Research Article
BibTex RIS Cite

Hızlandırılmış Korozyon Yöntemiyle Paslandırılan Betonarme Çerçeve Sistemlerinin Moment-Taşıma Kapasitelerinin Deneysel ve Analitik İncelenmesi

Year 2024, Volume: 14 Issue: 2, 755 - 772, 01.06.2024
https://doi.org/10.21597/jist.1405089

Abstract

Türkiye’de son 25 yılda yaşanan yıkıcı depremlerin ardından yapılan teknik incelemeler, betonarme yapılarda meydana gelen hasarların ana sebeplerinden birinin de donatı korozyonu olduğunu vurgulamaktadır. Donatı korozyonunun betonarme elemanlarda meydana getirdiği bozulmalar, yapının performans seviyesini tanımlayan süneklik, rijitlik, aderans-donatı sıyrılması ilişkisi, taşıma gücü ve enerji yutma kapasitesi gibi parametrelerin azalmasına sebep olmaktadır. Bu bağlamda olası bir sismik hareketlilik yaşanmadan korozyona maruz kalmış betonarme yapıların belirtilen bu performans seviyelerinin tespit edilmesi can ve mal kayıplarının önüne geçilmesi açısından büyük öneme sahiptir. Betonarme yapılarda taşıyıcı eleman davranışını, kesit davranışı yansıtmaktadır. Kesit davranışının doğru bir şekilde tespit edilebilmesi için de Moment-Eğrilik ilişkisinin tanımlanması gerekmektedir. Gerçekleştirilen çalışma ile birlikte korozyona maruz bırakılmış betonarme çerçevelerin yapısal davranışları deneysel ve analitik olarak incelenmiştir. Bu kapsamda üretilen 5 adet betonarme çerçeve numunesinden 4 adedi hızlandırılmış korozyon yöntemiyle farklı oranlarda paslandırılmıştır. Korozyon sürecinin tamamlanmasının ardından, çalışmanın deneysel bölümünde tüm numuneler %20 eksenel ve tersinir-tekrarlanır yanal yük altında deneye tabi tutulmuştur. Analitik çalışmada, korozyon etkisiyle değişen malzeme-mekanik özellikleri dikkate alınarak gerçekleştirilen kesit analizleri sonucunda, hesap edilen moment değerlerinin deneysel olarak ölçülen moment değerleriyle yüksek oranda uyum gösterdiği tespit edilmiştir.

