Adsorbent Olarak Grafen Oksit Kullanılarak Metal Kaplama Atıksuyunda Nikel (II) Giderimi
Year 2024,
Volume: 14 Issue: 1, 115 - 124, 01.03.2024
Funda Cemre Kılıç
,
Andaç Akdemir
Abstract
Grafen oksit kullanılarak atıksulardan nikelin gideriminin amaçlandığı bu çalışmada, metal kaplama endüstrisi atıksuyundaki 18.08 – 183.95 mg/L Ni(II) konsantrasyon aralığı için bir dizi adsorpsiyon çalışması gerçekleştirilmiştir. 200 rpm sabit karıştırma devri altında optimum pH=6 ve optimum temas süresi 90 dakika olarak bulunmuştur. Adsorpsiyonda kinetik olarak; yalancı 2. derece kinetik izoterm olarak Temkin izotermi uygun model olarak seçilmiştir. Adsorbent olarak optimum grafen oksit miktarı 0.016 mg/L ve buna bağlı olarak maksimum adsorplama kapasitesi 112.56 mg/g belirlenmiştir. Literatür karşılaştırmaları da dikkate alınarak; grafen oksitin geliştirilebilir bir adsorbent olarak kullanılabileceği, bununla birlikte tek başına yüksek verim elde edilemeyeceği ancak fonksiyonelleştirilmesi halinde grafen oksit ile yüksek verim sağlanabileceği sonucuna varılmıştır.
Supporting Institution
Ondokuz Mayıs Üniversitesi
Project Number
PYO.MUH.1904.17.023
References
- Alves, H. ve Heubner, U. (2016). Aqueous Corrosion Of Nickel And İts Alloys. Reference Module in Materials Science and Materials Engineering. Elsevier Reference Colletion. pp. 1-35. Hollanda
- Ain, Q., Farooq, M.U., Jaless M.I., (2020). Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection.Journal of Water Process Engineering. 33.101044.
- Callender, E., (2003). Heavy Metals in the Environment – Historical Trends. Treatise on Geochemistry. 20: 59–89.
- Carolin, C. F., Kumar, P. S, Saravanan, A., Joshiba, G.J., Naushad, M., (2017). Efficient Techniques For The Removal Of Toxic Heavy Metals From Aquatic Environment: A Review. Journal of Environmental Chemical Engineering.5(3): 2782-2799.
- Chen, L., Li, N., Wen, Z., Zhang, L., Chen, Q., Chen, L., Si, P., Feng, J., Li, Y., Lou, J., C., (2018). Graphene Oxide Based Membrane İntercalated By Nanoparticles For High Performance Nanofiltration Application. Chemical Engineering Journal. 347. 12-18.
- Chen, R., Cheng, Y., Wang, P., Wang, Q., Wan, S., Huang, S., Su, R., Song, Y., Wang, Y., (2021). Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hypal/graphene ozide nanofibers.Science of The Total Environment. 756. 143871.
- Fu, F., Wang, Q., (2011). Removal Of Heavy Metal İons From Wastewaters: A Review. Journal of Environmental Management. 92(3). 407-418.
- Hao, J. Ji, L. Li, C. Hu, C. and Wu, K. (2018). Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 88, 137-145. doi:10.1016/j.jtice.2018.03.045
- Ko, C.H., Yu, F.C., Chang, F.C.,Yang, B.Y., Chen, W.H., Hwang, W.S., Tu, T.C., (2017). Bioethanol Production From Recovered Napier Grass With Heavy Metals. Journal of Envirenmental Management. 203(3). 1005-1010.
- Konicki, W., Aleksandrzak, M., Mijowska, E., (2017). Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 123, 35-49. doi:10.1016/j.cherd.2017.03.036
- Kumar, A., Balouch, A., Pathan A.A.,, Jagirani, M.S., Mahar, A.M., Zubair, M,, Laghari, B., (2019), Remediation of Nickel ion from wastewater by appliying various techniques: a review, Acta Chemica Malaysia, Vol, 3(1).
