Research Article
BibTex RIS Cite
Year 2023, Volume: 13 Issue: 3, 1625 - 1632, 01.09.2023
https://doi.org/10.21597/jist.1228129

Abstract

References

  • Bezi̇rganoglu, İ. (2021). Promoting effects of melatonin supplements on the embryogenic callus maintainance in alfalfa (Medicago sativa L.). Journal of the Institute of Science and Technology, 927-932.
  • Bora, K. S., & Sharma, A. (2011). Phytochemical and pharmacological potential of Medicago sativa: A review. Pharmaceutical Biology, 49(2), 211-220.
  • Castro, A. H. F., Braga, K. de Q., Sousa, F. M. de, Coimbra, M. C., & Chagas, R. C. R. (2016). Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). REVISTA CIÊNCIA AGRONÔMICA, 47(1).
  • Junairiah, J., Wulandari, D. A., Utami, E. S. W., & Zuraidassanaaz, N. I. (2021). Callus induction and secondary metabolite profile from Elephantopus scaber L. Journal of Tropical Biodiversity and Biotechnology, 6(1), 59234.
  • Loredo-Carrillo, S. E., de Lourdes Santos-Díaz, Ma., Leyva, E., & Santos-Díaz, M. del S. (2013). Establishment of callus from Pyrostegia venusta (Ker Gawl.) Miers and effect of abiotic stress on flavonoids and sterols accumulation. Journal of Plant Biochemistry and Biotechnology, 22(3), 312-318.
  • Mahood, H. E., Sarropoulou, V., & Tzatzani, T.-T. (2022). Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: Influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. Bioresources and Bioprocessing, 9(1), 100.
  • Maneechai, S., De-Eknamkul, W., Umehara, K., Noguchi, H., & Likhitwitayawuid, K. (2012). Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry, 81, 42-49.
  • Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497.
  • Murthy, H. N., Lee, E.-J., & Paek, K.-Y. (2014). Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 1-16.
  • Naik, P. M., Manohar, S. H., Praveen, N., Upadhya, V., & Murthy, H. N. (2012). Evaluation of Bacoside A Content in Different Accessions and Various Organs of Bacopa monnieri (L.) Wettst. Journal of Herbs, Spices & Medicinal Plants, 18(4), 387-395. Páramo, L., Feregrino-Pérez, A. A., Vega-González, M., Escobar-Alarcón, L., & Esquivel, K. (2023). Medicago sativa L. Plant Response against Possible Eustressors (Fe, Ag, Cu)-TiO2: Evaluation of Physiological Parameters, Total Phenol Content, and Flavonoid Quantification. Plants, 12(3), 659.
  • Qiang, B., Miao, J., Phillips, N., Wei, K., & Gao, Y. (2020). Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chemistry & Biodiversity, 17(10).
  • Rafińska, K., Pomastowski, P., Wrona, O., Górecki, R., & Buszewski, B. (2017). Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochemistry Letters, 20, 520-539.
  • Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., Shaanker, R. U., Khajuria, R. K., Puri, S. C., & Qazi, G. N. (2008). Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: Identification of High-Yielding Sources of Camptothecin and New Families of Camptothecines. Journal of Chromatographic Science, 46(4), 362-368.
  • Sagharyan, M., Ganjeali, A., Cheniany, M., & Mousavi Kouhi, S. M. (2020). Optimization of Callus Induction with Enhancing Production of Phenolic Compounds Production and Antioxidants Activity in Callus Cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iranian Journal of Biotechnology, 18(4).
  • Sajid, M., Stone, S. R., & Kaur, P. (2021). Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review with Special Reference to Isoflavonoids. Frontiers in Bioengineering and Biotechnology, 9, 673270.
  • Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., Islam, R., & Paek, K. Y. (2006). Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry, 41(5), 1179-1185.
  • Singh, B., & Sharma, R. A. (2020). Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies (1. bs). Wiley.
  • Stephane, F. Y., & Kezetas Jean Jules, B. (2020). Terpenoids as Important Bioactive Constituents of Essential Oils.
  • Steppler, H. A., & Nair, P. K. R. (Ed.). (1987). Agroforestry, a decade of development. Nairobi: International Council for Research in Agroforestry.
  • Suwignyo, B., Aristia Rini, E., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. Saudi Journal of Biological Sciences, 30(1), 103504.
  • Szopa, A., & Ekiert, H. (2014). Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regulation, 72(1), 51-58.
  • Tahiri, A., Mazri, M. A., Karra, Y., Ait Aabd, N., Bouharroud, R., & Mimouni, A. (2022). Propagation of saffron (Crocus sativus L.) through tissue culture: A review. The Journal of Horticultural Science and Biotechnology, 1-21.
  • Toivonen, L., Laakso, S., & Rosenqvist, H. (1992). The effect of temperature on hairy root cultures of Catharanthus roseus: Growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Reports, 11(8). Tussipkan, D., & Manabayeva, S. A. (2022). Alfalfa (Medicago Sativa L.): Genotypic Diversity and Transgenic Alfalfa for Phytoremediation. Frontiers in Environmental Science, 10, 828257.
  • Wang, Y., Sun, Z., Wang, Q., Xie, J., & Yu, L. (2023). Transcriptomics and metabolomics revealed that phosphate improves the cold tolerance of alfalfa. Frontiers in Plant Science, 14, 1100601.
  • Zhang, S., Zhu, H., Cen, H., Qian, W., Wang, Y., Ren, M., & Cheng, Y. (2023). Effects of various forms of selenium biofortification on photosynthesis, secondary metabolites, quality, and lignin deposition in alfalfa (Medicago sativa L.). Field Crops Research, 292, 108801.

Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa)

Year 2023, Volume: 13 Issue: 3, 1625 - 1632, 01.09.2023
https://doi.org/10.21597/jist.1228129

Abstract

Alfalfa (Medicago sativa L.) belongs to fabacaea family widely grown in Turkey. It is rich in bioactive compounds such as phenolic compounds, flavonoid, essential amino acids (threonine, leucine, lysine, and valine) and tannins, vitamins (A, B1, B2, B6, B12, C and E) or β-carotene. In this study, it was aimed to investigate the impact of secondary metabolite content of explants on callus biomass. For this purpose, cotyledon explants were obtained under sterile conditions, and transferred to standard MS medium containing 1 mg/L 2,4-D (Dichlorophenoxy Acetic Acid) and 0.0125 mg/L kinetin to induce callus formation. The phenolic, flavonoid and tannin contents of the explants were also determined. Leaves and cotyledons explants of 74 M. sativa L. cultivars have been used for callus biomass. The 74 tested alfalfa cultivars varied in their callus growth and callus biomass formation. Van-22, Konya-Ereğli, Alsancak, Gözlü-1 and Iside cultivars were observed with higher callus biomass: Conversely, Van Gevaş, Bitlis Hizan and Van-Çaldıran responded with lower callus biomass in tissue culture. A high-callus biomass cultivar of alfalfa has been shown to have higher total phenolic, flavonoid and tannin content activity than the lower-callus biomass cultivar in terms of leaf explants under tissue culture conditions. Total phenolic content activity was significantly increased in cotyledon explants with higher callus biomass as compared to lower callus biomass. The accumulation of leaf tannin and flavonoid was strongly linked to callus biomass. Cotyledon phenolic and flavonoid content exhibited an increasing trend in response to the increasing biomass of callus.

