Research Article
BibTex RIS Cite

Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması

Year 2023, Volume: 13 Issue: 4, 2505 - 2515, 01.12.2023
https://doi.org/10.21597/jist.1279263

Abstract

Bu çalışmanın amacı, tıbbi ve aromatik bitkiler arasında yer alan Cistus creticus ekstreleri yüklü kontrollü salım yapabilen katı lipid nanopartikül sistemleri geliştirmek ve bu sistemlerin patojen test mikroorganizmalara karşı antimikrobiyal etkinliğini araştırmaktır. Çalışma kapsamında C. creticus yapraklarından etanol ve su ekstresi ultrasonik yöntem kullanılarak elde edilmiştir. Bu ekstrelerinin yüklü olduğu katı lipid nanopartiküllerin karakterizasyonu SEM, DLS analizleri ve zeta potansiyelleri, in vitro salım profilleri ile değerlendirilmiştir. Etanol ve su ekstreleri yüklü katı lipid nanopartiküllerin boyutları sırasıyla 40-90 nm, zeta potansiyelleri –35.5 ve -30.7 mV ve PDI değerleri 0.455 ve 0.475 olarak saptanmıştır. Elde edilen katı lipid nanopartiküllerin patojen test mikroorganizmaları (Listeria monocytogenes ATCC 19115, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae NRRLB 4420. Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 51289, Escherichia coli ATCC 35218, Escherichia coli ATCC 25922) üzerindeki MİK değerleri 1.56-25 mg/mL aralığında değişiklik göstermektedir. Kuyu difüzyon testi sonuçlarına göre ekstre yüklü katı lipid nanopartiküllere karşı mikroorganizmalar, duyarlı, orta derecede duyarlı ve dirençli olarak belirlenmiştir. En yüksek antimikrobiyal etki etanol ekstresi yüklü nanopartiküller için zon çapı 19±0.75 olarak L. monocytogenes ATCC 19115’e karşı tespit edilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B0122022895

Thanks

Bu çalışma, TÜBİTAK 2209A I. Dönem Üniversite Öğrencileri Araştırma Projesi ile desteklenmiştir.

