Research Article
BibTex RIS Cite

Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması

Year 2023, Volume: 13 Issue: 3, 1703 - 1712, 01.09.2023
https://doi.org/10.21597/jist.1190305

Abstract

Kemiğin yapısına en yakın olan kalsiyum fosfat; (Ca10(PO4)6(OH)2) oranının olduğu hidroksiapatittir (HA). Ancak polimer katkısıyla hidroksiapatitin (HA) mukavemet ve sertlik gibi mekanik özelliklerinin arttırıldığı bilinmektedir. Düşük toksiklik ve yüksek biyouyumluluk özelliklerinden dolayı kitosan (CTS) polimer olarak kullanıldı. HA/CTS kaplamaları yapılırken orta moleküler ağırlıklı (MMW) ve yüksek moleküler ağırlıklı (HMW) olmak üzere iki farklı moleküler ağırlıklı kitosan kullanıldı. Orta ve yüksek moleküler ağırlıklı kitosan katkılanarak HA/CTS biyokompozit kaplamalarının etkisi incelendi. Kaplamalar ultasonik destekli elektroforetik yöntemle üretildi. Kristalografik, morfolojik yapıları FT-IR, XRD ve SEM ile incelendi. Yüksek moleküler ağırlıklı kitosan değeri arttıkça numunenin yapısının daha homojen olduğu belirlendi.

Supporting Institution

Hatay Mustafa Kemal Üniversitesi

Project Number

18.D.015

Thanks

Bu çalışmayı 18.D.015 proje numarası ile desteklediği için Hatay Mustafa Kemal Üniversitesi BAP Birimine teşekkür ederiz.

References

  • Alshaaer, M., Cuypers, H., Rahier, H., Wastiels, J. (2011). Production of monetite-based Inorganic Phosphate Cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research, 41(1), 30-37.
  • Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., Lobo, A.O. (2013). The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Materials Science and Engineering: C, 33(5), 2620-2625.
  • Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E., Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168, 1317-1323.
  • Das, S., Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Biswas, P., Pal, K., Thakur, P., Das, K., Karmakar, P. (2018). Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Colloids and Surfaces B: Biointerfaces, 171, 300–307.
  • Guan, S., Wen, C., Peng, L., Ren, C., Wang, X., Hu, Z. (2009). Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 255(13-14), 6433-6438.
  • Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, H.E., Kim, S.G. (2011). Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surface and Coatings Technology, 205(8-9), 3112-3118.
  • Lin, D.Y. ve Wang, X.X. (2010). Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surface and Coatings Technology, 204(20),3205-3213.
  • Madl, A.K., Liong, M., Kovochich, M., Finley, B.L., Paustenbach, D.J., Oberdörster, G. (2015). Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1201-1215.
  • Muley, S.V., Vidvans, A.N., Chaudhari, G.P., Udainiya, S. (2016). An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomaterialia, 30, 408-419.
  • Nikpour, M.R., Rabiee, S.M., Jahanshahi, M. (2012). Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 43(4), 1881-1886.
  • Patel, K.D., Singh, R.K., Lee, J.H., Kim, H.W. (2019). Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. Materials Letters, 234, 148-154.
  • Pawlik, A., Rehman, M.A.U., Nawaz, Q., Bastan, F.E., Sulka, G.D., Boccaccini, A.R. (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochimica Acta 307, 465-473.
  • Prokhorov, E., Sanchez, A.G., Barcenas, G.L., Garcia, A.G.M., Kovalenko, Y., Munoz, E.M.R., Raucci, M.G., Buononore, G. (2018). Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics, 217, 151–159.
  • Sikka, M.P. ve Midha, V.K. (2019). The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. Advanced Textiles for Wound Care Elsevier, s. 463-488.
  • Singh, T., Singh, S., Singh, G. (2020). Fabrication and characterization of chitosan – hydroxyapatite – zirconium dioxide composites for biomedical applications. Materials Today: Proceedings, 26, 1878-1883.
  • Teng, S.H., Liang, M.H., Wang, P., Luo, Y. (2016). Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization. Materials Science and Engineering: C, 58, 610-613.
  • Tozar, A., Karahan, İ.H. (2018). A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Applied Surface Science, 452, 322-336.
  • Wang, L.N., Luo, J.L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62(11), 1076-1086.
  • Zhao, H., Jin, H., Cai, J. (2014). Preparation and characterization of nano-hydroxyapatite/chitosan composite with enhanced compressive strength by urease-catalyzed method. Materials Letters, 116, 293-295.
  • Zima, A. (2018). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 175-184.

