Research Article
BibTex RIS Cite

Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi

Year 2023, Volume: 13 Issue: 2, 1120 - 1133, 01.06.2023
https://doi.org/10.21597/jist.1221016

Abstract

Nefes figürü (Breath Figure) ile polimerik yüzeylerde desen ve gözenek oluşturma yöntemi oldukça yeni olup, bir polimer litografi tekniği olarak literatürde yerini almıştır. Teknolojik maliyetinin düşük olması, çevre dostu olması ve toksik kimyasallar kullanılmaması gibi avantajları sayesinde biyomalzeme üretiminde özellikle gözenekli membran, yara örtüleri ve doku iskelelerinin üretiminde tercih edilmektedir. Biyouyumlu ve biyobozunur poliüretanlar biyomalzeme üretiminde kullanılan polimerlerin başında gelmektedir. Çalışmada, nefes figürü tekniği ile üretilen poliüretan filmlerin gözenekleri içine kurkumin yüklü difenilalaninamid peptit nanopartiküller entegre edilerek bir hibrit yara örtü malzemesi dizayn edilmiştir. Biyouyumluluğu, kimyasal olarak modifiye edilebilirliği, kolay ve ucuz sentezlenebilirliği, olağanüstü̈ dayanıklılığı, termal ve kimyasal stabiliteleri sayesinde peptit nanopartiküller biyomedikal uygulamalarda özellikle ilaç salım uygulamalarında sıklıkla kullanılmaktadır. Kurkumin düşük molekül ağırlıklı bir fenolik bitki bileşenidir. Antioksidan, antienflamatuar, antibakteriyel ve antiviral gibi farmakolojik özelliklerinden dolayı yara tedavilerinde etken madde olarak kullanılmaktadır. Deneysel çalışmalar kapsamında, farklı BF parametreleri ile üretilen poliüretan filmler ışık mikroskobu ve taramalı elektron mikroskobu (SEM) kullanılarak karakterize edilmiş ve morfolojik özellikleri bakımından yara örtü malzemesi olmaya en uygun aday seçilmiştir. Hazırlanan kurkumin yüklü peptit (FFA/Ccm) nanopartiküller zayıflatılmış toplam yansıma – Fourier dönüşümlü kızılötesi (ATR-FTIR) spektroskopisi ve elektron mikroskopisi ile karakterize edilmiştir. FFA/Ccm nanopartiküllerin kurkumin yükleme kinetikleri UV-görünür bölge spektrofotometrisi ile değerlendirilmiştir. Poliüretan filmin gözenekleri içine FFA/Ccm nanopartiküllerin gömülmesi ile elde edilen hibrit yara örtüsünün morfolojik analizleri SEM ile ve kurkumin salım kinetikleri UV-görünür bölge spektrofotometrisi ile incelenmiştir. Son olarak, hibrit yara örtüsünün sitotoksisite testleri L929 fare fibroblast hücre hattında MTT yöntemiyle değerlendirilmiştir. Geliştirilen hibrit yara örtü malzemesinin biyomedikal uygulamalarda kullanımı gelecek vadetmektedir.

Supporting Institution

Aksaray Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2019-036

Thanks

Bu çalışma Aksaray Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir. Proje Numarası: 2019-036. Bu çalışmaya verdiği destekler için Hacettepe Üniversitesi, Jeoloji Mühendisliği, Elektron Mikroskobu Operatörü Mehmet Özcan’a teşekkür ederim