References

  • Barrajon‐Catalan, E., Fernandez‐Arroyo, S., Roldan, C., Guillen, E., Saura, D., Segura‐Carretero, A., & Micol, V. (2011). A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochemical Analysis, 22(4), 303-312.
  • Barros, L., Duenas, M., Alves, C.T., Silva, S., Henriques, M., Santos-Buelga, C., & Ferreira, I.C.F.R. (2013). Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Journal of Crops and Products, 41. 41-45.
  • Bhatia, N., Kumari, A., Chauhan, N., Thakur, N., & Sharma, R. (2023). Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay. Biocatalysis and Agricultural Biotechnology, 47, 102574.
  • Bakrim, B. W., Aghraz, A., Hriouch, F., Larhsini, M., Markouk, M., Bekkouche, K., Costa, R., Arrigo, S., Cicero, N. & Dugo, G. (2022). Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. Journal of Essentıal Oil Research, 1-12.
  • Benali, T., Bouyahya, A., Habbadi, K., Zengin, G., Khabbach, A., Achbani, E.H., & Hammani, K. (2020). Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatalysis and Agricicultural Biotechnology, 28, 101696.
  • Bouarab Chibane, L., Forquet, V., Lanteri, P., Clement, Y., Akkari, L. L. & Oulahal, N. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative Structure–Activity Relationship) models. Frontiers Microbiology, 10.829.
  • CLSI (Clinical and Laboratory Standards Institute). Performance standards for antimicrobial standards institute susceptibility testing, 26 th Edition. CLSI supplement M100S. Wayne PA: Clinical and Laboratory, 2016.
  • CLSI (2009). (Clinical and Laboratory Standard Institute). Clinical and Laboratory Standarts Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Seventh Edition. M07- A7, Villanova, PA, USA.
  • Dash, B. K., Sultana, S. & Sultana, N. (2011). Antibacterial activities of methanol and acetone extracts of Fenugreek (Trigonella foenum) and Coriander (Coriandrum sativum). Life Sciences and Medicine Research, 27:1-8.
  • Davis, P. (1965). Introduction in Flora of Turkey and the East Aegean Islands.
  • Değim, İ. & Mised, S. (2011). Farmasötik Nanoteknoloji. 8(13), 198-205.
  • Demetzos, C., Dimas, K., Hatziantoniou, S., Anastasaki, T., & Angelopoulou, D. (2001). Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Medica, 67(7), 614-618.
  • Derman, S., Kızılbey, K. & Akdeste, Z. (2013). Polymeric nanoparticles. Journal of Engineering and Natural Sciences, 31. 109-122.
  • Duman, R., Dogan, H. H. & Tuncer, P. (2017). Evaluation of the in vitro antiviral activity of Salvia halophila and Salvia sclarea extracts against human respiratory syncytial virüs (HRSV). International Journal of Science and Technology Research, 3 (7), 44-59.
  • Dimas, K., Demetzos, C., Angelopoulou, D., Kolokouris, A., & Mavromoustakos, T. (2000). Biological activity of myricetin and its derivatives against human leukemic cell lines in vitro. Pharmaceutical Research, 42(5), 475-478.
  • Düz, M., & Yakut, Ö. (2022). Microwave-assisted green synthesis, characterization, and antioxidant activity of silver nanoparticles using the aqueous extract of Cistus creticus. Particulate Science and Technology, 41. 589 -599.
  • Ehrhardt, C., Hrincius, E.R., Korte, V., Mazur, I., Droebner, K., Poetter, A., Dreschers, S., Schmolke, M., Planz, O., & Ludwig, S. A. (2007). Polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Research, 76(1), 38-47.
  • Fierascu, R. C., Fierascu, I., Baroi, A. M. & Ortan, A. (2021). Selected aspects related to medicinal and aromatic plants as alternative sources of bioactive compounds. International Journal of Molecular Sciences, 22, 1521.
  • Günter, Ü., Maçin, S., & Tuncer, E. İ. (2020). Çeşitli bitki ekstrelerinin antibakteriyel aktivitelerinin araştırılması. Genel Tıp Dergisi, 30(3), 184-189.
  • Florkiewicz, W., Pluta, K., Malina, D., Rudnicka, K., Zywicka, A., Duarte Guigou, M., Tyliszczak, B., & Sobczak-Kupiec, A. (2021). Investigation on green synthesis, biocompatibility, and antibacterial activity of silver nanoparticles prepared using Cistus incanus. Materials, 14 (7), 5028.
  • Ghaffari, S., Varshosaz, J., Saadat, A., & Atyabi, F. (2011). Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. International Journal of Nanomedicine, 35-43.
  • Ganaie, H. A. (2021). Review of the active principles of medicinal and aromatic plants and their disease fighting properties. Medicinal and Aromatic Plants, 1-36.
  • Gürsoy, A. Z. (2002). Kontrollü Salım Sistemleri: İlaç Taşıyıcı Partiküler Sistemler. Kontrollü Salım Sistemleri Derneği Yayını, 7, 3-102.
  • Güvenç, A., Yıldız, S., Özkan, A.M., Erdurak, C.S., Coşkun, M., Yılmaz, G., Okuyama, T., & Okada, Y. (2005). Antimicrobiological studies on Turkish Cistus species. Pharmaceutical Biology, 43(2), 178-183.
  • Ho, C., Ismai, N., Shaida, F. S. & Ahmad, R. (2010). In vitro antibacterial and antioxidant activities of Orthosiphon stamineus benth. extracts against food-borne bacteria. Food Chemistry, 122(4), 1168-1172.
  • Jeszka-Skowron, M., Zgoła-Grześkowiak, A., & Frankowski, R. (2018). Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids-A comparison with Camellia sinensis, Rooibos and Hoan Ngoc herbal tea. Journal of Food Composition and Analysis, 74, 71-81.
  • Khoshraftar, Z., Shamel, A., Safekordi, A. A., Ardjmand, M., & Zaefizadeh, M. (2020). Natural nanopesticides with origin of Plantago major seeds extract for Tribolium castaneum control. Journal of Nanostructure in Chemistry, 10. 255-264.
  • Kim, J. H., Baek, J. S., Park, J. K., Lee, B. J., Kim, M. S., Hwang, S. J., Lee, J. Y. & Cho, C. W. (2017). Development of Houttuynia cordata extract-loaded solid lipid nanoparticles for oral delivery: high drug loading efficiency and controlled release. Molecules, 22 (12), 2215.
