Research Article
BibTex RIS Cite

Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi

Year 2023, Volume: 13 Issue: 4, 2769 - 2779, 01.12.2023
https://doi.org/10.21597/jist.1321228

Abstract

Galaktoz seviyesinin ölçümü, galaktozemi ve galaktoz intoleransı açısından klinik önem taşır. Özellikle yenidoğanlarda hemen tespit edilmemesi ölümcül sonuçlar doğurabilir. Teşhis konduktan sonra da galaktozun diyetten çıkarılması gerekir. Dolayısıyla hem kan hem de diyette özellikle süt ve süt ürünlerinde galaktozun tayini büyük önem taşır. Literatür verilerinde galaktoz tayini için geliştirilen yöntemler spektrofotometre, kromatografi, kütle spektrometresi gibi ön işlem ve pahalı ekipman gerektiren, zaman alıcı ve nispeten yavaş yöntemlerdir. Bu çalışmanın amacını da galaktoz tayini için hızlı, spesifik, ucuz elektrokimyasal bir biyosensör sistemi geliştirilmesi oluşturmaktadır. Biyokomponent olarak Galaktoz Oksidaz (GaOX) enzimi kullanılan bu çalışmada, çalışma elektrodu olarak Rutenyum mediyatör kompleksi içeren karbon pasta elektrot kullanılmıştır. GaOX enzimi pasta yapısı içerisinde immobilize edilmiştir. Çalışmanın özgünlüğünü pasta yapısı içerisinde kullanılan Rutenyum mediyatör sisteminin kullanılması oluşturmaktadır. Elektrot yapım aşamaları döngüsel voltammetri (CV) yöntemiyle karakterize edilirken, optimizasyon ve karakterizasyon çalışmaları 0&0.9 V arası DP, ve 0.5 V’ta amperometrik ölçümler yoluyla gerçekleştirilmiştir. Çalışmalarda ayrıca çalışma tamponu içerisinde 1 mM p-benzokinon mediyatör sistemi kullanılmıştır.Optimizasyon çalışmaları sonu optimum pH 6,5, optimum sıcaklık ise 30 oC olarak bulunmuştur. Geliştirilen biyosensörün doğrusal tayin aralığı 0.05 – 1 mM arası bulunurken, tekrarlanabilirliği 0.25 mM galaktoz için ortalama 0.24 mM, standart sapma ± 0.021 ve varyasyon katsayısı (%VK) %8,3 olarak bulunmuştur. Girişim etkisi denemesinde herhangi bir girişim gözlenmemiştir. Örnek denemesi liyofilize serum ve laktozsuz süt örneklerinde yapılmış ve % geri elde hesaplanmıştır. Bu projede kullanılan Rutenyum mediyatör kompleksinin biyosensör yapımında kullanılmasına literatürde çok az rastlanılmış olmakla birlikte bu çalışmayla ilk defa bir galaktoz biyosensöründe ve ilk defa bir karbon pasta elektrotla kullanımı gerçekleştirilmiştir.

