Review
BibTex RIS Cite

Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources

Year 2024, Volume: 14 Issue: 2, 848 - 864, 01.06.2024
https://doi.org/10.21597/jist.1442608

Abstract

Environmental issues shift energy production from conventional methods to new and more efficient alternatives. One of these alternatives is the use of organic Rankine cycles (ORC) in low-grade heat sources to generate both heat and power at small scales. Among different technologies available for this purpose, ORC-based systems seem to be the most suitable and promising option due to their simplicity and versatility. Thus, such systems have been investigated intensively. However, current studies often focus on only one aspect of these systems due to the massive research scale in this field. Therefore, this study aims to provide a fundamental and holistic overview to evaluate ORC-based low-heat sourced and small-scale applications from multiple perspectives. As a result, the basic operating principles and application areas of ORCs, selection and design criteria of their working fluids and all other system components, methods of improving their performance, and other thermodynamic cycles that can be ORC alternatives are examined in detail. The results of this study show that ORC applications can enable small-scale combined heat and power generation, while geothermal and solar energy sources have the potential to scale the size of such applications up to kW capacities. The results also showed that dry & isentropic fluids and vane & scroll expanders are the most suitable refrigerant and expander types, respectively, for small-scale ORC applications. Furthermore, the implications of all findings are critically discussed.