- Li, Z., Chen Y., Du, Y., Wang, X.,Yang, P., Zheng, J., (2012). Triphenylamine-Functionalized Graphene Decorated With Pt Nanoparticles And İts Application İn Photocatalytic Hydrogen Production. International Journal of Hydrogen Energy. 37(6). 4880-4888.
Moghaddam, N.Y., Lorestani, B., Cheraghi, M., Jamehbozorgi, S., (2019). Adsorption of Cd and Ni from water by graphene oxide and graphene oxide-almond Shell composite.Water Environment Research.1-9.2019.
- Najafi, F., Moradi, O., Rajabi, M., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K., (2015), Thermodynamic of adsorption of nickel ions form aqueous phase using graphene ozide and glycine functionalized graphene oxide. Journal of Molecular Liquids.208.106-113.
- Nethravathi, C., Nisha, T., Ravishankar, N., Shivakumara, C., Rajamathi, M, (2009). Graphene-Nanocrystalline Metal Sulphide Composites Produced By A One-Pot Reaction Starting From Graphite Oxide. Carbon. 47(8). 2054-2059.
- Pathania, D., Thakur, M., Mishra, A.K., (2017). Alginate-Zr(IV) Phosphate Nanocomposite İon Exchanger: Binary Separation Of Heavy Metals. Photocatalysis And Antimicrobial Activity. Journal of Alloys and Compounds. 701(15). 153-162.
- Pourbeyram, S., (2016). Effective Removal Of Heavy Metals From Aqueous Solutions By Graphene Oxide-Zirconium Phosphate (GO-Zr-P) Nanocomposite. Industrial Engineering Chemistry Research. 55(19).5608-5617.
- Proctor, A., Toro-Vazquez, J.F., (2009). The Freundlich Isotherm in Studying Adsorption in Oil Processing. Bleaching and Purifying Fats and Oils Theory and Practice. Elsevier. 10. pp. 209-219. Hollanda.
- Thy, L.T.M., Kiem, N.H., Tu, H.T., Phu, L.M., Oanh, D.T.Y., Nam, H.M., Phong, M.T., Hieu, D.T.Y., (2020). Fabricatiın of manganese ferrite/graphene oxide nanocomposites for removal of nickel ions, methylene blue form water. Chemical Physics. 533.110700.
- Tran, T.L., Tran, H.V., Le, T.D., Bach, G.L., Tran, L.D.. (2019). Studying Ni(II) Adsorption of Magnetite/Graphene Oxide/Chitosan Nanocomposite. Advances in Polymer Technology. Vol 2019. 8124351.
- SM., 2023. Standart Methods of the Examination of Water and Wastewater. AWWA.WEF.APHA. 24 Edition.
- Verma, A.K., Dash, R.R., Bhunia, P., (2012). A Review On Chemical Coagulation/Flocculation Technologies For Removal Of Colour From Textile Wastewaters. Journal of Environmental Management. 93(3). 154-168.
- Weber, J.H., Banerjee, M.K., (2019). Nickel and Nickel Alloys: An Overview. Reference Module in Materials Science and Materials Engineering. Elsevier Reference Colletion. pp. 1-35. Hollanda
- Widyarani, D., Hariyadi, H.R., Wulan, D.R., Cahyaningsih, S., (2017). Removal of nickel ion fom electroplating wastewater using double chamber elevtrodeposition cell (DCEC) reactor partitioned with water hyacinth (Eichhornia crassipes) leaves, IOP Conf. Series:Earth and Environmental Science 60(2017)012020. IOP Publishing.
Wu, Y., Luo, R, Wang, H., Zhang, L., Liu, P., Feng, L., (2014). Journal of Colloid and Interface Science. 436.90-98.
- Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal S, Gupta VK. (2015). Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. Journal of Molecular Liquids. 209. 50-57.
