Research Article
BibTex RIS Cite

Phytochemical Analysis and Antioxidant, Anticholinesterase and Antiatherogenic Activity of Hairy Tea (Stachys lavandulifolia)

Year 2023, Volume: 13 Issue: 4, 2809 - 2817, 01.12.2023
https://doi.org/10.21597/jist.1309555

Abstract

Stachys lavandulifolia Vahl. is a flowering plant family belonging to the Lamiaceae family, which has a great place in ethnobotany. In this study, the phytochemical composition, inhibition of acetylcholinesterase (AChE) and paraoxonase (hPON 1) for antiatherosclerotic activity, and antioxidant capacity of the plant were investigated. Phytochemical content was determined by LC-MS/MS system, enzyme inhibition, and antioxidant capacity studies were determined by spectrophotometer. The antioxidant capacity of S. lavandulifolia extracts (methanol, hexane, and water) was determined by applying ABTS, DPPH, FRAP, and CUPRAC methods. The methanol extract of S. lavandulifolia exhibited significant inhibition of AChE (IC50 value for methanol extract 0.105±0.17 mg/mL (R2:0.978)). In contrast, methanol and water extracts of S. lavandulifolia showed no inhibitory effect on hPON 1. The highest activity for ABTS was 23.42% in methanol extract and 50.07% for DPPH activity in methanol extract. In the metal-reducing power test, the absorbance was 0.233±0.47 for FRAP water extract and 0.587±1.52 for CUPRAC methanol extract. According to LC-MS/MS analysis, luteolin, fumaric acid, caffeic acid, syringic acid, hydroxybenzoic acid, quercetin, salicylic acid, gallic acid, catechin hydrate, and acetohydroxamic acid were determined in the methanol extract of the plant. In conclusion, S. lavandulifolia, which has antioxidant, anti-atherogenic, and anti-neurodegenerative properties, has the potential to be used as a natural medicine instead of synthetic drugs used in Alzheimer's patients.