Supporting Institution

yok

Project Number

Yok

Thanks

yok

References

  • Adam, B. W., Flores, S. R., Hou, Y., Allen, T. W., & De Jesus, V. R. (2015). Galactose-1-phosphate uridyltransferase dried blood spot quality control materials for newborn screening tests. Clinical Biochemistry, 48(6), 437–442. https://doi.org/10.1016/j.clinbiochem.2014.12.009
  • Akyilmaz, E., Kozgus, O., Türkmen, H., & Çetinkaya, B. (2010). A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene. Bioelectrochemistry, 78(2), 135–140. https://d¶¶oi.org/10.1016/j.bioelechem.2009.09.003
  • Anderson, S. (2018). GALT Deficiency: Galactosemia. MCN The American Journal of Maternal/Child Nursing, 43(1), 44–51. https://doi.org/10.1097/NMC.0000000000000388
  • Beutler, E. (1991). Galactosemia: screening and diagnosis. Clinical Biochemistry, 24(4), 293–300. https://doi.org/10.1016/0009-9120(91)80003-L
  • Brahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). Design and characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Analytical Letters, 35(5), 797–812. https://doi.org/10.1081/AL-120004070
  • Canbay, E., & Akyilmaz, E. (2014). Design of a multiwalled carbon nanotube-Nafion-cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Analytical Biochemistry, 444, 8–15. https://doi.org/10.1016/j.ab.2013.09.019
  • Canbay, E., Türkmen, H., & Akyilmaz, E. (2014). Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide. Bulletin of Materials Science, 37(3), 617–622. https://doi.org/10.1007/s12034-014-0681-2
  • Connell, E. (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (5th edn). Annals of Clinical Biochemistry: International Journal of Laboratory Medicine. https://doi.org/10.1258/acb.2012.201217
  • Cosnier, S. (2014). Electrochemical biosensors. Içinde Electrochemical Biosensors. https://doi.org/10.1039/B714449K
  • Ekinci, E., & Paşahan, A. (2004). Poly (4-methoxyphenol) film as a galactose-sensing material. European Polymer Journal, 40(8), 1605–1608. https://doi.org/10.1016/j.eurpolymj.2004.04.020
  • European Medicines Agency, & Ema. (2012). Guideline on bioanalytical method validation. EMA Guideline, 44(July 2011), 1–23. https://doi.org/EMEA/CHMP/EWP/192217/2009
  • Evik, E., Şenel, M., & Fatih Abasyank, M. (2010). Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Current Applied Physics, 10(5), 1313–1316. https://doi.org/10.1016/j.cap.2010.03.014
  • Farré, M., & Barceló, D. (2007). Sensor, biosensors and MIP based sensors. Içinde Food Toxicants Analysis (ss. 599–636). https://doi.org/10.1016/B978-044452843-8/50017-1
  • Gross, K. C., & Acosta, P. B. (1991). Fruits and vegetables are a source of galactose: Implications in planning the diets of patients with Galactosaemia. Journal of Inherited Metabolic Disease, 14(2), 253–258. https://doi.org/10.1007/BF01800599
  • Gülce, H., Ataman, I., Gülce, A., & Yildiz, A. (2002). A new amperometric enzyme electrode for galactose determination. Enzyme and Microbial Technology, 30(1), 41–44. https://doi.org/10.1016/S0141-0229(01)00452-5
  • Hu, O. Y., Hu, T. ‐M, & Tang, H. ‐S. (1995). Determination of galactose in human blood by high‐performance liquid chromatography: Comparison with an enzymatic method and application to the pharmacokinetic study of galactose in patients with liver dysfunction. Journal of Pharmaceutical Sciences, 84(2), 231–235. https://doi.org/10.1002/jps.2600840223
  • Kanyong, P., Pemberton, R. M., Jackson, S. K., & Hart, J. P. (2013). Development of an amperometric screen-printed galactose biosensor for serum analysis. Analytical Biochemistry, 435(2), 114–119. https://doi.org/10.1016/J.AB.2013.01.006
  • Karunakaran, C., Rajkumar, R., & Bhargava, K. (2015). Introduction to Biosensors. Biosensors and Bioelectronics, 1–68. https://doi.org/10.1016/B978-0-12-803100-1.00001-3
  • Kim, M. Il, Shim, J., Li, T., Woo, M. A., Cho, D., Lee, J., & Park, H. G. (2012). Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst, 137(5), 1137–1143. https://doi.org/10.1039/c2an15889b
  • Lalrempuia, R., Kollipara, M. R., Carroll, P. J., Yap, G. P. A., & Kreisel, K. A. (2005). Syntheses and characterization of cyano-bridged homo and hetero bimetallic complexes containing η5 and η6-cyclic hydrocarbons. Journal of Organometallic Chemistry, 690(17), 3990–3996. https://doi.org/10.1016/j.jorganchem.2005.05.044
  • Lee, K. N., Lee, Y., & Son, Y. (2011). Enhanced sensitivity of a galactose biosensor fabricated with a bundle of conducting polymer microtubules. Electroanalysis, 23(9), 2125–2130. https://doi.org/10.1002/elan.201100183
  • Li, Y., Ptolemy, A. S., Harmonay, L., Kellogg, M., & Berry, G. T. (2011). Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies. Molecular Genetics and Metabolism, 102(1), 33–40. https://doi.org/10.1016/j.ymgme.2010.08.018
  • Marazuela, M. D., Cuesta, B., Moreno-Bondi, M. C., & Quejido, A. (1997). Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors and Bioelectronics, 12(3), 233–240. https://doi.org/10.1016/S0956-5663(97)85341-9
  • Mulchandani, A., & Pan, S. (1999). Ferrocene-conjugated m-phenylenediamine conducting polymer-incorporated peroxidase biosensors. Analytical biochemistry, 267(1), 141–147. https://doi.org/10.1006/abio.1998.2983
  • Nikolelis, D. P., & Nikoleli, G. P. (2018). Nanotechnology and biosensors. Içinde Nanotechnology and Biosensors. https://doi.org/10.1016/C2017-0-00358-0
  • Pruden, B. B., Pineault, G., & Loutfi, H. (1975). A thin-layer chromatographic method for the quantitative determination of d-mannose, d-glucose and d-galactose in aqueous solution. Journal of Chromatography A, 115(2), 477–483. https://doi.org/10.1016/S0021-9673(01)98950-2
  • Ryabov, A. D., Sukbarev, V. S., Alexandrova, L., Le Lagadec, R., & Pfeffer, M. (2001). New synthesis and new bio-application of cyclometalated ruthenium(II) complexes for fast mediated electron transfer with peroxidase and glucose oxidase. Inorganic Chemistry, 40(25), 6529–6532. https://doi.org/10.1021/ic010423h
  • Scheller, F. W., Schubert, F., Renneberg, R., Müller, H. G., Jänchen, M., & Weise, H. (1985). Biosensors: trends and commercialization. Biosensors. https://doi.org/10.1016/0265-928X(85)80001-8
  • Şenel, M., Bozgeyik, I., Çevik, E., & Fatih Abasiyanik, M. (2011). A novel amperometric galactose biosensor based on galactose oxidase-poly(N-glycidylpyrrole-co-pyrrole). Synthetic Metals, 161(5–6), 440–444. https://doi.org/10.1016/j.synthmet.2010.12.025
  • Sohail, M., & Adeloju, S. B. (2016). Nitrate biosensors and biological methods for nitrate determination. Içinde Talanta (C. 153, ss. 83–98). Elsevier B.V. https://doi.org/10.1016/j.talanta.2016.03.002
  • Sung, W. J., & Bae, Y. H. (2006). Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Sensors and Actuators, B: Chemical, 114(1), 164–169. https://doi.org/10.1016/j.snb.2005.04.027
  • Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Içinde Electroanalysis. https://doi.org/10.1002/elan.200804340
  • Tkac, J., Whittaker, J. W., & Ruzgas, T. (2007). The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2006.08.014
  • Turner, A. P. F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews. https://doi.org/10.1039/c3cs35528d
  • Vaca, G., Sanchez-Corona, J., Medina, C., Olivares, N., Rivera, H., Hern?ndez, A., Ibarra, B., Sotomayor, J. M., & Cant?, J. M. (1978). Galactosemia as a result of galactose-1-phosphate uridyltransferase deficiency. Archivos de Investigacion Medica, 9(3).
  • Xie, J., Chen, C., Zhou, Y., Fei, J., Ding, Y., & Zhao, J. (2016). A Galactose Oxidase Biosensor Based on Graphene Composite Film for the Determination of Galactose and Dihydroxyacetone. Electroanalysis. https://doi.org/10.1002/elan.201500486
  • Zhang, X., Cui, Y., Lv, Z., Li, M., Ma, S., Cui, Z., & Kong, Q. (2011). Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes. International Journal of Electrochemical Science.