Investigation of Different Molecular Weights Chitosan Added Hydroxyapatite/Chitosan Biocomposite Coatings

Year 2023, Volume: 13 Issue: 3, 1703 - 1712, 01.09.2023
https://doi.org/10.21597/jist.1190305

Abstract

Which is the nearest of the bone structure of calcium phosphate rate (HAp, Ca10(PO4)6(OH)2) is hydroxyapatite. However, it is known that the mechanical properties of hydroxyapatite (HAp) such as strength and hardness are increased with polymer additives. Chitosan (CTS) was used as the polymer due to its low toxicity and high biocompatibility properties. Two types of chitosan were used while making HAp/CTS coatings. Medium molecular weight (MMW) and high molecular weight (HMW). The effect of HAp/CTS biocomposite coatings by doping with medium and high molecular weight chitosan was investigated. The coatings were produced by the ultrasonic assisted electrophoretic method. Their crystallographic and morphological structures were examined by FT-IR, XRD and SEM. The structure of the sample become more homogeneous as the high molecular weight chitosan value increased.

Project Number

18.D.015

References

  • Alshaaer, M., Cuypers, H., Rahier, H., Wastiels, J. (2011). Production of monetite-based Inorganic Phosphate Cement (M-IPC) using hydrothermal post curing (HTPC). Cement and Concrete Research, 41(1), 30-37.
  • Barbosa, M.C., Messmer, N.R., Brazil, T.R., Marciano, F.R., Lobo, A.O. (2013). The effect of ultrasonic irradiation on the crystallinity of nano-hydroxyapatite produced via the wet chemical method. Materials Science and Engineering: C, 33(5), 2620-2625.
  • Correas, C., Gerardo, M.L., Lord, A.M., Ward, M.B., Andreoli, E., Barron, A.R. (2017). Nanostructured fusiform hydroxyapatite particles precipitated from aquaculture wastewater. Chemosphere, 168, 1317-1323.
  • Das, S., Banerjee, S., Bagchi, B., Bhandary, S., Kool, A., Hoque, N.A., Biswas, P., Pal, K., Thakur, P., Das, K., Karmakar, P. (2018). Antimicrobial and biocompatible fluorescent hydroxyapatite-chitosan nanocomposite films for biomedical applications. Colloids and Surfaces B: Biointerfaces, 171, 300–307.
  • Guan, S., Wen, C., Peng, L., Ren, C., Wang, X., Hu, Z. (2009). Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Applied Surface Science, 255(13-14), 6433-6438.
  • Hahn, B.D., Park, D.S., Choi, J.J., Ryu, J., Yoon, W.H., Choi, J.H., Kim, H.E., Kim, S.G. (2011). Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surface and Coatings Technology, 205(8-9), 3112-3118.
  • Lin, D.Y. ve Wang, X.X. (2010). Electrodeposition of hydroxyapatite coating on CoNiCrMo substrate in dilute solution. Surface and Coatings Technology, 204(20),3205-3213.
  • Madl, A.K., Liong, M., Kovochich, M., Finley, B.L., Paustenbach, D.J., Oberdörster, G. (2015). Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part I: Physicochemical properties in patient and simulator studies. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1201-1215.
  • Muley, S.V., Vidvans, A.N., Chaudhari, G.P., Udainiya, S. (2016). An assessment of ultra fine grained 316L stainless steel for implant applications. Acta Biomaterialia, 30, 408-419.
  • Nikpour, M.R., Rabiee, S.M., Jahanshahi, M. (2012). Synthesis and characterization of hydroxyapatite/chitosan nanocomposite materials for medical engineering applications. Composites Part B: Engineering, 43(4), 1881-1886.
  • Patel, K.D., Singh, R.K., Lee, J.H., Kim, H.W. (2019). Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes. Materials Letters, 234, 148-154.
  • Pawlik, A., Rehman, M.A.U., Nawaz, Q., Bastan, F.E., Sulka, G.D., Boccaccini, A.R. (2019). Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochimica Acta 307, 465-473.
  • Prokhorov, E., Sanchez, A.G., Barcenas, G.L., Garcia, A.G.M., Kovalenko, Y., Munoz, E.M.R., Raucci, M.G., Buononore, G. (2018). Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics, 217, 151–159.
  • Sikka, M.P. ve Midha, V.K. (2019). The role of biopolymers and biodegradable polymeric dressings in managing chronic wounds. Advanced Textiles for Wound Care Elsevier, s. 463-488.
  • Singh, T., Singh, S., Singh, G. (2020). Fabrication and characterization of chitosan – hydroxyapatite – zirconium dioxide composites for biomedical applications. Materials Today: Proceedings, 26, 1878-1883.
  • Teng, S.H., Liang, M.H., Wang, P., Luo, Y. (2016). Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization. Materials Science and Engineering: C, 58, 610-613.
  • Tozar, A., Karahan, İ.H. (2018). A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating. Applied Surface Science, 452, 322-336.
  • Wang, L.N., Luo, J.L. (2011). Preparation of hydroxyapatite coating on CoCrMo implant using an effective electrochemically-assisted deposition pretreatment. Materials Characterization, 62(11), 1076-1086.
  • Zhao, H., Jin, H., Cai, J. (2014). Preparation and characterization of nano-hydroxyapatite/chitosan composite with enhanced compressive strength by urease-catalyzed method. Materials Letters, 116, 293-295.
  • Zima, A. (2018). Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 175-184.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Fizik / Physics
Authors

