Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 2, 747 - 759, 01.06.2023
https://doi.org/10.21597/jist.1222764

Abstract

References

  • Abdullah, A. A., Sabri, N. A., Khairunizam, W., Zunaidi, I., Razlan, Z. M., & Shahriman, A. B. (2019). Development of predictive models for cervical cancer based on gene expression profiling data. In IOP Conference Series: Materials Science and Engineering (Vol. 557, p. 012003). IOP Publishing.
  • Adem, K., Kiliçarslan, S., & Cömert, O. (2019). Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Systems with Applications, 115, 557–564. https://doi.org/10.1016/j.eswa.2018.08.050
  • Akyol, F. B., & Altun, O. (2020). Detection of cervix cancer from pap-smear images. Sakarya University Journal of Computer and Information Sciences, 3(2), 99–111.
  • Al Mudawi, N., & Alazeb, A. (2022). A Model for Predicting Cervical Cancer Using Machine Learning Algorithms. Sensors, 22(11), 4132.
  • Alam, T. M., Khan, M. M. A., Iqbal, M. A., Abdul, W., & Mushtaq, M. (2019, October 23). Cervical Cancer Prediction through Different Screening Methods Using Data Mining. SSRN Scholarly Paper, Rochester, NY. Retrieved from https://papers.ssrn.com/abstract=3474371
  • Ali, M. M., Ahmed, K., Bui, F. M., Paul, B. K., Ibrahim, S. M., Quinn, J. M. W., & Moni, M. A. (2021). Machine learning-based statistical analysis for early stage detection of cervical cancer. Computers in Biology and Medicine, 139, 104985. https://doi.org/10.1016/j.compbiomed.2021.104985
  • Allehaibi, K. H. S., Nugroho, L. E., Lazuardi, L., Prabuwono, A. S., & Mantoro, T. (2019). Segmentation and classification of cervical cells using deep learning. IEEE Access, 7, 116925–116941.
  • CH, N., Sai, P. P., Madhuri, G., Reddy, K. S., & BharathSimha Reddy, D. V. (2022). Artificial Intelligence based Cervical Cancer Risk Prediction Using M1 Algorithms. In 2022 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 1–6). Presented at the 2022 International Conference on Emerging Smart Computing and Informatics (ESCI). https://doi.org/10.1109/ESCI53509.2022.9758241
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321–357.
  • Chen, W., Shen, W., Gao, L., & Li, X. (2022). Hybrid Loss-Constrained Lightweight Convolutional Neural Networks for Cervical Cell Classification. Sensors, 22(9), 3272. https://doi.org/10.3390/s22093272
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297. Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, (4), 325–327.
  • Elen, A., Baş, S., & Közkurt, C. (2022). An Adaptive Gaussian Kernel for Support Vector Machine. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-06654-3
  • Eyüpoğlu, C. (2020). Korelasyon Temelli Özellik Seçimi, Genetik Arama ve Rastgele Ormanlar Tekniklerine Dayanan Yeni Bir Rahim Ağzı Kanseri Teşhis Yöntemi. Avrupa Bilim ve Teknoloji Dergisi, (19), 263–271.
  • Fernandes, K., Cardoso, J. S., & Fernandes, J. (2017). Transfer learning with partial observability applied to cervical cancer screening. In Iberian conference on pattern recognition and image analysis (pp. 243–250). Springer.
  • Gan, D., Shen, J., An, B., Xu, M., & Liu, N. (2020). Integrating TANBN with cost sensitive classification algorithm for imbalanced data in medical diagnosis. Computers & Industrial Engineering, 140, 106266.
  • Güre, M. D. P., Karataş, M., & Başcıllar, M. (2022). “HPV Aşısı Haktır”: Halk Sağlığı Sosyal Hizmeti Perspektifinden HPV İle İlgili Tweetlerin Analizi. Toplum ve Sosyal Hizmet, 33(3), 955–973.
  • He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263–1284.
  • Hu, F., & Li, H. (2013). A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE. Mathematical Problems in Engineering, 2013.
  • Ilyas, Q. M., & Ahmad, M. (2021). An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health. IEEE Access, 9, 12374–12388.
  • Islam, A.-U.-, Ripon, S. H., & Bhuiyan, N. Q. (2019). Cervical Cancer Risk Factors: Classification and Mining Associations. APTIKOM Journal on Computer Science and Information Technologies, 4(1), 8–18.
  • Karani, H., Gangurde, A., Dhumal, G., Gautam, W., Hiran, S., & Marathe, A. (2022). Comparison of Performance of Machine Learning Algorithms for Cervical Cancer Classification. In 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (pp. 1–7). IEEE.
  • Kartal, E., & Özen, Z. (2017). Dengesiz veri setlerinde sınıflandırma. Mühendislikte Yapay Zekâ ve Uygulamaları, 1st ed., O. Torkul, S. Gülseçen, Y. Uyaroğlu, G. Çağıl, and MK Uçar, Eds. Sakarya: Sakarya Üniversitesi Kütüphanesi Yayınevi, 109, 131.
  • Khanam, F. (2021). Prediction of cervical cancer in Bangladesh using hybrid machine learning algorithms. Retrieved from http://lib.buet.ac.bd:8080/xmlui/handle/123456789/6030
  • Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence Review, 39(4), 261–283.
  • Lam, L., & Suen, S. Y. (1997). Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 27(5), 553–568.
  • Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550.
  • Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., & Waibel, A. (1990). Machine learning. Annual review of computer science, 4(1), 417–433.
  • Nithya, B., & Ilango, V. (2019). Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction. SN Applied Sciences, 1(6), 1–16.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V. (2011). “ Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, p.
  • Ratul, I. J., Al-Monsur, A., Tabassum, B., Ar-Rafi, A. M., Nishat, M. M., & Faisal, F. (2022). Early risk prediction of cervical cancer: A machine learning approach. In 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). Presented at the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). https://doi.org/10.1109/ECTI-CON54298.2022.9795429
  • Sharma, K. K., & Seal, A. (2021). Multi-view spectral clustering for uncertain objects. Information Sciences, 547, 723–745.
  • Sharma, K. K., & Seal, A. (2021). Outlier-robust multi-view clustering for uncertain data. Knowledge-Based Systems, 211, 106567
  • Suman, S. K., & Hooda, N. (2019). Predicting risk of Cervical Cancer: A case study of machine learning. Journal of Statistics and Management Systems, 22(4), 689–696.
  • Tanimu, J. J., Hamada, M., Hassan, M., Kakudi, H., & Abiodun, J. O. (2022). A Machine Learning Method for Classification of Cervical Cancer. Electronics, 11(3), 463. https://doi.org/10.3390/electronics11030463
  • Yang, W., Gou, X., Xu, T., Yi, X., & Jiang, M. (2019). Cervical cancer risk prediction model and analysis of risk factors based on machine learning. In Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology (pp. 50–54).
  • Zhang, L., Zhu, Y., Song, Y., Han, Y., Sun, D., Qin, S., & Gao, Y. (2021). Intelligent Diagnosis of Cervical Cancer Based on Data Mining Algorithm. Computational and Mathematical Methods in Medicine, 2021.

Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches

Year 2023, Volume: 13 Issue: 2, 747 - 759, 01.06.2023
https://doi.org/10.21597/jist.1222764

Abstract

Cervical cancer is one of the most successful types of treatment when diagnosed early. In this study, it is aimed to find and classify the disease with data mining methods on the digitized data set obtained as a result of the pap-smear test. Two-stage architecture has been proposed for the diagnosis of cervical cancer. In the first stage of the study, missing data were extracted from the used dataset, and in the second stage, a new dataset was obtained by using the Synthetic Minority Oversampling Technique (SMOTE) algorithm to balance the target classes in the dataset. By applying the majority voting (MV) method to the dataset used in the study, the structure with 4 target variables was reduced to a single target variable. On two data sets, Artificial Neural Network (ANN), Support Vector Machines (SVM), Decision Trees (DT), Random Forest (RF), and K-Nearest Neighbors (KNN) algorithms from data mining methods were used for the diagnosis of cervical cancer. The results obtained from the original dataset and the dataset produced with Smote were compared. ANN is the best method evaluated according to classification success and F-score, and the major voted target variable in the balanced data group produced with the Smote algorithm gave the most successful result. The experimental results showed that the use of MV and SMOTE algorithms together increased the classification success from 93% to 99%.

References

  • Abdullah, A. A., Sabri, N. A., Khairunizam, W., Zunaidi, I., Razlan, Z. M., & Shahriman, A. B. (2019). Development of predictive models for cervical cancer based on gene expression profiling data. In IOP Conference Series: Materials Science and Engineering (Vol. 557, p. 012003). IOP Publishing.
  • Adem, K., Kiliçarslan, S., & Cömert, O. (2019). Classification and diagnosis of cervical cancer with stacked autoencoder and softmax classification. Expert Systems with Applications, 115, 557–564. https://doi.org/10.1016/j.eswa.2018.08.050
  • Akyol, F. B., & Altun, O. (2020). Detection of cervix cancer from pap-smear images. Sakarya University Journal of Computer and Information Sciences, 3(2), 99–111.
  • Al Mudawi, N., & Alazeb, A. (2022). A Model for Predicting Cervical Cancer Using Machine Learning Algorithms. Sensors, 22(11), 4132.
  • Alam, T. M., Khan, M. M. A., Iqbal, M. A., Abdul, W., & Mushtaq, M. (2019, October 23). Cervical Cancer Prediction through Different Screening Methods Using Data Mining. SSRN Scholarly Paper, Rochester, NY. Retrieved from https://papers.ssrn.com/abstract=3474371
  • Ali, M. M., Ahmed, K., Bui, F. M., Paul, B. K., Ibrahim, S. M., Quinn, J. M. W., & Moni, M. A. (2021). Machine learning-based statistical analysis for early stage detection of cervical cancer. Computers in Biology and Medicine, 139, 104985. https://doi.org/10.1016/j.compbiomed.2021.104985
  • Allehaibi, K. H. S., Nugroho, L. E., Lazuardi, L., Prabuwono, A. S., & Mantoro, T. (2019). Segmentation and classification of cervical cells using deep learning. IEEE Access, 7, 116925–116941.
  • CH, N., Sai, P. P., Madhuri, G., Reddy, K. S., & BharathSimha Reddy, D. V. (2022). Artificial Intelligence based Cervical Cancer Risk Prediction Using M1 Algorithms. In 2022 International Conference on Emerging Smart Computing and Informatics (ESCI) (pp. 1–6). Presented at the 2022 International Conference on Emerging Smart Computing and Informatics (ESCI). https://doi.org/10.1109/ESCI53509.2022.9758241
  • Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 16, 321–357.
  • Chen, W., Shen, W., Gao, L., & Li, X. (2022). Hybrid Loss-Constrained Lightweight Convolutional Neural Networks for Cervical Cell Classification. Sensors, 22(9), 3272. https://doi.org/10.3390/s22093272
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297. Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, (4), 325–327.
  • Elen, A., Baş, S., & Közkurt, C. (2022). An Adaptive Gaussian Kernel for Support Vector Machine. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-06654-3
  • Eyüpoğlu, C. (2020). Korelasyon Temelli Özellik Seçimi, Genetik Arama ve Rastgele Ormanlar Tekniklerine Dayanan Yeni Bir Rahim Ağzı Kanseri Teşhis Yöntemi. Avrupa Bilim ve Teknoloji Dergisi, (19), 263–271.