Project Number

FBA-2021-2483

References

  • ABYYHY., (1975). “Afet Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Bayındırlık ve İskân Bakanlığı, Ankara, Türkiye.
  • ABYYHY., (1998). “Afet Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Bayındırlık ve İskân Bakanlığı, Ankara, Türkiye.
  • Akiyama, M., Frangopol, D. M., Arai, M., & Koshimura, S. (2013). Reliability of bridges under tsunami hazards: Emphasis on the 2011 Tohoku-oki earthquake. Earthquake Spectra, 29(1), 295-314.
  • Standard, A. S. T. M. (2003). G1-03. Standard Practice for preparing, cleaning, and evaluating corrosion test specimens, Annual Book of ASTM Standards, 3, 17-25.
  • Binici, H. (2007). March 12 and June 6, 2005 Bingol–Karliova earthquakes and the damages caused by the material quality and low workmanship in the recent earthquakes. Engineering Failure Analysis, 14(1), 233-238.
  • Çağatay, İ. H. (2005). Experimental evaluation of buildings damaged in recent earthquakes in Turkey. Engineering Failure Analysis, 12(3), 440-452.
  • Caglar, N., Demir, A., Ozturk, H., & Akkaya, A. (2015). A simple formulation for effective flexural stiffness of circular reinforced concrete columns. Engineering Applications of Artificial Intelligence, 38, 79-87.
  • Cape, M., Residual service-life assessment of existing R/C structures, MS thesis, Chalmers University of Technology and Milan University of Technology, 1999.
  • Celik, A., Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2022). An experimental study on seismic performance levels of highly corroded reinforced concrete columns. Structural Concrete, 23(1), 32-50.
  • Cheng, X., Ji, X., Henry, R. S., & Xu, M. (2019). Coupled axial tension-flexure behavior of slender reinforced concrete walls. Engineering Structures, 188, 261-276.
  • Dok, G., Ozturk, H., & Demir, A. (2017). Determining moment-curvature relationship of reinforced concrete columns. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 1, 52-58.
  • Erdik, M., Yüzügüllü, Ö., Yilmaz, C., & Akkas, N. (1992). 13 March, 1992 (Ms= 6· 8) Erzincan earthquake: A preliminary reconnaissance report. Soil Dynamics and Earthquake Engineering, 11(5), 279-310.
  • Applied Technology Council, Mid-America Earthquake Center, Multidisciplinary Center for Earthquake Engineering Research (US), Pacific Earthquake Engineering Research Center, & National Earthquake Hazards Reduction Program (US). (2007). Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency.
  • Kaplan, H., Yilmaz, S., Binici, H., Yazar, E., & Çetinkaya, N. (2004). May 1, 2003 Turkey—Bingöl earthquake: damage in reinforced concrete structures. Engineering Failure Analysis, 11(3), 279-291.
  • Lockner, D., Naka, H., Tanaka, H., Ito, H., & Ikeda, R. (2000). Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In Proceedings of the international workshop on the Nojima fault core and borehole data analysis (Vol. 129, pp. 147-152).
  • Mondal, G., & Rai, D. C. (2008). Performance of harbour structures in Andaman Islands during 2004 Sumatra earthquake. Engineering Structures, 30(1), 174-182.
  • Sengel, H. S., & Dogan, M. (2013). Failure of buildings during sultandagi earthquake. Engineering Failure Analysis, 35, 1-15.
  • Sheikh, M. N., Tsang, H. H., McCarthy, T. J., Lam, N. T. K. (2010). Yield curvature for seismic design of circular reinforced concrete columns, Magazine of Concrete Research, 62(10), 741-748.
  • TBEC- 2018. Turkish building earthquake code specifications for design of buildings under seismic effects. Ministry of Disaster and Emergency Management Presidency, Ankara, Turkey.
  • Tezcan, S. S., & Ipek, M. (1996). A reconnaissance report: 1995 Dinar, Turkey, earthquake. Engineering structures, 18(12), 906-916.
  • TS 500, (2000). Requirements for design and construction of reinforced concrete structures, turkish standards institute, Ankara, Turkey.
  • Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J, 83(2), 219-231.
  • Wang, X. H., & Liu, X. L. (2008). Modeling the flexural carrying capacity of corroded RC beam. Journal of Shanghai Jiaotong University (Science), 13, 129-135.
  • Wastı, S. T., Sucuoğlu, H., & Utku, M. (2001). Buildings after the 1 October 1995. Journal of Earthquake Engineering, 5(2), 131-151.
  • XTRACT. v.3.0.8. (2007). Cross-sectional structural αnalysis of components. Imbsen Software System. 9912 Business Park Drive, Suite 130, Sacramento CA 95827.
  • Yalciner, H., & Kumbasaroglu, A. (2020). Experimental evaluation and modeling of corroded reinforced concrete columns. ACI Structural Journal, (4).
  • Yalciner, H., & Kumbasaroglu, A. (2022). Experimental study to predict bond-slip behavior of corroded reinforced concrete columns. ACI Structural Journal, 119(5).
  • Yalciner, H., Kumbasaroglu, A., & Karimi, A. (2019). Prediction of seismic performance levels of corroded reinforced concrete columns as a function of crack width. Advances in Civil Engineering Materials, 8(3), 376-397.
  • Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2019). Torsional behavior of reinforced concrete beams with corroded reinforcement. Structures, 20, 476-488.
  • Yalciner, H., Kumbasaroglu, A., El-Sayed, A. K., Balkıs, A. P., Dogru, E., Turan, A. I., & Bicer, K. (2020). Flexural strength of corroded reinforced concrete beams. ACI Structural Journal, 117(1).
  • Wu, Q., & Yuan, Y. S. (2008). Experimental study on the deterioration of mechanical properties of corroded steel bars. China civil engineering journal, 41(12), 42-47.
  • Yüksel, B., Foroughi, S. (2020). Analysis of bending moment-curvature and the damage limits of reinforced concrete circular columns. Avrupa Bilim ve Teknoloji Dergisi, (19), 891-903.
  • Zhang, M., Liu, R., Li, Y., & Zhao, G. (2018). Seismic performance of a corroded reinforce concrete frame structure using pushover method. Advances in Civil Engineering, 2018, 1-12.

Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method

Year 2024, Volume: 14 Issue: 2, 755 - 772, 01.06.2024
https://doi.org/10.21597/jist.1405089

Abstract

Technical investigations carried out after the devastating earthquakes in Turkey in the last 25 years show that one of the main causes of damage to reinforced concrete structures is reinforcement bar corrosion. The deterioration caused by reinforcement corrosion in reinforced concrete elements reduces the parameters that define the performance level of the structure, such as ductility, stiffness, bond-slip relationship, load carrying capacity, and energy absorption capacity. Therefore, determining the specified performance levels of reinforced concrete structures exposed to corrosion before any seismic activity occurs is of great importance in preventing loss of life and property. Cross-section behavior in reinforced concrete structures represents the load-bearing element behavior In order to accurately determine the section behavior, the Moment-Curvature relationship must be defined. In this study, the structural behavior of reinforced concrete frames exposed to corrosion was examined experimentally and analytically. For this purpose, 4 of the 5 reinforced concrete frame specimens constructed were corroded at different ratios using the accelerated corrosion method. After the corrosion process was completed, in the experimental part of the study, all specimens were tested under the effect of a 20% constant axial load and reversal-cyclic loading. In the analytical study, as a result of the cross-sectional analyzes carried out by taking into account the material-mechanical properties changing with the effect of corrosion, it was determined that the calculated moment values were in high predicted with the experimentally measured moment values.

Supporting Institution

Scientific Research Projects Commissions of Inonu University

Project Number

FBA-2021-2483

Thanks

This study was financed by the Scientific Research Projects Commissions of Inonu University under grant number FBA-2021-2483