References

  • Babatunde, A., & Sunday, O. O. (2018). A review of working fluids for organic rankine cycle (ORC) applications. IOP Conference Series: Materials Science and Engineering, 413, 012019. https://doi.org/10.1088/1757-899x/413/1/012019
  • Bao, J., & Zhao, L. (2013b). A review of working fluid and expander selections for organic Rankine cycle. Renewable & Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040.
  • Benato, A., Cavazzini, G., Bari, S., Ardizzon, G. (2019) ‘ORC pump efficiency estimation and real behaviour under different working fluids’, Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Institute of Thermal Technology, pp. 2719–2730.
  • Bruno, J. C., López-Villada, J., Letelier, E., Romera, S., & Coronas, A. (2008b). Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Applied Thermal Engineering, 28(17–18), 2212–2226. https://doi.org/10.1016/j.applthermaleng.2007.12.022.
  • chanche, B., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renewable & Sustainable Energy Reviews, 15(8), 3963–3979. https://doi.org/10.1016/j.rser.2011.07.024.
  • Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews, 14(9), 3059–3067. https://doi.org/10.1016/j.rser.2010.07.006.
  • Chen, Y., Lundqvist, P., Johansson, A., & Platell, P. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering, 26(17–18), 2142–2147. https://doi.org/10.1016/j.applthermaleng.2006.04.009.
  • Cioccolanti, L., Tascioni, R., & Arteconi, A. (2017). Simulation analysis of an innovative micro-solar 2kWe Organic Rankine Cycle plant for residential applications. Energy Procedia, 142, 1629–1634. https://doi.org/10.1016/j.egypro.2017.12.541.
  • Demirkaya, G., Padilla, R. V., Fontalvo, A., Bula, A., & Goswami, D. Y. (2018). Experimental and theoretical analysis of the Goswami Cycle operating at low temperature heat sources. Journal of Energy Resources Technology-transactions of the Asme, 140(7). https://doi.org/10.1115/1.4039376.
  • DiPippo, R. (2007). Ideal thermal efficiency for geothermal binary plants. Geothermics, 36(3), 276–285. https://doi.org/10.1016/j.geothermics.2007.03.002.
  • Dumont, O., Parthoens, A., Dickes, R., & Lemort, V. (2018). Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system. Energy, 165, 1119–1127. https://doi.org/10.1016/j.energy.2018.06.182.
  • Freeman, J., Hellgardt, K., & Markides, C. N. (2017). Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK. Applied Energy, 186, 291–303. https://doi.org/10.1016/j.apenergy.2016.04.041.
  • Glavatskaya, Y., Podevin, P., Lemort, V., Shonda, O. F., & Descombes, G. (2012). Reciprocating expander for an exhaust heat recovery rankine cycle for a passenger car application. Energies, 5(6), 1751–1765. https://doi.org/10.3390/en5061751.
  • Guo, T., Wang, H., & Zhang, S. (2011). Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources. Energy, 36(5), 2639–2649. https://doi.org/10.1016/j.energy.2011.02.005.
  • He, Z., Zhang, Y., Su, D., Ma, H., Yu, X., Yan, Z., Ma, X., Deng, N., & Sheng, Y. (2017). Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions. Applied Thermal Engineering, 113, 937–951. https://doi.org/10.1016/j.applthermaleng.2016.11.006.
  • Herath, H., Wijewardane, M., Ranasinghe, C., & Jayasekera, J. (2020). Working fluid selection of Organic Rankine Cycles. Energy Reports, 6, 680–686. https://doi.org/10.1016/j.egyr.2020.11.150.
  • Hung, T., Wang, S., Kuo, C., Pei, B., & Tsai, K. (2010). A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy, 35(3), 1403–1411. https://doi.org/10.1016/j.energy.2009.11.025.
  • Imran, M., Usman, M., Park, B. S., & Lee, D. H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications. Renewable & Sustainable Energy Reviews, 57, 1090–1109. https://doi.org/10.1016/j.rser.2015.12.139.
  • Klimaszewski, P. et al. (2020) ‘Design and performance analysis of ORC centrifugal pumps’, Archives of Thermodynamics. Polska Akademia Nauk, 41(4), pp. 203–222. doi: 10.24425/ather.2020.135860.
  • Kolasinski, P. & Klonowicz, P. (2019) ‘Application of the multi-vane expanders in orc systems - A review on the experimental and modeling research activities’, Energies. MDPI AG, 12(15), p. 2975. doi: 10.3390/en12152975.
