;13:504–512.
MLA Ayaz Seyhan, Serap and Dilek Bilgiç Alkaya. “Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus”. Journal of the Institute of Science and Technology, vol. 13, no. 1, 2023, pp. 504-12, doi:10.21597/jist.1211014.
Vancouver Ayaz Seyhan S, Bilgiç Alkaya D. Chemical Synthesis and Characterization of Hydroxyapatite Prepared from Cypraea Annulus. J. Inst. Sci. and Tech. 2023;13(1):504-12.