Development of Galactose Biosensor Based on Ruthenium Mediator Complex

Year 2023, Volume: 13 Issue: 4, 2769 - 2779, 01.12.2023
https://doi.org/10.21597/jist.1321228

Abstract

Measurement of galactose level is of clinical significance in terms of galactosemia and galactose intolerance. Especially in newborns, it can have fatal consequences if it is not detected immediately. After diagnosis, galactose should be removed from the diet. Therefore, the determination of galactose in both blood and diet, especially milk and dairy products, is of great importance. In the literature data, the methods developed for galactose determination are time consuming and relatively slow methods that require pre-processing and expensive equipment such as spectrophotometer, chromatography, mass spectrometer. The aim of this study is to develop a fast, specific, inexpensive electrochemical biosensor system for galactose determination.In this study, in which Galactose Oxidase (GaOX) enzyme was used as a biocomponent, a carbon paste electrode containing a ruthenium mediator complex was used as the working electrode. GaOX enzyme was immobilized in the paste structure. The originality of the study is the use of the Ruthenium mediator system used in the paste structure. Electrode construction stages were characterized by cyclic voltammetry (CV) method, while optimization and characterization studies were carried out by means of DP between 0 & 0.9 V and amperometric measurements at 0.5 V. The studies also used a 1 mM p-benzoquinone mediator system in working buffer. As a result of optimization studies, optimum pH was found to be 6.5 and optimum temperature was 30 oC. While the linear detection range of the developed biosensor was found between 0.05- mM, the repeatability was found to be 0.24 mM on average, the standard deviation ± 0.021 and the coefficient of variation (CV%) as 8.3% for 0.25 mM galactose. No interference was observed in the interference effect trial. Sample analysis was made on lyophilized serum and lactose-free milk samples and % recovery was calculated. The use of the Ruthenium mediator complex used in this project in the production of biosensors has been rarely encountered in the literature. However, with this study, it was used for the first time in a galactose biosensor and for the first time with a carbon paste electrode.