References

  • Bezi̇rganoglu, İ. (2021). Promoting effects of melatonin supplements on the embryogenic callus maintainance in alfalfa (Medicago sativa L.). Journal of the Institute of Science and Technology, 927-932.
  • Bora, K. S., & Sharma, A. (2011). Phytochemical and pharmacological potential of Medicago sativa: A review. Pharmaceutical Biology, 49(2), 211-220.
  • Castro, A. H. F., Braga, K. de Q., Sousa, F. M. de, Coimbra, M. C., & Chagas, R. C. R. (2016). Callus induction and bioactive phenolic compounds production from Byrsonima verbascifolia (L.) DC. (Malpighiaceae). REVISTA CIÊNCIA AGRONÔMICA, 47(1).
  • Junairiah, J., Wulandari, D. A., Utami, E. S. W., & Zuraidassanaaz, N. I. (2021). Callus induction and secondary metabolite profile from Elephantopus scaber L. Journal of Tropical Biodiversity and Biotechnology, 6(1), 59234.
  • Loredo-Carrillo, S. E., de Lourdes Santos-Díaz, Ma., Leyva, E., & Santos-Díaz, M. del S. (2013). Establishment of callus from Pyrostegia venusta (Ker Gawl.) Miers and effect of abiotic stress on flavonoids and sterols accumulation. Journal of Plant Biochemistry and Biotechnology, 22(3), 312-318.
  • Mahood, H. E., Sarropoulou, V., & Tzatzani, T.-T. (2022). Effect of explant type (leaf, stem) and 2,4-D concentration on callus induction: Influence of elicitor type (biotic, abiotic), elicitor concentration and elicitation time on biomass growth rate and costunolide biosynthesis in gazania (Gazania rigens) cell suspension cultures. Bioresources and Bioprocessing, 9(1), 100.
  • Maneechai, S., De-Eknamkul, W., Umehara, K., Noguchi, H., & Likhitwitayawuid, K. (2012). Flavonoid and stilbenoid production in callus cultures of Artocarpus lakoocha. Phytochemistry, 81, 42-49.
  • Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497.
  • Murthy, H. N., Lee, E.-J., & Paek, K.-Y. (2014). Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture (PCTOC), 118(1), 1-16.
  • Naik, P. M., Manohar, S. H., Praveen, N., Upadhya, V., & Murthy, H. N. (2012). Evaluation of Bacoside A Content in Different Accessions and Various Organs of Bacopa monnieri (L.) Wettst. Journal of Herbs, Spices & Medicinal Plants, 18(4), 387-395. Páramo, L., Feregrino-Pérez, A. A., Vega-González, M., Escobar-Alarcón, L., & Esquivel, K. (2023). Medicago sativa L. Plant Response against Possible Eustressors (Fe, Ag, Cu)-TiO2: Evaluation of Physiological Parameters, Total Phenol Content, and Flavonoid Quantification. Plants, 12(3), 659.
  • Qiang, B., Miao, J., Phillips, N., Wei, K., & Gao, Y. (2020). Recent Advances in the Tissue Culture of American Ginseng (Panax quinquefolius). Chemistry & Biodiversity, 17(10).
  • Rafińska, K., Pomastowski, P., Wrona, O., Górecki, R., & Buszewski, B. (2017). Medicago sativa as a source of secondary metabolites for agriculture and pharmaceutical industry. Phytochemistry Letters, 20, 520-539.
  • Ramesha, B. T., Amna, T., Ravikanth, G., Gunaga, R. P., Vasudeva, R., Ganeshaiah, K. N., Shaanker, R. U., Khajuria, R. K., Puri, S. C., & Qazi, G. N. (2008). Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: Identification of High-Yielding Sources of Camptothecin and New Families of Camptothecines. Journal of Chromatographic Science, 46(4), 362-368.
  • Sagharyan, M., Ganjeali, A., Cheniany, M., & Mousavi Kouhi, S. M. (2020). Optimization of Callus Induction with Enhancing Production of Phenolic Compounds Production and Antioxidants Activity in Callus Cultures of Nepeta binaloudensis Jamzad (Lamiaceae). Iranian Journal of Biotechnology, 18(4).
  • Sajid, M., Stone, S. R., & Kaur, P. (2021). Recent Advances in Heterologous Synthesis Paving Way for Future Green-Modular Bioindustries: A Review with Special Reference to Isoflavonoids. Frontiers in Bioengineering and Biotechnology, 9, 673270.
  • Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., Islam, R., & Paek, K. Y. (2006). Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochemistry, 41(5), 1179-1185.
  • Singh, B., & Sharma, R. A. (2020). Secondary Metabolites of Medicinal Plants: Ethnopharmacological Properties, Biological Activity and Production Strategies (1. bs). Wiley.
  • Stephane, F. Y., & Kezetas Jean Jules, B. (2020). Terpenoids as Important Bioactive Constituents of Essential Oils.
  • Steppler, H. A., & Nair, P. K. R. (Ed.). (1987). Agroforestry, a decade of development. Nairobi: International Council for Research in Agroforestry.
  • Suwignyo, B., Aristia Rini, E., & Helmiyati, S. (2023). The profile of tropical alfalfa in Indonesia: A review. Saudi Journal of Biological Sciences, 30(1), 103504.
  • Szopa, A., & Ekiert, H. (2014). Production of biologically active phenolic acids in Aronia melanocarpa (Michx.) Elliott in vitro cultures cultivated on different variants of the Murashige and Skoog medium. Plant Growth Regulation, 72(1), 51-58.
  • Tahiri, A., Mazri, M. A., Karra, Y., Ait Aabd, N., Bouharroud, R., & Mimouni, A. (2022). Propagation of saffron (Crocus sativus L.) through tissue culture: A review. The Journal of Horticultural Science and Biotechnology, 1-21.
  • Toivonen, L., Laakso, S., & Rosenqvist, H. (1992). The effect of temperature on hairy root cultures of Catharanthus roseus: Growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Reports, 11(8). Tussipkan, D., & Manabayeva, S. A. (2022). Alfalfa (Medicago Sativa L.): Genotypic Diversity and Transgenic Alfalfa for Phytoremediation. Frontiers in Environmental Science, 10, 828257.
  • Wang, Y., Sun, Z., Wang, Q., Xie, J., & Yu, L. (2023). Transcriptomics and metabolomics revealed that phosphate improves the cold tolerance of alfalfa. Frontiers in Plant Science, 14, 1100601.
  • Zhang, S., Zhu, H., Cen, H., Qian, W., Wang, Y., Ren, M., & Cheng, Y. (2023). Effects of various forms of selenium biofortification on photosynthesis, secondary metabolites, quality, and lignin deposition in alfalfa (Medicago sativa L.). Field Crops Research, 292, 108801.
There are 25 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Büşra Albayrak Turgut 0000-0003-2300-2095