  • Fernandes, K., Cardoso, J. S., & Fernandes, J. (2017). Transfer learning with partial observability applied to cervical cancer screening. In Iberian conference on pattern recognition and image analysis (pp. 243–250). Springer.
  • Gan, D., Shen, J., An, B., Xu, M., & Liu, N. (2020). Integrating TANBN with cost sensitive classification algorithm for imbalanced data in medical diagnosis. Computers & Industrial Engineering, 140, 106266.
  • Güre, M. D. P., Karataş, M., & Başcıllar, M. (2022). “HPV Aşısı Haktır”: Halk Sağlığı Sosyal Hizmeti Perspektifinden HPV İle İlgili Tweetlerin Analizi. Toplum ve Sosyal Hizmet, 33(3), 955–973.
  • He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263–1284.
  • Hu, F., & Li, H. (2013). A novel boundary oversampling algorithm based on neighborhood rough set model: NRSBoundary-SMOTE. Mathematical Problems in Engineering, 2013.
  • Ilyas, Q. M., & Ahmad, M. (2021). An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health. IEEE Access, 9, 12374–12388.
  • Islam, A.-U.-, Ripon, S. H., & Bhuiyan, N. Q. (2019). Cervical Cancer Risk Factors: Classification and Mining Associations. APTIKOM Journal on Computer Science and Information Technologies, 4(1), 8–18.
  • Karani, H., Gangurde, A., Dhumal, G., Gautam, W., Hiran, S., & Marathe, A. (2022). Comparison of Performance of Machine Learning Algorithms for Cervical Cancer Classification. In 2022 Second International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT) (pp. 1–7). IEEE.
  • Kartal, E., & Özen, Z. (2017). Dengesiz veri setlerinde sınıflandırma. Mühendislikte Yapay Zekâ ve Uygulamaları, 1st ed., O. Torkul, S. Gülseçen, Y. Uyaroğlu, G. Çağıl, and MK Uçar, Eds. Sakarya: Sakarya Üniversitesi Kütüphanesi Yayınevi, 109, 131.
  • Khanam, F. (2021). Prediction of cervical cancer in Bangladesh using hybrid machine learning algorithms. Retrieved from http://lib.buet.ac.bd:8080/xmlui/handle/123456789/6030
  • Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence Review, 39(4), 261–283.
  • Lam, L., & Suen, S. Y. (1997). Application of majority voting to pattern recognition: an analysis of its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 27(5), 553–568.
  • Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2), 539–550.
  • Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., & Waibel, A. (1990). Machine learning. Annual review of computer science, 4(1), 417–433.
  • Nithya, B., & Ilango, V. (2019). Evaluation of machine learning based optimized feature selection approaches and classification methods for cervical cancer prediction. SN Applied Sciences, 1(6), 1–16.
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V. (2011). “ Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, p.
  • Ratul, I. J., Al-Monsur, A., Tabassum, B., Ar-Rafi, A. M., Nishat, M. M., & Faisal, F. (2022). Early risk prediction of cervical cancer: A machine learning approach. In 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (pp. 1–4). Presented at the 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). https://doi.org/10.1109/ECTI-CON54298.2022.9795429
  • Sharma, K. K., & Seal, A. (2021). Multi-view spectral clustering for uncertain objects. Information Sciences, 547, 723–745.
  • Sharma, K. K., & Seal, A. (2021). Outlier-robust multi-view clustering for uncertain data. Knowledge-Based Systems, 211, 106567
  • Suman, S. K., & Hooda, N. (2019). Predicting risk of Cervical Cancer: A case study of machine learning. Journal of Statistics and Management Systems, 22(4), 689–696.
  • Tanimu, J. J., Hamada, M., Hassan, M., Kakudi, H., & Abiodun, J. O. (2022). A Machine Learning Method for Classification of Cervical Cancer. Electronics, 11(3), 463. https://doi.org/10.3390/electronics11030463
  • Yang, W., Gou, X., Xu, T., Yi, X., & Jiang, M. (2019). Cervical cancer risk prediction model and analysis of risk factors based on machine learning. In Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology (pp. 50–54).
  • Zhang, L., Zhu, Y., Song, Y., Han, Y., Sun, D., Qin, S., & Gao, Y. (2021). Intelligent Diagnosis of Cervical Cancer Based on Data Mining Algorithm. Computational and Mathematical Methods in Medicine, 2021.
There are 36 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Bilgisayar Mühendisliği / Computer Engineering
Authors