Project Number

Yok

References

  • Adam, B. W., Flores, S. R., Hou, Y., Allen, T. W., & De Jesus, V. R. (2015). Galactose-1-phosphate uridyltransferase dried blood spot quality control materials for newborn screening tests. Clinical Biochemistry, 48(6), 437–442. https://doi.org/10.1016/j.clinbiochem.2014.12.009
  • Akyilmaz, E., Kozgus, O., Türkmen, H., & Çetinkaya, B. (2010). A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene. Bioelectrochemistry, 78(2), 135–140. https://d¶¶oi.org/10.1016/j.bioelechem.2009.09.003
  • Anderson, S. (2018). GALT Deficiency: Galactosemia. MCN The American Journal of Maternal/Child Nursing, 43(1), 44–51. https://doi.org/10.1097/NMC.0000000000000388
  • Beutler, E. (1991). Galactosemia: screening and diagnosis. Clinical Biochemistry, 24(4), 293–300. https://doi.org/10.1016/0009-9120(91)80003-L
  • Brahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). Design and characterization of a galactose biosensor using a novel polypyrrole-hydrogel composite membrane. Analytical Letters, 35(5), 797–812. https://doi.org/10.1081/AL-120004070
  • Canbay, E., & Akyilmaz, E. (2014). Design of a multiwalled carbon nanotube-Nafion-cysteamine modified tyrosinase biosensor and its adaptation of dopamine determination. Analytical Biochemistry, 444, 8–15. https://doi.org/10.1016/j.ab.2013.09.019
  • Canbay, E., Türkmen, H., & Akyilmaz, E. (2014). Ionic liquid modified carbon paste electrode and investigation of its electrocatalytic activity to hydrogen peroxide. Bulletin of Materials Science, 37(3), 617–622. https://doi.org/10.1007/s12034-014-0681-2
  • Connell, E. (2012). Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (5th edn). Annals of Clinical Biochemistry: International Journal of Laboratory Medicine. https://doi.org/10.1258/acb.2012.201217
  • Cosnier, S. (2014). Electrochemical biosensors. Içinde Electrochemical Biosensors. https://doi.org/10.1039/B714449K
  • Ekinci, E., & Paşahan, A. (2004). Poly (4-methoxyphenol) film as a galactose-sensing material. European Polymer Journal, 40(8), 1605–1608. https://doi.org/10.1016/j.eurpolymj.2004.04.020
  • European Medicines Agency, & Ema. (2012). Guideline on bioanalytical method validation. EMA Guideline, 44(July 2011), 1–23. https://doi.org/EMEA/CHMP/EWP/192217/2009
  • Evik, E., Şenel, M., & Fatih Abasyank, M. (2010). Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene. Current Applied Physics, 10(5), 1313–1316. https://doi.org/10.1016/j.cap.2010.03.014
  • Farré, M., & Barceló, D. (2007). Sensor, biosensors and MIP based sensors. Içinde Food Toxicants Analysis (ss. 599–636). https://doi.org/10.1016/B978-044452843-8/50017-1
  • Gross, K. C., & Acosta, P. B. (1991). Fruits and vegetables are a source of galactose: Implications in planning the diets of patients with Galactosaemia. Journal of Inherited Metabolic Disease, 14(2), 253–258. https://doi.org/10.1007/BF01800599
  • Gülce, H., Ataman, I., Gülce, A., & Yildiz, A. (2002). A new amperometric enzyme electrode for galactose determination. Enzyme and Microbial Technology, 30(1), 41–44. https://doi.org/10.1016/S0141-0229(01)00452-5
  • Hu, O. Y., Hu, T. ‐M, & Tang, H. ‐S. (1995). Determination of galactose in human blood by high‐performance liquid chromatography: Comparison with an enzymatic method and application to the pharmacokinetic study of galactose in patients with liver dysfunction. Journal of Pharmaceutical Sciences, 84(2), 231–235. https://doi.org/10.1002/jps.2600840223
  • Kanyong, P., Pemberton, R. M., Jackson, S. K., & Hart, J. P. (2013). Development of an amperometric screen-printed galactose biosensor for serum analysis. Analytical Biochemistry, 435(2), 114–119. https://doi.org/10.1016/J.AB.2013.01.006
  • Karunakaran, C., Rajkumar, R., & Bhargava, K. (2015). Introduction to Biosensors. Biosensors and Bioelectronics, 1–68. https://doi.org/10.1016/B978-0-12-803100-1.00001-3
  • Kim, M. Il, Shim, J., Li, T., Woo, M. A., Cho, D., Lee, J., & Park, H. G. (2012). Colorimetric quantification of galactose using a nanostructured multi-catalyst system entrapping galactose oxidase and magnetic nanoparticles as peroxidase mimetics. Analyst, 137(5), 1137–1143. https://doi.org/10.1039/c2an15889b