References

  • ABYYHY., (1975). “Afet Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Bayındırlık ve İskân Bakanlığı, Ankara, Türkiye.
  • ABYYHY., (1998). “Afet Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik”. Bayındırlık ve İskân Bakanlığı, Ankara, Türkiye.
  • Akiyama, M., Frangopol, D. M., Arai, M., & Koshimura, S. (2013). Reliability of bridges under tsunami hazards: Emphasis on the 2011 Tohoku-oki earthquake. Earthquake Spectra, 29(1), 295-314.
  • Standard, A. S. T. M. (2003). G1-03. Standard Practice for preparing, cleaning, and evaluating corrosion test specimens, Annual Book of ASTM Standards, 3, 17-25.
  • Binici, H. (2007). March 12 and June 6, 2005 Bingol–Karliova earthquakes and the damages caused by the material quality and low workmanship in the recent earthquakes. Engineering Failure Analysis, 14(1), 233-238.
  • Çağatay, İ. H. (2005). Experimental evaluation of buildings damaged in recent earthquakes in Turkey. Engineering Failure Analysis, 12(3), 440-452.
  • Caglar, N., Demir, A., Ozturk, H., & Akkaya, A. (2015). A simple formulation for effective flexural stiffness of circular reinforced concrete columns. Engineering Applications of Artificial Intelligence, 38, 79-87.
  • Cape, M., Residual service-life assessment of existing R/C structures, MS thesis, Chalmers University of Technology and Milan University of Technology, 1999.
  • Celik, A., Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2022). An experimental study on seismic performance levels of highly corroded reinforced concrete columns. Structural Concrete, 23(1), 32-50.
  • Cheng, X., Ji, X., Henry, R. S., & Xu, M. (2019). Coupled axial tension-flexure behavior of slender reinforced concrete walls. Engineering Structures, 188, 261-276.
  • Dok, G., Ozturk, H., & Demir, A. (2017). Determining moment-curvature relationship of reinforced concrete columns. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics (EPSTEM), 1, 52-58.
  • Erdik, M., Yüzügüllü, Ö., Yilmaz, C., & Akkas, N. (1992). 13 March, 1992 (Ms= 6· 8) Erzincan earthquake: A preliminary reconnaissance report. Soil Dynamics and Earthquake Engineering, 11(5), 279-310.
  • Applied Technology Council, Mid-America Earthquake Center, Multidisciplinary Center for Earthquake Engineering Research (US), Pacific Earthquake Engineering Research Center, & National Earthquake Hazards Reduction Program (US). (2007). Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components. Federal Emergency Management Agency.
  • Kaplan, H., Yilmaz, S., Binici, H., Yazar, E., & Çetinkaya, N. (2004). May 1, 2003 Turkey—Bingöl earthquake: damage in reinforced concrete structures. Engineering Failure Analysis, 11(3), 279-291.
  • Lockner, D., Naka, H., Tanaka, H., Ito, H., & Ikeda, R. (2000). Permeability and strength of core samples from the Nojima fault of the 1995 Kobe earthquake. In Proceedings of the international workshop on the Nojima fault core and borehole data analysis (Vol. 129, pp. 147-152).
  • Mondal, G., & Rai, D. C. (2008). Performance of harbour structures in Andaman Islands during 2004 Sumatra earthquake. Engineering Structures, 30(1), 174-182.
  • Sengel, H. S., & Dogan, M. (2013). Failure of buildings during sultandagi earthquake. Engineering Failure Analysis, 35, 1-15.
  • Sheikh, M. N., Tsang, H. H., McCarthy, T. J., Lam, N. T. K. (2010). Yield curvature for seismic design of circular reinforced concrete columns, Magazine of Concrete Research, 62(10), 741-748.
  • TBEC- 2018. Turkish building earthquake code specifications for design of buildings under seismic effects. Ministry of Disaster and Emergency Management Presidency, Ankara, Turkey.
  • Tezcan, S. S., & Ipek, M. (1996). A reconnaissance report: 1995 Dinar, Turkey, earthquake. Engineering structures, 18(12), 906-916.
  • TS 500, (2000). Requirements for design and construction of reinforced concrete structures, turkish standards institute, Ankara, Turkey.
  • Vecchio, F. J., & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI J, 83(2), 219-231.
  • Wang, X. H., & Liu, X. L. (2008). Modeling the flexural carrying capacity of corroded RC beam. Journal of Shanghai Jiaotong University (Science), 13, 129-135.
  • Wastı, S. T., Sucuoğlu, H., & Utku, M. (2001). Buildings after the 1 October 1995. Journal of Earthquake Engineering, 5(2), 131-151.
  • XTRACT. v.3.0.8. (2007). Cross-sectional structural αnalysis of components. Imbsen Software System. 9912 Business Park Drive, Suite 130, Sacramento CA 95827.
  • Yalciner, H., & Kumbasaroglu, A. (2020). Experimental evaluation and modeling of corroded reinforced concrete columns. ACI Structural Journal, (4).
  • Yalciner, H., & Kumbasaroglu, A. (2022). Experimental study to predict bond-slip behavior of corroded reinforced concrete columns. ACI Structural Journal, 119(5).
  • Yalciner, H., Kumbasaroglu, A., & Karimi, A. (2019). Prediction of seismic performance levels of corroded reinforced concrete columns as a function of crack width. Advances in Civil Engineering Materials, 8(3), 376-397.
  • Yalciner, H., Kumbasaroglu, A., & Turan, A. İ. (2019). Torsional behavior of reinforced concrete beams with corroded reinforcement. Structures, 20, 476-488.
  • Yalciner, H., Kumbasaroglu, A., El-Sayed, A. K., Balkıs, A. P., Dogru, E., Turan, A. I., & Bicer, K. (2020). Flexural strength of corroded reinforced concrete beams. ACI Structural Journal, 117(1).
  • Wu, Q., & Yuan, Y. S. (2008). Experimental study on the deterioration of mechanical properties of corroded steel bars. China civil engineering journal, 41(12), 42-47.
  • Yüksel, B., Foroughi, S. (2020). Analysis of bending moment-curvature and the damage limits of reinforced concrete circular columns. Avrupa Bilim ve Teknoloji Dergisi, (19), 891-903.
  • Zhang, M., Liu, R., Li, Y., & Zhao, G. (2018). Seismic performance of a corroded reinforce concrete frame structure using pushover method. Advances in Civil Engineering, 2018, 1-12.
There are 33 citations in total.