  • Küpeli, E., & Yesilada, E. (2007). Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. Journal of Ethnopharmacology, 112(3), 524-530.
  • Lahcen, S. A., El Hattabi, L., Benkaddour, R., Chahboun, N., Ghanmi, M., Satrani, B., ... & Zarrouk, A. (2020). Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan Cistus creticus leaves. Chemical Data Collections, 26, 100346.
  • Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1. 149-173.
  • Lima, A. M. Pizzol, D. C. Monteiro, B. F. F., Creczynsk-Pasa, B. T., Andrade, P. G., Ribeiro, O. A. & Perussi, R. T. (2013). Hyperin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency. Journal of Photochemistry and Photobiology B: Biology, 125,146-154.
  • Liu, L., Lan, R., Liu, L., Wang, Y., Zhang, Y., Wang, Y., & Xu, J. (2017). Antimicrobial resistance and cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China. Frontiers in Microbiology, 8, 1357.
  • Poudel, A., Gachumi, G., Wasan, K. M., Dallal Bashi, Z., El-Aneed, A., & Badea, I. (2019). Development and characterization of liposomal formulations containing phytosterols extracted from canola oil deodorizer distillate along with tocopherols as food additives. Pharmaceutics, 11(4), 185.
  • Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Perez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39-45.
  • Maggi, F., Lucarini, D., Papa, F., Peron, G., & Dall Acqua, S. (2016). Phytochemical analysis of the labdanum-poor Cistus creticus subsp. eriocephalus (Viv.) Greuter et Burdet growing in central Italy. Biochemical Systematics and Ecology, 66, 50-57.
  • Mastino, P. M., Mauro, M., Jean, C., Juliano, C., & Marianna, U. (2018). Analysis and potential antimicrobial activity of phenolic compounds in the extracts of Cistus creticus subspecies from Sardinia. The Natural Products Journal, 8(3), 166-174.
  • Mehnert, W., & Mader, K. (2012). Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews, 64, 83-101.
  • Muller, R. H., & Keck, C. M. (2004). Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology, 113(1-3), 151-170.
  • Nazri, N. M., Ahmat, N., Adnan, A., Mohamad, S. S., & Ruzaina, S. S. (2011). In vitro antibacterial and radical scavenging activities of Malaysian table salad. African Journal of Biotechnology, 10(30), 5728-5735.
  • Mastino, P. M., Mauro, M., Jean, C., Juliano, C., & Marianna, U. (2018). Analysis and potential antimicrobial activity of phenolic compounds in the extracts of Cistus creticus subspecies from Sardinia. The Natural Products Journal, 8(3), 166-174.
  • Mokhtari, R., Kazemi Fard, M., Rezaei, M., Moftakharzadeh, S. A., & Mohseni, A. (2023). Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme-sage mixture extracts. Journal of Food Quality,
  • Numanoğlu, U. & Tarimci, N. (2006). Kati lipid nanopartiküllerin özellikleri, farmasötik ve kozmetik alandaki uygulamalari. Ankara Eczacılık Fakültesi Dergisi, 35 (3) 211-235.
  • Saddiqe, L. Z., Naeem, I. & Maimoona, A. (2010). A review of the antibacterial activity of Hypericum perforatum. Journal of Ethnopharmcology, 131. 511-521.
  • Sarıkürkcü, N. & Tilili, N. (2022). Onosma inexspectata and Onosma armenumas novel sources of phytochemicals with determination by high-performance liquid chromatography–mass spectrometry (HPLC-MS/MS) with evaluation of the antioxidant and enzyme inhibitory capacities. Analytical Letters, 55 (7), 1068-1079.
  • Sayah, K., Chemlal, L., Marmouzi, I., El Jemli, M., Cherrah, Y., & Faouzi, M.E.A. (2017). In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts. South African Journal of Botany, 113, 160-163.
  • Shanthi Sree, K. S., & Yasodamma, N. (2010). Paramageetham CH, phytochemical screening and ın vitro antibacterial activity of the methanolic leaf extract: Sebastiania chamaelea Müell. The Bioscan, 5, 173-175.
  • Snoussi, M., Ahmad, I., Aljohani, A., Patel, H., Abdulhakeem, M. A., Alhazmi, Y. S., Ahazmi, S., Tepe, B., Adnan, M., Sarıkürkcü, C., Riadh, B., Feo, V., Alreshidi, M. & Noumi, E. (2022). Phytochemical analysis, antioxidant, and antimicrobial activities of Ducrosia flabellifolia: A combined experimental and computational approaches. Antioxidants, 11(11), 2174.
  • Soloviev, M. (2007). Nanobiotechnology today: focus on nanoparticles. Journal of Nanobiotechnology, 5(1), 1-3.
  • Stepien, A., Aebisher, D., & Bartusik Aebisher, D. (2018). Biological properties of Cistus species. European Journal of Clinical and Experimental Medicine, (2), 27-132.
  • Stepien, A. E., Gorzelany, J., Matlok, N., Lech, K., & Figiel, A. (2019). The effect of drying methods on the energy consumption, bioactive potential and colour of dried leaves of Pink Rock Rose (Cistus creticus). Journal of Food Science and Technology, 56, 2386-2394.
  • Şükran, A. M. A. Ç. Cistus creticus (Pembe Laden) Türünün Farmakolojik Özellikleri. Medical Records, 3(2), 161-163.
  • Uchegbu, I. F., & Schatzlein, A. G. (Eds.). (2006). Polymers in Drug Delivery. CRC Press.
  • Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369-380.
  • Velsankar, K., RM, A. K., Preethi, R., Muthulakshmi, V., & Sudhahar, S. (2020). Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. Journal of Environmental Chemical Engineering, 8(5), 104123.
  • Wickham, T. J. (2003). Ligand-directed targeting of genes to the site of disease. Nature Medicine, 9(1), 135-139.
  • Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257-1272.
  • Zalegh, I., Akssira, M., Bourhia, M., Mellouki, F., Rhallabi, N., Salamatullah, A. M., Alkaltham, M. S., Khalil Alyahya, H., &Mhand, R. A. (2021). A review on Cistus sp.: Phytochemical and antimicrobial activities. Plants, 10(6), 1214.