References

  • Ahmadi, S. M., Farhoosh, R., Sharif, A. , & Rezaie, M. (2020). Structure‐antioxidant activity relationships of luteolin and catechin. Journal of food science, 85(2), 298–305.
  • Al-Mamary, M. A. & Moussa, Z. (2021). Antioxidant activity: The presence and impact of hydroxyl groups in small molecules of natural and synthetic origin. Antioxidants—Benefits, Sources, Mechanisms of Action, 318–377.
  • Almasieh, M., Zhou, Y., Kelly, M. E., Casanova, C., & Di Polo, A. (2010). Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell death & disease, 1(2), e27–e27.
  • Apak, R., Güclü, K., Özyürek, M., & Celik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419.
  • Avila, J. (2006). Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS letters, 580(12), 2922–2927.
  • Bahadori, M. B., Zengin, G., Dinparast, L., & Eskandani, M. (2020). The health benefits of three Hedgenettle herbal teas (Stachys byzantina, Stachys inflata, and Stachys lavandulifolia)-profiling phenolic and antioxidant activities. European Journal of Integrative Medicine, 36, 101134.
  • Bhattacharjee, R. (1980). Taxonomic studies in Stachys. II. A new infrageneric classification of Stachys L. Notes from the Royal Botanic Garden Edinburgh.
  • Bingol, M. N., & Bursal, E. (2018). LC-MS/MS analysis of phenolic compounds and in vitro antioxidant potential of stachys lavandulifolia vahl. var. brachydon boiss. International Letters of Natural Sciences, (72).
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. doi:10.1038/1811199a0
  • Braak, H., & Del Tredici, K. (2011). Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta neuropathologica, 121(5), 589–595.
  • Bursal, E., Taslimi, P., Gören, A. C., & Gülçin, İ. (2020). Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatalysis and agricultural biotechnology, 28, 101711.
  • Chistiakov, D. A., Melnichenko, A. A., Orekhov, A. N., & Bobryshev, Y. V. (2017). Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 132, 19–27.
  • Couladis, M., Tzakou, O., Verykokidou, E., & Harvala, C. (2003). Screening of some Greek aromatic plants for antioxidant activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(2), 194–195.
  • Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology, 4, 177.
  • El-Ansari, M. A., Abdalla, M. F., Saleh, N. A. M., Barron, D., & Le Quéré, J.-L. (1991). Flavonoid constituents of Stachys aegyptiaca. Phytochemistry, 30(4), 1169–1173.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., &F eatherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88–95.
  • Elmastaş, M., Gülçin, I., Beydemir, Ş., Küfrevioǧlu, Ö. I., & Aboul-Enein, H. Y. (2006). A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Analytical Letters, 39, 47–65. doi:10.1080/00032710500423385
  • Ferretti, G., Bacchetti, T., Busni, D., Rabini, R. A. & Curatola, G. (2004). Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2957–2962.
  • Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220.
  • Güzel, A. (2023). Relationship Between Phenolic Content Determined by LC‐MS/MS and Antioxidant Capacity and Enzyme Inhibition of Cyclotrichium Niveum L. Chemistry & Biodiversity, e202300027.
  • Güzel, A., Noma, S. A. A., Şen, B., Kazancı, A., Tok, T. T., Kolaç, T., & Gök, Y. (2022). Synthesis, Characterization and Inhibitor Properties of Benzimidazolium Salts Bearing 4-(methylsulfonyl)benzyl Side Arms. Journal of Molecular Structure, 134320. doi:10.1016/J.MOLSTRUC.2022.134320
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. Oxford university press, USA. Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. Journal of nephropharmacology, 4(1), 27.
  • Kaur, G., Shivanandappa, T. B., Kumar, M., & Kushwah, A. S. (2020). Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn-schmiedeberg’s Archives of Pharmacology, 393(10), 1911–1920.
  • Kim, T. Y., Leem, E., Lee, J. M., & Kim, S. R. (2020). Control of reactive oxygen species for the prevention of parkinson’s disease: The possible application of flavonoids. Antioxidants, 9(7), 583.
  • Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P. & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative medicine and cellular longevity, 2017.
  • Maleki, N., Garjani, A., Nazemiyeh, H., Nilfouroushan, N., Sadat, A. T. E., Allameh, Z. & Hasannia, N. (2001). Potent anti-inflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. Journal of Ethnopharmacology, 75(2–3), 213–218.
  • Miyase, T., Yamamoto, R. & Ueno, A. (1996). Phenylethanoid glycosides from Stachys officinalis. Phytochemistry, 43(2), 475–479.
  • Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B. & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36(10), 1235–1247.
  • Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. doi:10.5264/eiyogakuzashi.44.307
  • Özhatay, N. & Kültür, Ş. (2006). Check-list of additional taxa to the Supplement Flora of Turkey III. Turkish Journal of Botany, 30(4), 281–316.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical interventions in aging, 2(3), 347.
  • Tundis, R., Bonesi, M., Pugliese, A., Nadjafi, F., Menichini, F. & Loizzo, M. R. (2015). Tyrosinase, acetyl-and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Records of Natural Products, 9(1), 81.
  • Uğur, Y. (2022). Extraction and Quantification of Melatonin in Cornelian Cherry (Cornus mas L.) By Ultra-fast Liquid Chromatography Coupled to Fluorescence Detector (UFLC-FD), Acta Chromatographica (published online ahead of print 2022). https://doi.org/10.1556/1326.2022.01052
  • Uğur, Y. & Güzel, A. (2023). Determination of phytochemical content by LC-MS/MS, investigation of antioxidant capacity, and enzyme inhibition effects of nettle (Urtica dioica). European Review for Medical and Pharmacological Sciences, 27(5), 1793–1800. https://doi.org/10.26355/eurrev_202303_31540
  • Verma, S. & Singh, S. P. (2008). Current and future status of herbal medicines. Veterinary World, 1(11), 347–350. doi:10.5455/vetworld.2008.347-350
  • Yamamoto, R., Miyase, T. & Ueno, A. (1994). Stachyssaponins I-VIII, new oleanane-type triterpene saponins from Stachys riederi Chamisso. Chemical and Pharmaceutical Bulletin, 42(6), 1291–1296.

Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi

Year 2023, Volume: 13 Issue: 4, 2809 - 2817, 01.12.2023
https://doi.org/10.21597/jist.1309555

Abstract

Stachys lavandulifolia Vahl. etnobotanikte önemli yeri olan Lamiaceae familyasına ait çiçekli bitki ailesindendir. Bu çalışmada bitkinin fitokimyasal kompozisyonu, asetilkolinesteraz (AChE) inhibisyonu, antiaterosklerotik aktivite için paraoksonaz (hPON 1) inhibisyonu ve antioksidan kapasitesi araştırıldı. Fitokimyasal içerik LC-MS/MS sistemi ile enzim inhibisyonu ve antioksidan kapasite çalışmaları ise spektrofotometre ile belirlendi. S. lavandulifolia ekstraktlarının (metanol, hekzan ve su) antioksidan kapasitesi ABTS, DPPH, FRAP ve CUPRAC yöntemleri uygulanarak belirlendi. S. lavandulifolia 'nın metanol ekstraktı AChE üzerinde önemli inhibisyon sergiledi (metanol ekstraktı için IC50 değeri 0.105± 0.17 mg/mL (R2:0.978)). Buna karşılık, S. lavandulifolia'nın metanol ve su ekstreleri hPON 1 üzerinde inhibisyon etkisi göstermedi. ABTS için en yüksek aktivite metanol ekstresinde %23.42 ve DPPH aktivitesi için metanol ekstresinde %50.07 olarak belirlendi. Metal indirgeme gücü deneyinde, FRAP su ekstraktı için 0.233± 0.47 ve CUPRAC metanol ekstraktı için 0.587±1.52 absorbans olarak tespit edildi. Bitkinin metanol ekstraktında LC-MS/MS analizlerine göre luteolin, fumarik asit, kafeik asit, siringik asit, hidroksibenzoik asit, kuersetin, salisilik asit, gallik asit, kateşin hidrat ve asetohidroksamik asit saptanmıştır. Sonuç olarak, antioksidan, anti-aterojenik ve anti-nörodejeneratif özelliklere sahip olan S. lavandulifolia, Alzheimer hastalarında kullanılan sentetik ilaçlar yerine doğal bir ilaç olarak kullanılma potansiyeline sahiptir.