References

  • Akbik, D., Ghadiri, M., Chrzanowski, W., ve Rohanizadeh, R. (2014). Curcumin as a wound healing agent. Life Sciences, 116(1), 1-7.
  • Alam, S., Panda, J.J., ve Chauhan, V.S. (2012). Novel dipeptide nanoparticles for effective curcumin delivery. Int J Nanomedicine, 7, 4207-4222.
  • Altunbas, A., Lee, S.J., Rajasekaran, S.A., Schneider, J.P., ve Pochan, D.J. (2011). Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 32(25), 5906-5914.
  • Anand, S., Rykaczewski, K., Subramanyam, S.B., Beysens, D., ve Varanasi, K.K. (2015). How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter, 11(1), 69-80.
  • Berthet, M., Gauthier, Y., Lacroix, C., Verrier, B., ve Monge, C. (2017). Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol, 35(8), 770-784.
  • Bozdoğan, B., Akbal, Ö., Çelik, E., Türk, M., ve Denkbaş, E.B. (2017). Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery. RSC Advances, 7(75), 47592-47601.
  • Chen, S., Lu, X., Huang, Z., ve Lu, Q. (2015). In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. Chemical Communications, 51(26), 5698-5701.
  • Cong, H., Wang, J., Yu, B., ve Tang, J. (2012). Preparation of a highly permeable ordered porous microfiltration membrane of brominated poly(phenylene oxide) on an ice substrate by the breath figure method. Soft Matter, 8(34), 8835-8839.
  • Daban, G., Bayram, C., Bozdoğan, B., ve Denkbaş, E.B. (2019). Porous polyurethane film fabricated via the breath figure approach for sustained drug release. Journal of Applied Polymer Science 136(25), 47658.
  • Dhivya, S., Padma, V.V., ve Santhini, E. (2015). Wound dressings - a review. BioMedicine, 5(4), 22-22.
  • Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Amini Baghbadorani, M., Navid, S. ve Ghahremani, F. (2020). A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold. Scientific reports, 10(1), 3063.
  • Esmaeili, E., Eslami-Arshaghi, T., Hosseinzadeh, S., Elahirad, E., Jamalpoor, Z., Hatamie, S., ve Soleimani, M. (2020). The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int J Biol Macromol, 152, 418-427.
  • Ferreira, A.M., Mattu, C., Ranzato, E., ve Ciardelli, G. (2014). Bioinspired porous membranes containing polymer nanoparticles for wound healing. Journal of Biomedical Materials Research Part A, 102(12), 4394-4405.
  • Ghaee, A., Bagheri-Khoulenjani, S., Amir Afshar, H., ve Bogheiri, H. (2019). Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Composites Part B: Engineering, 177, 107339.
  • Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X. ve Qian, Z. (2013). A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 34(27), 6377-6387.
  • Gonzalez, A.C.O., Costa, T.F., Andrade, Z.A., ve Medrado, A.R. (2016). Wound healing - A literature review. Anais brasileiros de dermatologia, 91(5), 614-620.
  • Jiang, L. ve Loo, S.C.J. (2021). Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections. ACS Applied Bio Materials, 4(5), 3849-3862.
  • Kawano, T., Sato, M., Yabu, H., ve Shimomura, M. (2014). Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): uniform porous polymer scaffolds prepared by the breath figure technique. Biomaterials Science, 2(1), 52-56.
  • Kumaraswamy, P., Lakshmanan, R., Sethuraman, S. Krishnan, U. M. (2011). Self-assembly of peptides: influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 7(6), 2744-2754. Pandit, G., Roy, K., Agarwal, U. ve Chatterjee, S. (2018). Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS omega, 3(3), 3143-3155.
  • Pankongadisak, P., Sangklin, S., Chuysinuan, P., Suwantong, O. ve Supaphol, P. (2019). The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. Journal of Drug Delivery Science and Technology, 53, 101121.
  • Ren, X., Han, Y., Wang, J., Jiang, Y., Yi, Z., Xu, H. ve Ke, Q. (2018). An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater, 70, 140-153.
  • Shi, Y., van der Meel, R., Theek, B., Oude Blenke, E., Pieters, E.H.E., Fens, M.H. ve Hennink, W. E. (2015). Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles. ACS Nano, 9(4), 3740-3752.
  • Wan, L.S., Li, J.W., Ke, B.B. veXu, Z.K. (2012). Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 134(1), 95-98.
  • Yabu, H., Inoue, K. ve Shimomura, M. (2006). Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284-285, 301-304.
  • Zhang, F., Hu, C., Kong, Q., Luo, R., ve Wang, Y. (2019). Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 11(40), 37147-37155.
  • Zhou, L., Lv, F., Liu, L., Shen, G., Yan, X. ve Bazan, G. (2018). Cross‐Linking of Thiolated Paclitaxel–Oligo(p‐phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to “Chemical Locks” That Increase Drug Efficacy. Advanced Materials, 30.

Evaluation of Porous Film – Peptide Nanoparticle Hybrid Structures as Drug-Releasing Wound Dressing Material

Year 2023, Volume: 13 Issue: 2, 1120 - 1133, 01.06.2023
https://doi.org/10.21597/jist.1221016

