Determination of Energy Consumption During The Tensile Test Sample Production in 3D Printer Working with The Fused Deposition Modeling Method
Year 2023,
Volume: 13 Issue: 3, 1998 - 2007, 01.09.2023
Muhammed Safa Kamer
,
Şemsettin Temiz
,
Ahmet Kaya
Abstract
Today, 3-dimensional (3D) printers are developing increasingly, and rapid progress is being made to become an alternative to traditional production methods. 3D printers, which produce with the Fused Deposition Modeling (FDM) method, commonly produce by using polymer materials in the form of filament with a diameter of 1.75 mm or 2.85 mm. This study, tensile test specimens were produced using PLA filaments of different diameters (1.75 mm and 2.85 mm) with two different 3D printers. The electricity consumption of 3D printers during the production of tensile test samples was measured. The energy consumed by both 3D printers in producing tensile test specimens was compared. Instead of simultaneously producing a single test sample, it has been determined that the power consumption per test sample will be reduced by producing many test samples together.
Supporting Institution
Scientific and Technological Research Council of Turkey (TUBITAK)
Thanks
The Ultimaker S5 3d printer used in this study was provided by the Scientific and Technological Research Council of Turkey (TUBITAK) grant number 217M865. The authors thank TUBITAK for their support.
References
- ASTM D638-14. (2014). Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-14
- Giordano, R. A., Wu, B. M., Borland, S.W., Cima, L. G., Sachs, E.M. & Cima, M. J. (1997). Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of Biomaterials Science, Polymer Edition, 8(1), 63-75. doi:10.1163/156856297X00588
- Hopkins, N., Jiang, L. & Brooks, H. (2021). Energy consumption of common desktop additive manufacturing technologies. Cleaner Engineering and Technology, 2, 1000068. doi:10.1016/j.clet.2021.100068
- Kamer, M.S., Dogan, O., Temiz, S. & Yaykasli, H. (2021a). Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer. Cukurova University Journal of the Faculty of Engineering, 36(3), 835-846. doi:10.21605/cukurovaumfd.1005909
- Kamer, M.S. & Temiz, S. (2021). Investigation of the mechanical properties of tensile test samples produced with a 3D printer using different bed and nozzle temperatures with ABS and PLA filaments. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 24(4), 341-358. doi:10.17780/ksujes.997195
- Kamer, M.S., Temiz, S., Yaykasli, H. & Kaya, A. (2021b). Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3D printer. Uludag University Journal of The Faculty of Engineering, 26(3), 829-848. doi:10.17482/uumfd.887786
- Kamer, M.S., Temiz, S., Yaykasli, H., Kaya, A. & Akay, O.E. (2022). Comparison of mechanical properties of tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(3), 1197-1211. doi:10.17341/gazimmfd.961981
- Kartal, F. & Nazli, C. (2018). Examination of tensile test specimens produced in three-dimensional Printer. International Journal of 3D Printing Technologies and Digital Industry, 2(3), 30-36.
- Kartal, F., Nazli, C., Yerlikaya, Z., Simsek, F. & Cetin, M.H. (2018). Optimization of fused deposition modeling process parameters for building time. International Journal of 3D Printing Technologies and Digital Industry, 2(1), 96-103.