İsmail Bezirganoglu 0000-0003-4079-5998

Early Pub Date August 29, 2023
Publication Date September 1, 2023
Submission Date January 2, 2023
Acceptance Date May 6, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Albayrak Turgut, B., & Bezirganoglu, İ. (2023). Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa). Journal of the Institute of Science and Technology, 13(3), 1625-1632. https://doi.org/10.21597/jist.1228129
AMA Albayrak Turgut B, Bezirganoglu İ. Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa). J. Inst. Sci. and Tech. September 2023;13(3):1625-1632. doi:10.21597/jist.1228129
Chicago Albayrak Turgut, Büşra, and İsmail Bezirganoglu. “Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago Sativa L. (alfalfa)”. Journal of the Institute of Science and Technology 13, no. 3 (September 2023): 1625-32. https://doi.org/10.21597/jist.1228129.
EndNote Albayrak Turgut B, Bezirganoglu İ (September 1, 2023) Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa). Journal of the Institute of Science and Technology 13 3 1625–1632.
IEEE B. Albayrak Turgut and İ. Bezirganoglu, “Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa)”, J. Inst. Sci. and Tech., vol. 13, no. 3, pp. 1625–1632, 2023, doi: 10.21597/jist.1228129.
ISNAD Albayrak Turgut, Büşra - Bezirganoglu, İsmail. “Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago Sativa L. (alfalfa)”. Journal of the Institute of Science and Technology 13/3 (September 2023), 1625-1632. https://doi.org/10.21597/jist.1228129.
JAMA Albayrak Turgut B, Bezirganoglu İ. Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa). J. Inst. Sci. and Tech. 2023;13:1625–1632.
MLA Albayrak Turgut, Büşra and İsmail Bezirganoglu. “Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago Sativa L. (alfalfa)”. Journal of the Institute of Science and Technology, vol. 13, no. 3, 2023, pp. 1625-32, doi:10.21597/jist.1228129.
Vancouver Albayrak Turgut B, Bezirganoglu İ. Callus Induction and Bioactive Compounds Production from Various Cultivars of Medicago sativa L. (alfalfa). J. Inst. Sci. and Tech. 2023;13(3):1625-32.