Development of Controlled Release of Cistus creticus Extracts Loaded Solid Lipid Nanoparticles (SLN) and Investigation of Their Antimicrobial Activities

Year 2023, Volume: 13 Issue: 4, 2505 - 2515, 01.12.2023
https://doi.org/10.21597/jist.1279263

Abstract

This study aims to investigate the development extracts of Cistus creticus which is among medicinal and aromatic plants loaded with controlled delivery solid lipid nanoparticle systems and to investigate the antimicrobial activity of these systems against pathogen test microorganisms. Within the scope of this study, ethanol and water extracts from Cistus creticus leaves were obtained by using the ultrasonic method. The characterization of plant extracts loaded with solid lipid nanoparticles was evaluated by SEM, DLS analyses, and zeta potentials, in vitro release profiles. The sizes of ethanol and water plant extracts loaded solid lipid nanoparticles are respectively 40-90 nm, zeta potentials -35.5 and -30.7 mV and PDI values 0.455 and 0.475 were determined. The MIC values of the obtained solid lipid nanoparticles on pathogenic test microorganisms (Listeria monocytogenes ATCC 19115, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae NRRLB 4420. Pseudomonas aeruginosa ATCC 27853, Enterococcus faecalis ATCC 51289, Escherichia coli ATCC 35218, Escherichia coli ATCC 25922) were determined as in the range of 56-25 mg/mL. According to the results of the good diffusion test, microorganisms were determined as susceptible, moderately sensitive, and resistant to the extract-loaded solid lipid nanoparticles. The highest antimicrobial effect was determined against L. monocytogenes ATCC 19115 with a zone diameter of 19±0.75 for ethanol extract-loaded nanoparticles.