- Kartal, F., Nazli, C., Yerlikaya, Z. & Kaptan, A. (2021). Replacement of flat gear wheels made in a 3D printer using RTV2 silicone. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 34-42. doi:10.46519/ij3Dptdi.810269
- Kaptan, A. & Kartal, F. (2020). The effect of fill rate on mechanical properties of pla printed samples. Igdır University Journal of the Institute of Science and Technology, 10(3), 1919-1927. doi:10.21597/jist.706003
- Korkut, V. & Yavuz, H. (2022). Examining the influential parameters on reducing both energy and time requirements in open-source 3D printers. Igdır University Journal of the Institute of Science and Technology, 12(1), 403-411. doi:10.21597/jist.903159
- Lanzotti, A., Grasso, M., Staiano, G. & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604–617. doi:10.1108/RPJ-09-2014-0135
- Peng, T. (2016). Analysis of energy utilization in 3D printing processes. 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use- Procedia CIRP, 40, 62-67. doi:10.1016/j.procir.2016.01.055
- Peng, T. & Yan, F. (2018). Dual-objective analysis for desktop FDM printers: energy consumption. 25th CIRP Life Cycle Engineering (LCE) Conference – Procedis CIRP, 69, 106-111. doi:10.1016/j.procir.2017.11.084
- Raise3D Premium PLA Technical Data Sheet. Access address: https://s2.raise3D.com/public/media/2019/07/Raise3D_Premium_PLA_TDS_V4.pdf (Accessed date: July 02, 2022)
- Simon, T.R., Lee, W.J., Spurgeon, B.E., Boor, B.E. & Zhao, F. (2018). An experimental study on the energy consumption and emission profile of fused deposition modeling process. 46th SME North American Manufacturing Research Conference – Procedia Manufacturing, 26, 920-928. doi:10.1016/j.promfg.2018.07.119
- Song, R. & Telenko, C. (2017). Material and energy loss due to human and machine error in commercial FDM printers. Journal of Cleaner Production, 148, 895-904. doi:10.1016/j.jclepro.2017.01.171
- Ultimaker PLA Technical data sheet. Access address: https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS (Accessed date: July 02, 2022)
- Uzun, M. & Erdogdu, Y.E. (2020). Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties. Igdır University Journal of the Institute of Science and Technology, 10(4), 2800-2808. doi:10.21597/jist.799230
- Uzun, M., Gur, Y. & Usca, A. (2018). Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing. Journal of Balıkesir University Institute of Science and Technology, 20(1), 278-286. doi:10.25092/baunfbed.398462
- Warke, S. & Puranik, V.S. (2022). Comparison of energy consumption of ABS and PLA while 3 D printing with fused deposition modeling process. Materials Today: Proceedings, 66, 2098-2103. doi:10.1016/j.matpr.2022.05.509
Year 2023,
Volume: 13 Issue: 3, 1998 - 2007, 01.09.2023
Muhammed Safa Kamer
,
Şemsettin Temiz
,
Ahmet Kaya
References
- ASTM D638-14. (2014). Standard test method for tensile properties of plastics. ASTM International, West Conshohocken, PA. doi:10.1520/D0638-14
- Giordano, R. A., Wu, B. M., Borland, S.W., Cima, L. G., Sachs, E.M. & Cima, M. J. (1997). Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of Biomaterials Science, Polymer Edition, 8(1), 63-75. doi:10.1163/156856297X00588
- Hopkins, N., Jiang, L. & Brooks, H. (2021). Energy consumption of common desktop additive manufacturing technologies. Cleaner Engineering and Technology, 2, 1000068. doi:10.1016/j.clet.2021.100068
- Kamer, M.S., Dogan, O., Temiz, S. & Yaykasli, H. (2021a). Investigation of the mechanical properties of flexural test samples produced using different printing parameters with a 3D printer. Cukurova University Journal of the Faculty of Engineering, 36(3), 835-846. doi:10.21605/cukurovaumfd.1005909
- Kamer, M.S. & Temiz, S. (2021). Investigation of the mechanical properties of tensile test samples produced with a 3D printer using different bed and nozzle temperatures with ABS and PLA filaments. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 24(4), 341-358. doi:10.17780/ksujes.997195
- Kamer, M.S., Temiz, S., Yaykasli, H. & Kaya, A. (2021b). Investigation of the mechanical properties of tensile test samples produced in different colors and different infill patterns with a 3D printer. Uludag University Journal of The Faculty of Engineering, 26(3), 829-848. doi:10.17482/uumfd.887786
- Kamer, M.S., Temiz, S., Yaykasli, H., Kaya, A. & Akay, O.E. (2022). Comparison of mechanical properties of tensile test specimens produced with ABS and PLA material at different printing speeds in 3D printer. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(3), 1197-1211. doi:10.17341/gazimmfd.961981
- Kartal, F. & Nazli, C. (2018). Examination of tensile test specimens produced in three-dimensional Printer. International Journal of 3D Printing Technologies and Digital Industry, 2(3), 30-36.