- Yonezawa, T, (2012). Nickel Alloys:Properties and Characteristics. Comprehensive Nuclear Materials. 2. 233–266.
Nickel (II) Removal in Metal Coating Wastewater Using Graphene Oxide as an Adsorben
Year 2024,
Volume: 14 Issue: 1, 115 - 124, 01.03.2024
Funda Cemre Kılıç
,
Andaç Akdemir
Abstract
In this study, a series of adsorption studies were carried out for the concentration range of 18.08 - 183.95 mg/L Ni(II) in metal plating industry wastewater using graphene oxide. Under constant stirring speed of 200 rpm, optimum pH=6 and optimum contact time was found to be 90 minutes. Temkin isotherm as a pseudo 2nd order kinetic isotherm was chosen as the appropriate model for adsorption kinetics. The optimum amount of graphene oxide as adsorbent was determined as 0.016 mg/L and accordingly the maximum adsorption capacity was 112.56 mg/g. Considering the literature comparisons; it was concluded that graphene oxide can be used as an improvable adsorbent, however, high efficiency cannot be obtained alone, but high efficiency can be achieved with graphene oxide if it is functionalized.
Project Number
PYO.MUH.1904.17.023
References
- Alves, H. ve Heubner, U. (2016). Aqueous Corrosion Of Nickel And İts Alloys. Reference Module in Materials Science and Materials Engineering. Elsevier Reference Colletion. pp. 1-35. Hollanda
- Ain, Q., Farooq, M.U., Jaless M.I., (2020). Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection.Journal of Water Process Engineering. 33.101044.
- Callender, E., (2003). Heavy Metals in the Environment – Historical Trends. Treatise on Geochemistry. 20: 59–89.
- Carolin, C. F., Kumar, P. S, Saravanan, A., Joshiba, G.J., Naushad, M., (2017). Efficient Techniques For The Removal Of Toxic Heavy Metals From Aquatic Environment: A Review. Journal of Environmental Chemical Engineering.5(3): 2782-2799.
- Chen, L., Li, N., Wen, Z., Zhang, L., Chen, Q., Chen, L., Si, P., Feng, J., Li, Y., Lou, J., C., (2018). Graphene Oxide Based Membrane İntercalated By Nanoparticles For High Performance Nanofiltration Application. Chemical Engineering Journal. 347. 12-18.
- Chen, R., Cheng, Y., Wang, P., Wang, Q., Wan, S., Huang, S., Su, R., Song, Y., Wang, Y., (2021). Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hypal/graphene ozide nanofibers.Science of The Total Environment. 756. 143871.
- Fu, F., Wang, Q., (2011). Removal Of Heavy Metal İons From Wastewaters: A Review. Journal of Environmental Management. 92(3). 407-418.
- Hao, J. Ji, L. Li, C. Hu, C. and Wu, K. (2018). Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. Journal of the Taiwan Institute of Chemical Engineers, 88, 137-145. doi:10.1016/j.jtice.2018.03.045
- Ko, C.H., Yu, F.C., Chang, F.C.,Yang, B.Y., Chen, W.H., Hwang, W.S., Tu, T.C., (2017). Bioethanol Production From Recovered Napier Grass With Heavy Metals. Journal of Envirenmental Management. 203(3). 1005-1010.
- Konicki, W., Aleksandrzak, M., Mijowska, E., (2017). Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chemical Engineering Research and Design, 123, 35-49. doi:10.1016/j.cherd.2017.03.036
- Kumar, A., Balouch, A., Pathan A.A.,, Jagirani, M.S., Mahar, A.M., Zubair, M,, Laghari, B., (2019), Remediation of Nickel ion from wastewater by appliying various techniques: a review, Acta Chemica Malaysia, Vol, 3(1).