References

  • Ahmadi, S. M., Farhoosh, R., Sharif, A. , & Rezaie, M. (2020). Structure‐antioxidant activity relationships of luteolin and catechin. Journal of food science, 85(2), 298–305.
  • Al-Mamary, M. A. & Moussa, Z. (2021). Antioxidant activity: The presence and impact of hydroxyl groups in small molecules of natural and synthetic origin. Antioxidants—Benefits, Sources, Mechanisms of Action, 318–377.
  • Almasieh, M., Zhou, Y., Kelly, M. E., Casanova, C., & Di Polo, A. (2010). Structural and functional neuroprotection in glaucoma: role of galantamine-mediated activation of muscarinic acetylcholine receptors. Cell death & disease, 1(2), e27–e27.
  • Apak, R., Güclü, K., Özyürek, M., & Celik, S. E. (2008). Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Microchimica Acta, 160(4), 413–419.
  • Avila, J. (2006). Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS letters, 580(12), 2922–2927.
  • Bahadori, M. B., Zengin, G., Dinparast, L., & Eskandani, M. (2020). The health benefits of three Hedgenettle herbal teas (Stachys byzantina, Stachys inflata, and Stachys lavandulifolia)-profiling phenolic and antioxidant activities. European Journal of Integrative Medicine, 36, 101134.
  • Bhattacharjee, R. (1980). Taxonomic studies in Stachys. II. A new infrageneric classification of Stachys L. Notes from the Royal Botanic Garden Edinburgh.
  • Bingol, M. N., & Bursal, E. (2018). LC-MS/MS analysis of phenolic compounds and in vitro antioxidant potential of stachys lavandulifolia vahl. var. brachydon boiss. International Letters of Natural Sciences, (72).
  • Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200. doi:10.1038/1811199a0
  • Braak, H., & Del Tredici, K. (2011). Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta neuropathologica, 121(5), 589–595.
  • Bursal, E., Taslimi, P., Gören, A. C., & Gülçin, İ. (2020). Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatalysis and agricultural biotechnology, 28, 101711.
  • Chistiakov, D. A., Melnichenko, A. A., Orekhov, A. N., & Bobryshev, Y. V. (2017). Paraoxonase and atherosclerosis-related cardiovascular diseases. Biochimie, 132, 19–27.
  • Couladis, M., Tzakou, O., Verykokidou, E., & Harvala, C. (2003). Screening of some Greek aromatic plants for antioxidant activity. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(2), 194–195.
  • Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in pharmacology, 4, 177.
  • El-Ansari, M. A., Abdalla, M. F., Saleh, N. A. M., Barron, D., & Le Quéré, J.-L. (1991). Flavonoid constituents of Stachys aegyptiaca. Phytochemistry, 30(4), 1169–1173.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., &F eatherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88–95.
  • Elmastaş, M., Gülçin, I., Beydemir, Ş., Küfrevioǧlu, Ö. I., & Aboul-Enein, H. Y. (2006). A study on the in vitro antioxidant activity of juniper (Juniperus communis L.) fruit extracts. Analytical Letters, 39, 47–65. doi:10.1080/00032710500423385
  • Ferretti, G., Bacchetti, T., Busni, D., Rabini, R. A. & Curatola, G. (2004). Protective effect of paraoxonase activity in high-density lipoproteins against erythrocyte membranes peroxidation: a comparison between healthy subjects and type 1 diabetic patients. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2957–2962.
  • Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220.
  • Güzel, A. (2023). Relationship Between Phenolic Content Determined by LC‐MS/MS and Antioxidant Capacity and Enzyme Inhibition of Cyclotrichium Niveum L. Chemistry & Biodiversity, e202300027.
  • Güzel, A., Noma, S. A. A., Şen, B., Kazancı, A., Tok, T. T., Kolaç, T., & Gök, Y. (2022). Synthesis, Characterization and Inhibitor Properties of Benzimidazolium Salts Bearing 4-(methylsulfonyl)benzyl Side Arms. Journal of Molecular Structure, 134320. doi:10.1016/J.MOLSTRUC.2022.134320
  • Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine. Oxford university press, USA. Karimi, A., Majlesi, M., & Rafieian-Kopaei, M. (2015). Herbal versus synthetic drugs; beliefs and facts. Journal of nephropharmacology, 4(1), 27.
  • Kaur, G., Shivanandappa, T. B., Kumar, M., & Kushwah, A. S. (2020). Fumaric acid protect the cadmium-induced hepatotoxicity in rats: owing to its antioxidant, anti-inflammatory action and aid in recast the liver function. Naunyn-schmiedeberg’s Archives of Pharmacology, 393(10), 1911–1920.
  • Kim, T. Y., Leem, E., Lee, J. M., & Kim, S. R. (2020). Control of reactive oxygen species for the prevention of parkinson’s disease: The possible application of flavonoids. Antioxidants, 9(7), 583.
  • Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P. & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative medicine and cellular longevity, 2017.
  • Maleki, N., Garjani, A., Nazemiyeh, H., Nilfouroushan, N., Sadat, A. T. E., Allameh, Z. & Hasannia, N. (2001). Potent anti-inflammatory activities of hydroalcoholic extract from aerial parts of Stachys inflata on rats. Journal of Ethnopharmacology, 75(2–3), 213–218.
  • Miyase, T., Yamamoto, R. & Ueno, A. (1996). Phenylethanoid glycosides from Stachys officinalis. Phytochemistry, 43(2), 475–479.
  • Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Spiegelhalder, B. & Bartsch, H. (2000). The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer, 36(10), 1235–1247.
  • Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. doi:10.5264/eiyogakuzashi.44.307
  • Özhatay, N. & Kültür, Ş. (2006). Check-list of additional taxa to the Supplement Flora of Turkey III. Turkish Journal of Botany, 30(4), 281–316.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical interventions in aging, 2(3), 347.
  • Tundis, R., Bonesi, M., Pugliese, A., Nadjafi, F., Menichini, F. & Loizzo, M. R. (2015). Tyrosinase, acetyl-and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Records of Natural Products, 9(1), 81.
  • Uğur, Y. (2022). Extraction and Quantification of Melatonin in Cornelian Cherry (Cornus mas L.) By Ultra-fast Liquid Chromatography Coupled to Fluorescence Detector (UFLC-FD), Acta Chromatographica (published online ahead of print 2022). https://doi.org/10.1556/1326.2022.01052
  • Uğur, Y. & Güzel, A. (2023). Determination of phytochemical content by LC-MS/MS, investigation of antioxidant capacity, and enzyme inhibition effects of nettle (Urtica dioica). European Review for Medical and Pharmacological Sciences, 27(5), 1793–1800. https://doi.org/10.26355/eurrev_202303_31540
  • Verma, S. & Singh, S. P. (2008). Current and future status of herbal medicines. Veterinary World, 1(11), 347–350. doi:10.5455/vetworld.2008.347-350
  • Yamamoto, R., Miyase, T. & Ueno, A. (1994). Stachyssaponins I-VIII, new oleanane-type triterpene saponins from Stachys riederi Chamisso. Chemical and Pharmaceutical Bulletin, 42(6), 1291–1296.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Biochemistry and Cell Biology (Other)
Journal Section Kimya / Chemistry
Authors