Project Number

1919B0122022895

References

  • Barrajon‐Catalan, E., Fernandez‐Arroyo, S., Roldan, C., Guillen, E., Saura, D., Segura‐Carretero, A., & Micol, V. (2011). A systematic study of the polyphenolic composition of aqueous extracts deriving from several Cistus genus species: evolutionary relationship. Phytochemical Analysis, 22(4), 303-312.
  • Barros, L., Duenas, M., Alves, C.T., Silva, S., Henriques, M., Santos-Buelga, C., & Ferreira, I.C.F.R. (2013). Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Industrial Journal of Crops and Products, 41. 41-45.
  • Bhatia, N., Kumari, A., Chauhan, N., Thakur, N., & Sharma, R. (2023). Duchsnea indica plant extract mediated synthesis of copper oxide nanomaterials for antimicrobial activity and free-radical scavenging assay. Biocatalysis and Agricultural Biotechnology, 47, 102574.
  • Bakrim, B. W., Aghraz, A., Hriouch, F., Larhsini, M., Markouk, M., Bekkouche, K., Costa, R., Arrigo, S., Cicero, N. & Dugo, G. (2022). Phytochemical study and antioxidant activity of the most used medicinal and aromatic plants in Morocco. Journal of Essentıal Oil Research, 1-12.
  • Benali, T., Bouyahya, A., Habbadi, K., Zengin, G., Khabbach, A., Achbani, E.H., & Hammani, K. (2020). Chemical composition and antibacterial activity of the essential oil and extracts of Cistus ladaniferus subsp. ladanifer and Mentha suaveolens against phytopathogenic bacteria and their ecofriendly management of phytopathogenic bacteria. Biocatalysis and Agricicultural Biotechnology, 28, 101696.
  • Bouarab Chibane, L., Forquet, V., Lanteri, P., Clement, Y., Akkari, L. L. & Oulahal, N. (2019). Antibacterial properties of polyphenols: characterization and QSAR (Quantitative Structure–Activity Relationship) models. Frontiers Microbiology, 10.829.
  • CLSI (Clinical and Laboratory Standards Institute). Performance standards for antimicrobial standards institute susceptibility testing, 26 th Edition. CLSI supplement M100S. Wayne PA: Clinical and Laboratory, 2016.
  • CLSI (2009). (Clinical and Laboratory Standard Institute). Clinical and Laboratory Standarts Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Seventh Edition. M07- A7, Villanova, PA, USA.
  • Dash, B. K., Sultana, S. & Sultana, N. (2011). Antibacterial activities of methanol and acetone extracts of Fenugreek (Trigonella foenum) and Coriander (Coriandrum sativum). Life Sciences and Medicine Research, 27:1-8.
  • Davis, P. (1965). Introduction in Flora of Turkey and the East Aegean Islands.
  • Değim, İ. & Mised, S. (2011). Farmasötik Nanoteknoloji. 8(13), 198-205.
  • Demetzos, C., Dimas, K., Hatziantoniou, S., Anastasaki, T., & Angelopoulou, D. (2001). Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Medica, 67(7), 614-618.
  • Derman, S., Kızılbey, K. & Akdeste, Z. (2013). Polymeric nanoparticles. Journal of Engineering and Natural Sciences, 31. 109-122.
  • Duman, R., Dogan, H. H. & Tuncer, P. (2017). Evaluation of the in vitro antiviral activity of Salvia halophila and Salvia sclarea extracts against human respiratory syncytial virüs (HRSV). International Journal of Science and Technology Research, 3 (7), 44-59.
  • Dimas, K., Demetzos, C., Angelopoulou, D., Kolokouris, A., & Mavromoustakos, T. (2000). Biological activity of myricetin and its derivatives against human leukemic cell lines in vitro. Pharmaceutical Research, 42(5), 475-478.
  • Düz, M., & Yakut, Ö. (2022). Microwave-assisted green synthesis, characterization, and antioxidant activity of silver nanoparticles using the aqueous extract of Cistus creticus. Particulate Science and Technology, 41. 589 -599.
  • Ehrhardt, C., Hrincius, E.R., Korte, V., Mazur, I., Droebner, K., Poetter, A., Dreschers, S., Schmolke, M., Planz, O., & Ludwig, S. A. (2007). Polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antiviral Research, 76(1), 38-47.
  • Fierascu, R. C., Fierascu, I., Baroi, A. M. & Ortan, A. (2021). Selected aspects related to medicinal and aromatic plants as alternative sources of bioactive compounds. International Journal of Molecular Sciences, 22, 1521.
  • Günter, Ü., Maçin, S., & Tuncer, E. İ. (2020). Çeşitli bitki ekstrelerinin antibakteriyel aktivitelerinin araştırılması. Genel Tıp Dergisi, 30(3), 184-189.