  • Kolasiński, P., Błasiak, P., & Rak, J. (2017). Experimental investigation on multi-vane expander operating conditions in domestic CHP ORC system. Energy Procedia, 129, 323–330. https://doi.org/10.1016/j.egypro.2017.09.201.
  • Lecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 47, 448–461. https://doi.org/10.1016/j.rser.2015.03.089.
  • Lemort, V., Quoilin, S., Cuevas, C., & Lebrun, J. (2009). Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Applied Thermal Engineering, 29(14–15), 3094–3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013.
  • Li, W., Feng, X., Yu, L., & Xu, J. (2011). Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle. Applied Thermal Engineering, 31(17–18), 4014–4023. https://doi.org/10.1016/j.applthermaleng.2011.08.003.
  • Marion, M., Voicu, I., & Tiffonnet, A. (2012). Study and optimization of a solar subcritical organic Rankine cycle. Renewable Energy, 48, 100–109. https://doi.org/10.1016/j.renene.2012.04.047.
  • Moradi, R., & Cioccolanti, L. (2024). Modelling approaches of micro and small-scale organic Rankine cycle systems: A critical review. Applied Thermal Engineering, 236, 121505. https://doi.org/10.1016/j.applthermaleng.2023.121505.
  • Pereira, J. S., Ribeiro, J., Mendes, R., Vaz, G. C., & André, J. (2018). ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges. Renewable & Sustainable Energy Reviews, 92, 728–743. https://doi.org/10.1016/j.rser.2018.04.039.
  • Peris, B., Navarro-Esbrí, J., Molés, F., Martí, J. P., & Mota-Babiloni, A. (2015). Experimental characterization of an Organic Rankine Cycle (ORC) for micro-scale CHP applications. Applied Thermal Engineering, 79, 1–8. https://doi.org/10.1016/j.applthermaleng.2015.01.020.
  • Pinto, C. R., & Mady, C. E. K. (2020). Comparing the thermodynamic performance of organic Rankine and Kalina cycles in solar energy systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11). https://doi.org/10.1007/s40430-020-02682-y.
  • Pourpasha, H., Mohammadfam, Y., Khani, L., Mohammadpourfard, M., & Heris, S. Z. (2020). Thermodynamic and thermoeconomic analyses of a new dual-loop organic Rankine – Generator absorber heat exchanger power and cooling cogeneration system. Energy Conversion and Management, 224, 113356. https://doi.org/10.1016/j.enconman.2020.113356.
  • Qiu, G. (2012). Selection of working fluids for micro-CHP systems with ORC. Renewable Energy, 48, 565–570. https://doi.org/10.1016/j.renene.2012.06.006.
  • Qiu, G., Liu, H., & Riffat, S. (2011). Expanders for micro-CHP systems with organic Rankine cycle. Applied Thermal Engineering, 31(16), 3301–3307. https://doi.org/10.1016/j.applthermaleng.2011.06.008.
  • Quoilin, S. (2011) Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications, PhD Thesis. University of Liège, Belgium.
  • Quoilin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V., & Spliethoff, H. (2011). Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy, 88(6), 2183–2190. https://doi.org/10.1016/j.apenergy.2011.01.015.
  • Quoilin, S., Lemort, V., & Lebrun, J. (2010). Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy, 87(4), 1260–1268. https://doi.org/10.1016/j.apenergy.2009.06.026.
  • Quoilin, S., Orosz, M., Hemond, H. F., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar Energy, 85(5), 955–966. https://doi.org/10.1016/j.solener.2011.02.010.
  • Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., & Lemort, V. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable & Sustainable Energy Reviews, 22, 168–186. https://doi.org/10.1016/j.rser.2013.01.028.
  • Saghlatoun, S., Zhuge, W., & Zhang, Y. (2014). Review of Expander Selection for Small-Scale Organic Rankine Cycle. American Society of Mechanical Engineers. https://doi.org/10.1115/fedsm2014-21904.
  • Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210–1221. https://doi.org/10.1016/j.energy.2006.07.001.
  • Shankar, R., & Srinivas, T. (2016). Options in Kalina cycle systems. Energy Procedia, 90, 260–266. https://doi.org/10.1016/j.egypro.2016.11.193.
  • Sharabi, M., Ambrosini, W., He, S., & Jackson, J. D. (2008). Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels. Annals of Nuclear Energy, 35(6), 993–1005. https://doi.org/10.1016/j.anucene.2007.11.006.