Abdussamat Güzel 0000-0001-7810-4510

Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date June 4, 2023
Acceptance Date July 30, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Güzel, A. (2023). Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi. Journal of the Institute of Science and Technology, 13(4), 2809-2817. https://doi.org/10.21597/jist.1309555
AMA Güzel A. Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi. J. Inst. Sci. and Tech. December 2023;13(4):2809-2817. doi:10.21597/jist.1309555
Chicago Güzel, Abdussamat. “Tüylü Çayın (Stachys Lavandulifolia) Fitokimyasal Analizi Ve Antioksidan, Antikolinesteraz Ve Antiaterojenik Aktivitesi”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2809-17. https://doi.org/10.21597/jist.1309555.
EndNote Güzel A (December 1, 2023) Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi. Journal of the Institute of Science and Technology 13 4 2809–2817.
IEEE A. Güzel, “Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2809–2817, 2023, doi: 10.21597/jist.1309555.
ISNAD Güzel, Abdussamat. “Tüylü Çayın (Stachys Lavandulifolia) Fitokimyasal Analizi Ve Antioksidan, Antikolinesteraz Ve Antiaterojenik Aktivitesi”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2809-2817. https://doi.org/10.21597/jist.1309555.
JAMA Güzel A. Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi. J. Inst. Sci. and Tech. 2023;13:2809–2817.
MLA Güzel, Abdussamat. “Tüylü Çayın (Stachys Lavandulifolia) Fitokimyasal Analizi Ve Antioksidan, Antikolinesteraz Ve Antiaterojenik Aktivitesi”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2809-17, doi:10.21597/jist.1309555.
Vancouver Güzel A. Tüylü Çayın (Stachys lavandulifolia) Fitokimyasal Analizi ve Antioksidan, Antikolinesteraz ve Antiaterojenik Aktivitesi. J. Inst. Sci. and Tech. 2023;13(4):2809-17.