  • Florkiewicz, W., Pluta, K., Malina, D., Rudnicka, K., Zywicka, A., Duarte Guigou, M., Tyliszczak, B., & Sobczak-Kupiec, A. (2021). Investigation on green synthesis, biocompatibility, and antibacterial activity of silver nanoparticles prepared using Cistus incanus. Materials, 14 (7), 5028.
  • Ghaffari, S., Varshosaz, J., Saadat, A., & Atyabi, F. (2011). Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. International Journal of Nanomedicine, 35-43.
  • Ganaie, H. A. (2021). Review of the active principles of medicinal and aromatic plants and their disease fighting properties. Medicinal and Aromatic Plants, 1-36.
  • Gürsoy, A. Z. (2002). Kontrollü Salım Sistemleri: İlaç Taşıyıcı Partiküler Sistemler. Kontrollü Salım Sistemleri Derneği Yayını, 7, 3-102.
  • Güvenç, A., Yıldız, S., Özkan, A.M., Erdurak, C.S., Coşkun, M., Yılmaz, G., Okuyama, T., & Okada, Y. (2005). Antimicrobiological studies on Turkish Cistus species. Pharmaceutical Biology, 43(2), 178-183.
  • Ho, C., Ismai, N., Shaida, F. S. & Ahmad, R. (2010). In vitro antibacterial and antioxidant activities of Orthosiphon stamineus benth. extracts against food-borne bacteria. Food Chemistry, 122(4), 1168-1172.
  • Jeszka-Skowron, M., Zgoła-Grześkowiak, A., & Frankowski, R. (2018). Cistus incanus a promising herbal tea rich in bioactive compounds: LC–MS/MS determination of catechins, flavonols, phenolic acids and alkaloids-A comparison with Camellia sinensis, Rooibos and Hoan Ngoc herbal tea. Journal of Food Composition and Analysis, 74, 71-81.
  • Khoshraftar, Z., Shamel, A., Safekordi, A. A., Ardjmand, M., & Zaefizadeh, M. (2020). Natural nanopesticides with origin of Plantago major seeds extract for Tribolium castaneum control. Journal of Nanostructure in Chemistry, 10. 255-264.
  • Kim, J. H., Baek, J. S., Park, J. K., Lee, B. J., Kim, M. S., Hwang, S. J., Lee, J. Y. & Cho, C. W. (2017). Development of Houttuynia cordata extract-loaded solid lipid nanoparticles for oral delivery: high drug loading efficiency and controlled release. Molecules, 22 (12), 2215.
  • Küpeli, E., & Yesilada, E. (2007). Flavonoids with anti-inflammatory and antinociceptive activity from Cistus laurifolius L. leaves through bioassay-guided procedures. Journal of Ethnopharmacology, 112(3), 524-530.
  • Lahcen, S. A., El Hattabi, L., Benkaddour, R., Chahboun, N., Ghanmi, M., Satrani, B., ... & Zarrouk, A. (2020). Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan Cistus creticus leaves. Chemical Data Collections, 26, 100346.
  • Liechty, W. B., Kryscio, D. R., Slaughter, B. V., & Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering, 1. 149-173.
  • Lima, A. M. Pizzol, D. C. Monteiro, B. F. F., Creczynsk-Pasa, B. T., Andrade, P. G., Ribeiro, O. A. & Perussi, R. T. (2013). Hyperin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency. Journal of Photochemistry and Photobiology B: Biology, 125,146-154.
  • Liu, L., Lan, R., Liu, L., Wang, Y., Zhang, Y., Wang, Y., & Xu, J. (2017). Antimicrobial resistance and cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China. Frontiers in Microbiology, 8, 1357.
  • Poudel, A., Gachumi, G., Wasan, K. M., Dallal Bashi, Z., El-Aneed, A., & Badea, I. (2019). Development and characterization of liposomal formulations containing phytosterols extracted from canola oil deodorizer distillate along with tocopherols as food additives. Pharmaceutics, 11(4), 185.
  • Magaldi, S., Mata-Essayag, S., De Capriles, C. H., Perez, C., Colella, M. T., Olaizola, C., & Ontiveros, Y. (2004). Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases, 8(1), 39-45.
  • Maggi, F., Lucarini, D., Papa, F., Peron, G., & Dall Acqua, S. (2016). Phytochemical analysis of the labdanum-poor Cistus creticus subsp. eriocephalus (Viv.) Greuter et Burdet growing in central Italy. Biochemical Systematics and Ecology, 66, 50-57.
  • Mastino, P. M., Mauro, M., Jean, C., Juliano, C., & Marianna, U. (2018). Analysis and potential antimicrobial activity of phenolic compounds in the extracts of Cistus creticus subspecies from Sardinia. The Natural Products Journal, 8(3), 166-174.
  • Mehnert, W., & Mader, K. (2012). Solid lipid nanoparticles: production, characterization and applications. Advanced Drug Delivery Reviews, 64, 83-101.