  • Lalrempuia, R., Kollipara, M. R., Carroll, P. J., Yap, G. P. A., & Kreisel, K. A. (2005). Syntheses and characterization of cyano-bridged homo and hetero bimetallic complexes containing η5 and η6-cyclic hydrocarbons. Journal of Organometallic Chemistry, 690(17), 3990–3996. https://doi.org/10.1016/j.jorganchem.2005.05.044
  • Lee, K. N., Lee, Y., & Son, Y. (2011). Enhanced sensitivity of a galactose biosensor fabricated with a bundle of conducting polymer microtubules. Electroanalysis, 23(9), 2125–2130. https://doi.org/10.1002/elan.201100183
  • Li, Y., Ptolemy, A. S., Harmonay, L., Kellogg, M., & Berry, G. T. (2011). Ultra fast and sensitive liquid chromatography tandem mass spectrometry based assay for galactose-1-phosphate uridylyltransferase and galactokinase deficiencies. Molecular Genetics and Metabolism, 102(1), 33–40. https://doi.org/10.1016/j.ymgme.2010.08.018
  • Marazuela, M. D., Cuesta, B., Moreno-Bondi, M. C., & Quejido, A. (1997). Free cholesterol fiber-optic biosensor for serum samples with simplex optimization. Biosensors and Bioelectronics, 12(3), 233–240. https://doi.org/10.1016/S0956-5663(97)85341-9
  • Mulchandani, A., & Pan, S. (1999). Ferrocene-conjugated m-phenylenediamine conducting polymer-incorporated peroxidase biosensors. Analytical biochemistry, 267(1), 141–147. https://doi.org/10.1006/abio.1998.2983
  • Nikolelis, D. P., & Nikoleli, G. P. (2018). Nanotechnology and biosensors. Içinde Nanotechnology and Biosensors. https://doi.org/10.1016/C2017-0-00358-0
  • Pruden, B. B., Pineault, G., & Loutfi, H. (1975). A thin-layer chromatographic method for the quantitative determination of d-mannose, d-glucose and d-galactose in aqueous solution. Journal of Chromatography A, 115(2), 477–483. https://doi.org/10.1016/S0021-9673(01)98950-2
  • Ryabov, A. D., Sukbarev, V. S., Alexandrova, L., Le Lagadec, R., & Pfeffer, M. (2001). New synthesis and new bio-application of cyclometalated ruthenium(II) complexes for fast mediated electron transfer with peroxidase and glucose oxidase. Inorganic Chemistry, 40(25), 6529–6532. https://doi.org/10.1021/ic010423h
  • Scheller, F. W., Schubert, F., Renneberg, R., Müller, H. G., Jänchen, M., & Weise, H. (1985). Biosensors: trends and commercialization. Biosensors. https://doi.org/10.1016/0265-928X(85)80001-8
  • Şenel, M., Bozgeyik, I., Çevik, E., & Fatih Abasiyanik, M. (2011). A novel amperometric galactose biosensor based on galactose oxidase-poly(N-glycidylpyrrole-co-pyrrole). Synthetic Metals, 161(5–6), 440–444. https://doi.org/10.1016/j.synthmet.2010.12.025
  • Sohail, M., & Adeloju, S. B. (2016). Nitrate biosensors and biological methods for nitrate determination. Içinde Talanta (C. 153, ss. 83–98). Elsevier B.V. https://doi.org/10.1016/j.talanta.2016.03.002
  • Sung, W. J., & Bae, Y. H. (2006). Glucose oxidase, lactate oxidase, and galactose oxidase enzyme electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Sensors and Actuators, B: Chemical, 114(1), 164–169. https://doi.org/10.1016/j.snb.2005.04.027
  • Švancara, I., Vytřas, K., Kalcher, K., Walcarius, A., & Wang, J. (2009). Carbon paste electrodes in facts, numbers, and notes: A review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Içinde Electroanalysis. https://doi.org/10.1002/elan.200804340
  • Tkac, J., Whittaker, J. W., & Ruzgas, T. (2007). The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2006.08.014
  • Turner, A. P. F. (2013). Biosensors: Sense and sensibility. Chemical Society Reviews. https://doi.org/10.1039/c3cs35528d
  • Vaca, G., Sanchez-Corona, J., Medina, C., Olivares, N., Rivera, H., Hern?ndez, A., Ibarra, B., Sotomayor, J. M., & Cant?, J. M. (1978). Galactosemia as a result of galactose-1-phosphate uridyltransferase deficiency. Archivos de Investigacion Medica, 9(3).
  • Xie, J., Chen, C., Zhou, Y., Fei, J., Ding, Y., & Zhao, J. (2016). A Galactose Oxidase Biosensor Based on Graphene Composite Film for the Determination of Galactose and Dihydroxyacetone. Electroanalysis. https://doi.org/10.1002/elan.201500486
  • Zhang, X., Cui, Y., Lv, Z., Li, M., Ma, S., Cui, Z., & Kong, Q. (2011). Carbon nanotubes, conductive carbon black and graphite powder based paste electrodes. International Journal of Electrochemical Science.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Sensor Technology
Journal Section Kimya / Chemistry
Authors