Details

Primary Language English
Subjects Reinforced Concrete Buildings
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Ahmet İhsan Turan 0000-0003-4865-6490

Yaşar Ayaz 0000-0002-1089-0700

Hakan Yalçıner 0000-0002-7289-3384

Atila Kumbasaroğlu 0000-0002-6338-4553

Alper Çelik 0000-0003-3816-680X

Project Number FBA-2021-2483
Early Pub Date May 28, 2024
Publication Date June 1, 2024
Submission Date December 14, 2023
Acceptance Date February 1, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Turan, A. İ., Ayaz, Y., Yalçıner, H., Kumbasaroğlu, A., et al. (2024). Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method. Journal of the Institute of Science and Technology, 14(2), 755-772. https://doi.org/10.21597/jist.1405089
AMA Turan Aİ, Ayaz Y, Yalçıner H, Kumbasaroğlu A, Çelik A. Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method. J. Inst. Sci. and Tech. June 2024;14(2):755-772. doi:10.21597/jist.1405089
Chicago Turan, Ahmet İhsan, Yaşar Ayaz, Hakan Yalçıner, Atila Kumbasaroğlu, and Alper Çelik. “Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method”. Journal of the Institute of Science and Technology 14, no. 2 (June 2024): 755-72. https://doi.org/10.21597/jist.1405089.
EndNote Turan Aİ, Ayaz Y, Yalçıner H, Kumbasaroğlu A, Çelik A (June 1, 2024) Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method. Journal of the Institute of Science and Technology 14 2 755–772.
IEEE A. İ. Turan, Y. Ayaz, H. Yalçıner, A. Kumbasaroğlu, and A. Çelik, “Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method”, J. Inst. Sci. and Tech., vol. 14, no. 2, pp. 755–772, 2024, doi: 10.21597/jist.1405089.
ISNAD Turan, Ahmet İhsan et al. “Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method”. Journal of the Institute of Science and Technology 14/2 (June 2024), 755-772. https://doi.org/10.21597/jist.1405089.
JAMA Turan Aİ, Ayaz Y, Yalçıner H, Kumbasaroğlu A, Çelik A. Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method. J. Inst. Sci. and Tech. 2024;14:755–772.
MLA Turan, Ahmet İhsan et al. “Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method”. Journal of the Institute of Science and Technology, vol. 14, no. 2, 2024, pp. 755-72, doi:10.21597/jist.1405089.
Vancouver Turan Aİ, Ayaz Y, Yalçıner H, Kumbasaroğlu A, Çelik A. Experimental and Analytical Investigation of Moment-Carrying Capacities of Reinforced Concrete Frame Systems Corroded by Accelerated Corrosion Method. J. Inst. Sci. and Tech. 2024;14(2):755-72.