Abstract

Breath Figure (BF), which is used to create patterns and pores on polymeric surfaces, is a polymer lithography technique. It is preferred in the production of biomaterials, especially porous membranes, wound dressings and tissue scaffolds, thanks to its advantages such as low technological cost, environmental friendliness and non-toxic chemicals. Biodegradable and biocompatible polyurethanes (PU) are the leading polymers used in biomaterial fabrication. In this study, porous PU films are fabricated with the BF method. Curcumin-loaded diphenylalanine (FFA/Ccm) peptide nanoparticles are integrated into the pores of films. Peptide nanoparticles are frequently used in biomedical applications, especially in drug release, thanks to their biocompatibility, chemical modifiability, inexpensive synthesis, and thermal and chemical stability. Curcumin is a natural phenolic compound. It is used as an active agent in wound treatments due to its pharmacological activities such as antioxidant, anti-inflammatory, antibacterial and antiviral. Within the scope of experimental studies, PU films produced with different BF parameters were characterized using light microscopy and scanning electron microscopy (SEM). The most suitable candidate for wound dressing material was evaluated in terms of their morphological features. Characterization of FFA/Ccm NPs was performed by attenuated total reflectance – Fourier transfrom infrared (ATR-FTIR) spectroscopy and SEM. Curcumin loading kinetics of nanoparticles were evaluated by UV-visible spectrophotometry. Morphological analyzes of the hybrid wound dressing obtained by embedding NPs in the pores of the PU film were investigated by SEM. Curcumin release kinetics of hybrid wound dressing was investigated by UV-visible spectrophotometry. Finally, the cytotoxicity of the hybrid wound dressing was evaluated by the MTT method. The use of the developed hybrid material as a wound dressing in biomedical applications is promising.

Project Number

2019-036

References

  • Akbik, D., Ghadiri, M., Chrzanowski, W., ve Rohanizadeh, R. (2014). Curcumin as a wound healing agent. Life Sciences, 116(1), 1-7.
  • Alam, S., Panda, J.J., ve Chauhan, V.S. (2012). Novel dipeptide nanoparticles for effective curcumin delivery. Int J Nanomedicine, 7, 4207-4222.
  • Altunbas, A., Lee, S.J., Rajasekaran, S.A., Schneider, J.P., ve Pochan, D.J. (2011). Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials, 32(25), 5906-5914.
  • Anand, S., Rykaczewski, K., Subramanyam, S.B., Beysens, D., ve Varanasi, K.K. (2015). How droplets nucleate and grow on liquids and liquid impregnated surfaces. Soft Matter, 11(1), 69-80.
  • Berthet, M., Gauthier, Y., Lacroix, C., Verrier, B., ve Monge, C. (2017). Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol, 35(8), 770-784.
  • Bozdoğan, B., Akbal, Ö., Çelik, E., Türk, M., ve Denkbaş, E.B. (2017). Novel layer-by-layer self-assembled peptide nanocarriers for siRNA delivery. RSC Advances, 7(75), 47592-47601.
  • Chen, S., Lu, X., Huang, Z., ve Lu, Q. (2015). In situ growth of a polyphosphazene nanoparticle coating on a honeycomb surface: facile formation of hierarchical structures for bioapplication. Chemical Communications, 51(26), 5698-5701.
  • Cong, H., Wang, J., Yu, B., ve Tang, J. (2012). Preparation of a highly permeable ordered porous microfiltration membrane of brominated poly(phenylene oxide) on an ice substrate by the breath figure method. Soft Matter, 8(34), 8835-8839.
  • Daban, G., Bayram, C., Bozdoğan, B., ve Denkbaş, E.B. (2019). Porous polyurethane film fabricated via the breath figure approach for sustained drug release. Journal of Applied Polymer Science 136(25), 47658.
  • Dhivya, S., Padma, V.V., ve Santhini, E. (2015). Wound dressings - a review. BioMedicine, 5(4), 22-22.
  • Eskandarinia, A., Kefayat, A., Agheb, M., Rafienia, M., Amini Baghbadorani, M., Navid, S. ve Ghahremani, F. (2020). A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold. Scientific reports, 10(1), 3063.
  • Esmaeili, E., Eslami-Arshaghi, T., Hosseinzadeh, S., Elahirad, E., Jamalpoor, Z., Hatamie, S., ve Soleimani, M. (2020). The biomedical potential of cellulose acetate/polyurethane nanofibrous mats containing reduced graphene oxide/silver nanocomposites and curcumin: Antimicrobial performance and cutaneous wound healing. Int J Biol Macromol, 152, 418-427.
  • Ferreira, A.M., Mattu, C., Ranzato, E., ve Ciardelli, G. (2014). Bioinspired porous membranes containing polymer nanoparticles for wound healing. Journal of Biomedical Materials Research Part A, 102(12), 4394-4405.
  • Ghaee, A., Bagheri-Khoulenjani, S., Amir Afshar, H., ve Bogheiri, H. (2019). Biomimetic nanocomposite scaffolds based on surface modified PCL-nanofibers containing curcumin embedded in chitosan/gelatin for skin regeneration. Composites Part B: Engineering, 177, 107339.
  • Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X. ve Qian, Z. (2013). A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials, 34(27), 6377-6387.
  • Gonzalez, A.C.O., Costa, T.F., Andrade, Z.A., ve Medrado, A.R. (2016). Wound healing - A literature review. Anais brasileiros de dermatologia, 91(5), 614-620.
  • Jiang, L. ve Loo, S.C.J. (2021). Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections. ACS Applied Bio Materials, 4(5), 3849-3862.
  • Kawano, T., Sato, M., Yabu, H., ve Shimomura, M. (2014). Honeycomb-shaped surface topography induces differentiation of human mesenchymal stem cells (hMSCs): uniform porous polymer scaffolds prepared by the breath figure technique. Biomaterials Science, 2(1), 52-56.
  • Kumaraswamy, P., Lakshmanan, R., Sethuraman, S. Krishnan, U. M. (2011). Self-assembly of peptides: influence of substrate, pH and medium on the formation of supramolecular assemblies. Soft Matter, 7(6), 2744-2754. Pandit, G., Roy, K., Agarwal, U. ve Chatterjee, S. (2018). Self-Assembly Mechanism of a Peptide-Based Drug Delivery Vehicle. ACS omega, 3(3), 3143-3155.
  • Pankongadisak, P., Sangklin, S., Chuysinuan, P., Suwantong, O. ve Supaphol, P. (2019). The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. Journal of Drug Delivery Science and Technology, 53, 101121.
  • Ren, X., Han, Y., Wang, J., Jiang, Y., Yi, Z., Xu, H. ve Ke, Q. (2018). An aligned porous electrospun fibrous membrane with controlled drug delivery - An efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater, 70, 140-153.
  • Shi, Y., van der Meel, R., Theek, B., Oude Blenke, E., Pieters, E.H.E., Fens, M.H. ve Hennink, W. E. (2015). Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π–Π Stacking Stabilized Polymeric Micelles. ACS Nano, 9(4), 3740-3752.
  • Wan, L.S., Li, J.W., Ke, B.B. veXu, Z.K. (2012). Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 134(1), 95-98.
  • Yabu, H., Inoue, K. ve Shimomura, M. (2006). Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 284-285, 301-304.
  • Zhang, F., Hu, C., Kong, Q., Luo, R., ve Wang, Y. (2019). Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Applied Materials & Interfaces, 11(40), 37147-37155.
  • Zhou, L., Lv, F., Liu, L., Shen, G., Yan, X. ve Bazan, G. (2018). Cross‐Linking of Thiolated Paclitaxel–Oligo(p‐phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to “Chemical Locks” That Increase Drug Efficacy. Advanced Materials, 30.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Material Production Technologies
Journal Section Kimya / Chemistry
Authors