Erhan Canbay 0000-0003-0948-1675

Şevval Kundakçı 0000-0002-2566-4618

Ezginur Yıldız 0000-0003-1815-6970

Zeynep Çelik Canbay 0000-0001-7159-1088

Serçin Doğan 0000-0002-9735-8142

Erol Akyılmaz 0000-0003-4108-2738

Project Number Yok
Early Pub Date November 30, 2023
Publication Date December 1, 2023
Submission Date June 30, 2023
Acceptance Date August 11, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Canbay, E., Kundakçı, Ş., Yıldız, E., Çelik Canbay, Z., et al. (2023). Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi. Journal of the Institute of Science and Technology, 13(4), 2769-2779. https://doi.org/10.21597/jist.1321228
AMA Canbay E, Kundakçı Ş, Yıldız E, Çelik Canbay Z, Doğan S, Akyılmaz E. Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi. J. Inst. Sci. and Tech. December 2023;13(4):2769-2779. doi:10.21597/jist.1321228
Chicago Canbay, Erhan, Şevval Kundakçı, Ezginur Yıldız, Zeynep Çelik Canbay, Serçin Doğan, and Erol Akyılmaz. “Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi”. Journal of the Institute of Science and Technology 13, no. 4 (December 2023): 2769-79. https://doi.org/10.21597/jist.1321228.
EndNote Canbay E, Kundakçı Ş, Yıldız E, Çelik Canbay Z, Doğan S, Akyılmaz E (December 1, 2023) Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi. Journal of the Institute of Science and Technology 13 4 2769–2779.
IEEE E. Canbay, Ş. Kundakçı, E. Yıldız, Z. Çelik Canbay, S. Doğan, and E. Akyılmaz, “Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi”, J. Inst. Sci. and Tech., vol. 13, no. 4, pp. 2769–2779, 2023, doi: 10.21597/jist.1321228.
ISNAD Canbay, Erhan et al. “Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi”. Journal of the Institute of Science and Technology 13/4 (December 2023), 2769-2779. https://doi.org/10.21597/jist.1321228.
JAMA Canbay E, Kundakçı Ş, Yıldız E, Çelik Canbay Z, Doğan S, Akyılmaz E. Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi. J. Inst. Sci. and Tech. 2023;13:2769–2779.
MLA Canbay, Erhan et al. “Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi”. Journal of the Institute of Science and Technology, vol. 13, no. 4, 2023, pp. 2769-7, doi:10.21597/jist.1321228.
Vancouver Canbay E, Kundakçı Ş, Yıldız E, Çelik Canbay Z, Doğan S, Akyılmaz E. Rutenyum Mediyatör Kompleksi Temelli Galaktoz Biyosensörü Geliştirilmesi. J. Inst. Sci. and Tech. 2023;13(4):2769-7.