  • Smith, I. K., Stošić, N., Mujić, E., & Kovačević, A. (2011). Steam as the working fluid for power recovery from exhaust gases by means of screw expanders. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 225(2), 117–125. https://doi.org/10.1177/2041300910393429.
  • Tartière, T., & Astolfi, M. (2017b). A world overview of the organic rankine cycle market. Energy Procedia, 129, 2–9. https://doi.org/10.1016/j.egypro.2017.09.159.
  • Tchanche, B., Papadakis, G., Lambrinos, G., & Frangoudakis, A. (2009). Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering, 29(11–12), 2468–2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025.
  • Tchanche, B., Pétrissans, M., & Papadakis, G. (2014). Heat resources and organic Rankine cycle machines. Renewable & Sustainable Energy Reviews, 39, 1185–1199. https://doi.org/10.1016/j.rser.2014.07.139.
  • Tourkov, K., & Schaefer, L. (2015). Performance evaluation of a PVT/ORC (photovoltaic thermal/organic Rankine cycle) system with optimization of the ORC and evaluation of several PV (photovoltaic) materials. Energy, 82, 839–849. https://doi.org/10.1016/j.energy.2015.01.094.
  • Turchi, C., Ma, Z., Neises, T., & Wagner, M. J. (2013). Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering-transactions of the Asme, 135(4). https://doi.org/10.1115/1.4024030.
  • Udeh, G. T., Michailos, S., Ingham, D., Hughes, K. J., Ma, L., & Pourkashanian, M. (2021). A techno-enviro-economic assessment of a biomass fuelled micro-CCHP driven by a hybrid Stirling and ORC engine. Energy Conversion and Management, 227, 113601. https://doi.org/10.1016/j.enconman.2020.113601.
  • Vélez, F., Segovia, J. J., Martín, M. C., Antolı́N, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable & Sustainable Energy Reviews, 16(6), 4175–4189. https://doi.org/10.1016/j.rser.2012.03.022.
  • Vetter, C., Wiemer, H., & Kühn, D. (2013). Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Applied Thermal Engineering, 51(1–2), 871–879. https://doi.org/10.1016/j.applthermaleng.2012.10.042.
  • Vijayaraghavan, S., & Goswami, D. Y. (2006). A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage. Energy, 31(8–9), 1177–1196. https://doi.org/10.1016/j.energy.2005.04.014.
  • Vittorini, D., Antonini, A., Cipollone, R., Carapellucci, R., & Villante, C. (2018). Solar Thermal-Based ORC Power Plant for Micro Cogeneration – Performance analysis and Control Strategy. Energy Procedia, 148, 774–781. https://doi.org/10.1016/j.egypro.2018.08.133.
  • Wang, X., Feng, Y., Hung, T., He, Z., Lin, C., & Sultan, M. (2020). Investigating the system behaviors of a 10 kW organic rankine cycle (ORC) prototype using plunger pump and centrifugal pump. Energies, 13(5), 1141. https://doi.org/10.3390/en13051141.
  • Yamaguchi, H., Zhang, X., Fujima, K., Enomoto, M., & Sawada, N. (2006). Solar energy powered Rankine cycle using supercritical CO2. Applied Thermal Engineering, 26(17–18), 2345–2354. https://doi.org/10.1016/j.applthermaleng.2006.02.029.
  • Yari, M. (2009). Performance analysis of the different Organic Rankine Cycles (ORCs) using dry fluids. International Journal of Exergy, 6(3), 323. https://doi.org/10.1504/ijex.2009.025324.
  • Zamfirescu, C., & Dinçer, İ. (2008). Thermodynamic analysis of a novel ammonia–water trilateral Rankine cycle. Thermochimica Acta, 477(1–2), 7–15. https://doi.org/10.1016/j.tca.2008.08.002.
  • Zhang, S., Wang, H., & Guo, T. (2011). Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Applied Energy, 88(8), 2740–2754. https://doi.org/10.1016/j.apenergy.2011.02.034.
  • Ziviani, D., Desideri, A., Lemort, V., De Paepe, M., & Van Den Broek, M. (2015). Low-order models of a single-screw expander for organic Rankine cycle applications. IOP Conference Series: Materials Science and Engineering, 90, 012061. https://doi.org/10.1088/1757-899x/90/1/012061.
  • Żywica, G., Kaczmarczyk, T. Z., & Ihnatowicz, E. (2016). A review of expanders for power generation in small-scale organic Rankine cycle systems: Performance and operational aspects. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230(7), 669–684. https://doi.org/10.1177/0957650916661465.
Year 2024, Volume: 14 Issue: 2, 848 - 864, 01.06.2024
https://doi.org/10.21597/jist.1442608