- Kartal, F., Nazli, C., Yerlikaya, Z., Simsek, F. & Cetin, M.H. (2018). Optimization of fused deposition modeling process parameters for building time. International Journal of 3D Printing Technologies and Digital Industry, 2(1), 96-103.
- Kartal, F., Nazli, C., Yerlikaya, Z. & Kaptan, A. (2021). Replacement of flat gear wheels made in a 3D printer using RTV2 silicone. International Journal of 3D Printing Technologies and Digital Industry, 5(1), 34-42. doi:10.46519/ij3Dptdi.810269
- Kaptan, A. & Kartal, F. (2020). The effect of fill rate on mechanical properties of pla printed samples. Igdır University Journal of the Institute of Science and Technology, 10(3), 1919-1927. doi:10.21597/jist.706003
- Korkut, V. & Yavuz, H. (2022). Examining the influential parameters on reducing both energy and time requirements in open-source 3D printers. Igdır University Journal of the Institute of Science and Technology, 12(1), 403-411. doi:10.21597/jist.903159
- Lanzotti, A., Grasso, M., Staiano, G. & Martorelli, M. (2015). The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyping Journal, 21(5), 604–617. doi:10.1108/RPJ-09-2014-0135
- Peng, T. (2016). Analysis of energy utilization in 3D printing processes. 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use- Procedia CIRP, 40, 62-67. doi:10.1016/j.procir.2016.01.055
- Peng, T. & Yan, F. (2018). Dual-objective analysis for desktop FDM printers: energy consumption. 25th CIRP Life Cycle Engineering (LCE) Conference – Procedis CIRP, 69, 106-111. doi:10.1016/j.procir.2017.11.084
- Raise3D Premium PLA Technical Data Sheet. Access address: https://s2.raise3D.com/public/media/2019/07/Raise3D_Premium_PLA_TDS_V4.pdf (Accessed date: July 02, 2022)
- Simon, T.R., Lee, W.J., Spurgeon, B.E., Boor, B.E. & Zhao, F. (2018). An experimental study on the energy consumption and emission profile of fused deposition modeling process. 46th SME North American Manufacturing Research Conference – Procedia Manufacturing, 26, 920-928. doi:10.1016/j.promfg.2018.07.119
- Song, R. & Telenko, C. (2017). Material and energy loss due to human and machine error in commercial FDM printers. Journal of Cleaner Production, 148, 895-904. doi:10.1016/j.jclepro.2017.01.171
- Ultimaker PLA Technical data sheet. Access address: https://support.ultimaker.com/hc/en-us/articles/360011962720-Ultimaker-PLA-TDS (Accessed date: July 02, 2022)
- Uzun, M. & Erdogdu, Y.E. (2020). Investigation of the effect of using unreinforced and reinforced PLA in production by fused deposition modeling on mechanical properties. Igdır University Journal of the Institute of Science and Technology, 10(4), 2800-2808. doi:10.21597/jist.799230
- Uzun, M., Gur, Y. & Usca, A. (2018). Manufacturing of new type curvilinear tooth profiled involute gears using 3D printing. Journal of Balıkesir University Institute of Science and Technology, 20(1), 278-286. doi:10.25092/baunfbed.398462
- Warke, S. & Puranik, V.S. (2022). Comparison of energy consumption of ABS and PLA while 3 D printing with fused deposition modeling process. Materials Today: Proceedings, 66, 2098-2103. doi:10.1016/j.matpr.2022.05.509