Serhat Kılıçarslan 0000-0001-9483-4425

Maruf Gögebakan 0000-0003-0447-8311

Cemil Közkurt 0000-0003-1407-9867

Early Pub Date May 27, 2023
Publication Date June 1, 2023
Submission Date December 22, 2022
Acceptance Date January 16, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Kılıçarslan, S., Gögebakan, M., & Közkurt, C. (2023). Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches. Journal of the Institute of Science and Technology, 13(2), 747-759. https://doi.org/10.21597/jist.1222764
AMA Kılıçarslan S, Gögebakan M, Közkurt C. Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches. J. Inst. Sci. and Tech. June 2023;13(2):747-759. doi:10.21597/jist.1222764
Chicago Kılıçarslan, Serhat, Maruf Gögebakan, and Cemil Közkurt. “Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches”. Journal of the Institute of Science and Technology 13, no. 2 (June 2023): 747-59. https://doi.org/10.21597/jist.1222764.
EndNote Kılıçarslan S, Gögebakan M, Közkurt C (June 1, 2023) Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches. Journal of the Institute of Science and Technology 13 2 747–759.
IEEE S. Kılıçarslan, M. Gögebakan, and C. Közkurt, “Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches”, J. Inst. Sci. and Tech., vol. 13, no. 2, pp. 747–759, 2023, doi: 10.21597/jist.1222764.
ISNAD Kılıçarslan, Serhat et al. “Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches”. Journal of the Institute of Science and Technology 13/2 (June 2023), 747-759. https://doi.org/10.21597/jist.1222764.
JAMA Kılıçarslan S, Gögebakan M, Közkurt C. Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches. J. Inst. Sci. and Tech. 2023;13:747–759.
MLA Kılıçarslan, Serhat et al. “Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches”. Journal of the Institute of Science and Technology, vol. 13, no. 2, 2023, pp. 747-59, doi:10.21597/jist.1222764.
Vancouver Kılıçarslan S, Gögebakan M, Közkurt C. Cervical Cancer Prediction Using SMOTE Algorithm and Machine Learning Approaches. J. Inst. Sci. and Tech. 2023;13(2):747-59.