  • Muller, R. H., & Keck, C. M. (2004). Challenges and solutions for the delivery of biotech drugs–a review of drug nanocrystal technology and lipid nanoparticles. Journal of Biotechnology, 113(1-3), 151-170.
  • Nazri, N. M., Ahmat, N., Adnan, A., Mohamad, S. S., & Ruzaina, S. S. (2011). In vitro antibacterial and radical scavenging activities of Malaysian table salad. African Journal of Biotechnology, 10(30), 5728-5735.
  • Mastino, P. M., Mauro, M., Jean, C., Juliano, C., & Marianna, U. (2018). Analysis and potential antimicrobial activity of phenolic compounds in the extracts of Cistus creticus subspecies from Sardinia. The Natural Products Journal, 8(3), 166-174.
  • Mokhtari, R., Kazemi Fard, M., Rezaei, M., Moftakharzadeh, S. A., & Mohseni, A. (2023). Antioxidant, antimicrobial activities, and characterization of phenolic compounds of thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and thyme-sage mixture extracts. Journal of Food Quality,
  • Numanoğlu, U. & Tarimci, N. (2006). Kati lipid nanopartiküllerin özellikleri, farmasötik ve kozmetik alandaki uygulamalari. Ankara Eczacılık Fakültesi Dergisi, 35 (3) 211-235.
  • Saddiqe, L. Z., Naeem, I. & Maimoona, A. (2010). A review of the antibacterial activity of Hypericum perforatum. Journal of Ethnopharmcology, 131. 511-521.
  • Sarıkürkcü, N. & Tilili, N. (2022). Onosma inexspectata and Onosma armenumas novel sources of phytochemicals with determination by high-performance liquid chromatography–mass spectrometry (HPLC-MS/MS) with evaluation of the antioxidant and enzyme inhibitory capacities. Analytical Letters, 55 (7), 1068-1079.
  • Sayah, K., Chemlal, L., Marmouzi, I., El Jemli, M., Cherrah, Y., & Faouzi, M.E.A. (2017). In vivo anti-inflammatory and analgesic activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) aqueous extracts. South African Journal of Botany, 113, 160-163.
  • Shanthi Sree, K. S., & Yasodamma, N. (2010). Paramageetham CH, phytochemical screening and ın vitro antibacterial activity of the methanolic leaf extract: Sebastiania chamaelea Müell. The Bioscan, 5, 173-175.
  • Snoussi, M., Ahmad, I., Aljohani, A., Patel, H., Abdulhakeem, M. A., Alhazmi, Y. S., Ahazmi, S., Tepe, B., Adnan, M., Sarıkürkcü, C., Riadh, B., Feo, V., Alreshidi, M. & Noumi, E. (2022). Phytochemical analysis, antioxidant, and antimicrobial activities of Ducrosia flabellifolia: A combined experimental and computational approaches. Antioxidants, 11(11), 2174.
  • Soloviev, M. (2007). Nanobiotechnology today: focus on nanoparticles. Journal of Nanobiotechnology, 5(1), 1-3.
  • Stepien, A., Aebisher, D., & Bartusik Aebisher, D. (2018). Biological properties of Cistus species. European Journal of Clinical and Experimental Medicine, (2), 27-132.
  • Stepien, A. E., Gorzelany, J., Matlok, N., Lech, K., & Figiel, A. (2019). The effect of drying methods on the energy consumption, bioactive potential and colour of dried leaves of Pink Rock Rose (Cistus creticus). Journal of Food Science and Technology, 56, 2386-2394.
  • Şükran, A. M. A. Ç. Cistus creticus (Pembe Laden) Türünün Farmakolojik Özellikleri. Medical Records, 3(2), 161-163.
  • Uchegbu, I. F., & Schatzlein, A. G. (Eds.). (2006). Polymers in Drug Delivery. CRC Press.
  • Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian Journal of Microbiology, 38, 369-380.
  • Velsankar, K., RM, A. K., Preethi, R., Muthulakshmi, V., & Sudhahar, S. (2020). Green synthesis of CuO nanoparticles via Allium sativum extract and its characterizations on antimicrobial, antioxidant, antilarvicidal activities. Journal of Environmental Chemical Engineering, 8(5), 104123.
  • Wickham, T. J. (2003). Ligand-directed targeting of genes to the site of disease. Nature Medicine, 9(1), 135-139.
  • Wissing, S. A., Kayser, O., & Müller, R. H. (2004). Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews, 56(9), 1257-1272.
  • Zalegh, I., Akssira, M., Bourhia, M., Mellouki, F., Rhallabi, N., Salamatullah, A. M., Alkaltham, M. S., Khalil Alyahya, H., &Mhand, R. A. (2021). A review on Cistus sp.: Phytochemical and antimicrobial activities. Plants, 10(6), 1214.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Biyoloji / Biology
Authors