Tuncay Dilsizoğlu 0000-0003-1894-386X

İsmail Hakki Karahan 0000-0002-8297-3521

Ali Tozar 0000-0003-3039-1834

Project Number 18.D.015
Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date October 17, 2022
Acceptance Date January 11, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Dilsizoğlu, T., Karahan, İ. H., & Tozar, A. (2023). Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması. Journal of the Institute of Science and Technology, 13(3), 1703-1712. https://doi.org/10.21597/jist.1190305
AMA Dilsizoğlu T, Karahan İH, Tozar A. Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması. J. Inst. Sci. and Tech. September 2023;13(3):1703-1712. doi:10.21597/jist.1190305
Chicago Dilsizoğlu, Tuncay, İsmail Hakki Karahan, and Ali Tozar. “Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1703-12. https://doi.org/10.21597/jist.1190305.
EndNote Dilsizoğlu T, Karahan İH, Tozar A (September 1, 2023) Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması. Journal of the Institute of Science and Technology 13 3 1703–1712.
IEEE T. Dilsizoğlu, İ. H. Karahan, and A. Tozar, “Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1703–1712, 2023, doi: 10.21597/jist.1190305.
ISNAD Dilsizoğlu, Tuncay et al. “Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1703-1712. https://doi.org/10.21597/jist.1190305.
JAMA Dilsizoğlu T, Karahan İH, Tozar A. Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması. J. Inst. Sci. and Tech. 2023;13:1703–1712.
MLA Dilsizoğlu, Tuncay et al. “Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1703-12, doi:10.21597/jist.1190305.
Vancouver Dilsizoğlu T, Karahan İH, Tozar A. Farklı Moleküler Ağırlıklı Kitosan Katkılı Hidroksiapatit/Kitosan Biyokompozit Kaplamaların Araştırılması. J. Inst. Sci. and Tech. 2023;13(3):1703-12.