Betül Bozdoğan 0000-0003-1546-3895

Project Number 2019-036
Early Pub Date May 27, 2023
Publication Date June 1, 2023
Submission Date December 19, 2022
Acceptance Date March 31, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Bozdoğan, B. (2023). Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology, 13(2), 1120-1133. https://doi.org/10.21597/jist.1221016
AMA Bozdoğan B. Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi. J. Inst. Sci. and Tech. June 2023;13(2):1120-1133. doi:10.21597/jist.1221016
Chicago Bozdoğan, Betül. “Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology 13, no. 2 (June 2023): 1120-33. https://doi.org/10.21597/jist.1221016.
EndNote Bozdoğan B (June 1, 2023) Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi. Journal of the Institute of Science and Technology 13 2 1120–1133.
IEEE B. Bozdoğan, “Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi”, J. Inst. Sci. and Tech., vol. 13, no. 2, pp. 1120–1133, 2023, doi: 10.21597/jist.1221016.
ISNAD Bozdoğan, Betül. “Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology 13/2 (June 2023), 1120-1133. https://doi.org/10.21597/jist.1221016.
JAMA Bozdoğan B. Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi. J. Inst. Sci. and Tech. 2023;13:1120–1133.
MLA Bozdoğan, Betül. “Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi”. Journal of the Institute of Science and Technology, vol. 13, no. 2, 2023, pp. 1120-33, doi:10.21597/jist.1221016.
Vancouver Bozdoğan B. Gözenekli Film – Peptit Nanopartikül Hibrit Yapıların İlaç Salımı Yapan Yara Örtü Malzemesi Olarak Değerlendirilmesi. J. Inst. Sci. and Tech. 2023;13(2):1120-33.