Sevim Feyza Erdoğmuş 0000-0002-4319-7558

Şerife Nur Durmuş This is me 0009-0004-3790-9952

Saniye Özdemir This is me 0009-0006-7890-1177

Project Number 1919B0122022895
Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date April 7, 2023
Acceptance Date July 12, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Erdoğmuş, S. F., Durmuş, Ş. N., & Özdemir, S. (2023). Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması. Journal of the Institute of Science and Technology, 13(4), 2505-2515. https://doi.org/10.21597/jist.1279263
AMA Erdoğmuş SF, Durmuş ŞN, Özdemir S. Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması. J. Inst. Sci. and Tech. December 2023;13(4):2505-2515. doi:10.21597/jist.1279263
Chicago Erdoğmuş, Sevim Feyza, Şerife Nur Durmuş, and Saniye Özdemir. “Cistus Creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi Ve Antimikrobiyal Ekinliklerinin Araştırılması”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2505-15. https://doi.org/10.21597/jist.1279263.
EndNote Erdoğmuş SF, Durmuş ŞN, Özdemir S (December 1, 2023) Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması. Journal of the Institute of Science and Technology 13 4 2505–2515.
IEEE S. F. Erdoğmuş, Ş. N. Durmuş, and S. Özdemir, “Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2505–2515, 2023, doi: 10.21597/jist.1279263.
ISNAD Erdoğmuş, Sevim Feyza et al. “Cistus Creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi Ve Antimikrobiyal Ekinliklerinin Araştırılması”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2505-2515. https://doi.org/10.21597/jist.1279263.
JAMA Erdoğmuş SF, Durmuş ŞN, Özdemir S. Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması. J. Inst. Sci. and Tech. 2023;13:2505–2515.
MLA Erdoğmuş, Sevim Feyza et al. “Cistus Creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi Ve Antimikrobiyal Ekinliklerinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2505-1, doi:10.21597/jist.1279263.
Vancouver Erdoğmuş SF, Durmuş ŞN, Özdemir S. Cistus creticus Ekstrelerinin Kontrollü Salımını Gerçekleştiren Katı Lipid Nanopartiküllerin (KLN) Geliştirilmesi ve Antimikrobiyal Ekinliklerinin Araştırılması. J. Inst. Sci. and Tech. 2023;13(4):2505-1.