- Li, Z., Chen Y., Du, Y., Wang, X.,Yang, P., Zheng, J., (2012). Triphenylamine-Functionalized Graphene Decorated With Pt Nanoparticles And İts Application İn Photocatalytic Hydrogen Production. International Journal of Hydrogen Energy. 37(6). 4880-4888.
Moghaddam, N.Y., Lorestani, B., Cheraghi, M., Jamehbozorgi, S., (2019). Adsorption of Cd and Ni from water by graphene oxide and graphene oxide-almond Shell composite.Water Environment Research.1-9.2019.
- Najafi, F., Moradi, O., Rajabi, M., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.K., (2015), Thermodynamic of adsorption of nickel ions form aqueous phase using graphene ozide and glycine functionalized graphene oxide. Journal of Molecular Liquids.208.106-113.
- Nethravathi, C., Nisha, T., Ravishankar, N., Shivakumara, C., Rajamathi, M, (2009). Graphene-Nanocrystalline Metal Sulphide Composites Produced By A One-Pot Reaction Starting From Graphite Oxide. Carbon. 47(8). 2054-2059.
- Pathania, D., Thakur, M., Mishra, A.K., (2017). Alginate-Zr(IV) Phosphate Nanocomposite İon Exchanger: Binary Separation Of Heavy Metals. Photocatalysis And Antimicrobial Activity. Journal of Alloys and Compounds. 701(15). 153-162.
- Pourbeyram, S., (2016). Effective Removal Of Heavy Metals From Aqueous Solutions By Graphene Oxide-Zirconium Phosphate (GO-Zr-P) Nanocomposite. Industrial Engineering Chemistry Research. 55(19).5608-5617.
- Proctor, A., Toro-Vazquez, J.F., (2009). The Freundlich Isotherm in Studying Adsorption in Oil Processing. Bleaching and Purifying Fats and Oils Theory and Practice. Elsevier. 10. pp. 209-219. Hollanda.
- Thy, L.T.M., Kiem, N.H., Tu, H.T., Phu, L.M., Oanh, D.T.Y., Nam, H.M., Phong, M.T., Hieu, D.T.Y., (2020). Fabricatiın of manganese ferrite/graphene oxide nanocomposites for removal of nickel ions, methylene blue form water. Chemical Physics. 533.110700.
- Tran, T.L., Tran, H.V., Le, T.D., Bach, G.L., Tran, L.D.. (2019). Studying Ni(II) Adsorption of Magnetite/Graphene Oxide/Chitosan Nanocomposite. Advances in Polymer Technology. Vol 2019. 8124351.
- SM., 2023. Standart Methods of the Examination of Water and Wastewater. AWWA.WEF.APHA. 24 Edition.
- Verma, A.K., Dash, R.R., Bhunia, P., (2012). A Review On Chemical Coagulation/Flocculation Technologies For Removal Of Colour From Textile Wastewaters. Journal of Environmental Management. 93(3). 154-168.
- Weber, J.H., Banerjee, M.K., (2019). Nickel and Nickel Alloys: An Overview. Reference Module in Materials Science and Materials Engineering. Elsevier Reference Colletion. pp. 1-35. Hollanda
- Widyarani, D., Hariyadi, H.R., Wulan, D.R., Cahyaningsih, S., (2017). Removal of nickel ion fom electroplating wastewater using double chamber elevtrodeposition cell (DCEC) reactor partitioned with water hyacinth (Eichhornia crassipes) leaves, IOP Conf. Series:Earth and Environmental Science 60(2017)012020. IOP Publishing.
Wu, Y., Luo, R, Wang, H., Zhang, L., Liu, P., Feng, L., (2014). Journal of Colloid and Interface Science. 436.90-98.
- Yari, M., Rajabi, M., Moradi, O., Yari, A., Asif, M., Agarwal S, Gupta VK. (2015). Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. Journal of Molecular Liquids. 209. 50-57.
- Yonezawa, T, (2012). Nickel Alloys:Properties and Characteristics. Comprehensive Nuclear Materials. 2. 233–266.