Abstract

References

  • Babatunde, A., & Sunday, O. O. (2018). A review of working fluids for organic rankine cycle (ORC) applications. IOP Conference Series: Materials Science and Engineering, 413, 012019. https://doi.org/10.1088/1757-899x/413/1/012019
  • Bao, J., & Zhao, L. (2013b). A review of working fluid and expander selections for organic Rankine cycle. Renewable & Sustainable Energy Reviews, 24, 325–342. https://doi.org/10.1016/j.rser.2013.03.040.
  • Benato, A., Cavazzini, G., Bari, S., Ardizzon, G. (2019) ‘ORC pump efficiency estimation and real behaviour under different working fluids’, Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems. Institute of Thermal Technology, pp. 2719–2730.
  • Bruno, J. C., López-Villada, J., Letelier, E., Romera, S., & Coronas, A. (2008b). Modelling and optimisation of solar organic rankine cycle engines for reverse osmosis desalination. Applied Thermal Engineering, 28(17–18), 2212–2226. https://doi.org/10.1016/j.applthermaleng.2007.12.022.
  • chanche, B., Lambrinos, G., Frangoudakis, A., & Papadakis, G. (2011). Low-grade heat conversion into power using organic Rankine cycles – A review of various applications. Renewable & Sustainable Energy Reviews, 15(8), 3963–3979. https://doi.org/10.1016/j.rser.2011.07.024.
  • Chen, H., Goswami, D. Y., & Stefanakos, E. K. (2010). A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable & Sustainable Energy Reviews, 14(9), 3059–3067. https://doi.org/10.1016/j.rser.2010.07.006.
  • Chen, Y., Lundqvist, P., Johansson, A., & Platell, P. (2006). A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery. Applied Thermal Engineering, 26(17–18), 2142–2147. https://doi.org/10.1016/j.applthermaleng.2006.04.009.
  • Cioccolanti, L., Tascioni, R., & Arteconi, A. (2017). Simulation analysis of an innovative micro-solar 2kWe Organic Rankine Cycle plant for residential applications. Energy Procedia, 142, 1629–1634. https://doi.org/10.1016/j.egypro.2017.12.541.
  • Demirkaya, G., Padilla, R. V., Fontalvo, A., Bula, A., & Goswami, D. Y. (2018). Experimental and theoretical analysis of the Goswami Cycle operating at low temperature heat sources. Journal of Energy Resources Technology-transactions of the Asme, 140(7). https://doi.org/10.1115/1.4039376.
  • DiPippo, R. (2007). Ideal thermal efficiency for geothermal binary plants. Geothermics, 36(3), 276–285. https://doi.org/10.1016/j.geothermics.2007.03.002.
  • Dumont, O., Parthoens, A., Dickes, R., & Lemort, V. (2018). Experimental investigation and optimal performance assessment of four volumetric expanders (scroll, screw, piston and roots) tested in a small-scale organic Rankine cycle system. Energy, 165, 1119–1127. https://doi.org/10.1016/j.energy.2018.06.182.
  • Freeman, J., Hellgardt, K., & Markides, C. N. (2017). Working fluid selection and electrical performance optimisation of a domestic solar-ORC combined heat and power system for year-round operation in the UK. Applied Energy, 186, 291–303. https://doi.org/10.1016/j.apenergy.2016.04.041.
  • Glavatskaya, Y., Podevin, P., Lemort, V., Shonda, O. F., & Descombes, G. (2012). Reciprocating expander for an exhaust heat recovery rankine cycle for a passenger car application. Energies, 5(6), 1751–1765. https://doi.org/10.3390/en5061751.
  • Guo, T., Wang, H., & Zhang, S. (2011). Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources. Energy, 36(5), 2639–2649. https://doi.org/10.1016/j.energy.2011.02.005.
  • He, Z., Zhang, Y., Su, D., Ma, H., Yu, X., Yan, Z., Ma, X., Deng, N., & Sheng, Y. (2017). Thermodynamic analysis of a low-temperature organic Rankine cycle power plant operating at off-design conditions. Applied Thermal Engineering, 113, 937–951. https://doi.org/10.1016/j.applthermaleng.2016.11.006.
  • Herath, H., Wijewardane, M., Ranasinghe, C., & Jayasekera, J. (2020). Working fluid selection of Organic Rankine Cycles. Energy Reports, 6, 680–686. https://doi.org/10.1016/j.egyr.2020.11.150.
  • Hung, T., Wang, S., Kuo, C., Pei, B., & Tsai, K. (2010). A study of organic working fluids on system efficiency of an ORC using low-grade energy sources. Energy, 35(3), 1403–1411. https://doi.org/10.1016/j.energy.2009.11.025.
  • Imran, M., Usman, M., Park, B. S., & Lee, D. H. (2016). Volumetric expanders for low grade heat and waste heat recovery applications. Renewable & Sustainable Energy Reviews, 57, 1090–1109. https://doi.org/10.1016/j.rser.2015.12.139.
  • Klimaszewski, P. et al. (2020) ‘Design and performance analysis of ORC centrifugal pumps’, Archives of Thermodynamics. Polska Akademia Nauk, 41(4), pp. 203–222. doi: 10.24425/ather.2020.135860.
  • Kolasinski, P. & Klonowicz, P. (2019) ‘Application of the multi-vane expanders in orc systems - A review on the experimental and modeling research activities’, Energies. MDPI AG, 12(15), p. 2975. doi: 10.3390/en12152975.
  • Kolasiński, P., Błasiak, P., & Rak, J. (2017). Experimental investigation on multi-vane expander operating conditions in domestic CHP ORC system. Energy Procedia, 129, 323–330. https://doi.org/10.1016/j.egypro.2017.09.201.
  • Lecompte, S., Huisseune, H., Van Den Broek, M., Vanslambrouck, B., & De Paepe, M. (2015). Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renewable & Sustainable Energy Reviews, 47, 448–461. https://doi.org/10.1016/j.rser.2015.03.089.
  • Lemort, V., Quoilin, S., Cuevas, C., & Lebrun, J. (2009). Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Applied Thermal Engineering, 29(14–15), 3094–3102. https://doi.org/10.1016/j.applthermaleng.2009.04.013.
  • Li, W., Feng, X., Yu, L., & Xu, J. (2011). Effects of evaporating temperature and internal heat exchanger on organic Rankine cycle. Applied Thermal Engineering, 31(17–18), 4014–4023. https://doi.org/10.1016/j.applthermaleng.2011.08.003.
  • Marion, M., Voicu, I., & Tiffonnet, A. (2012). Study and optimization of a solar subcritical organic Rankine cycle. Renewable Energy, 48, 100–109. https://doi.org/10.1016/j.renene.2012.04.047.
  • Moradi, R., & Cioccolanti, L. (2024). Modelling approaches of micro and small-scale organic Rankine cycle systems: A critical review. Applied Thermal Engineering, 236, 121505. https://doi.org/10.1016/j.applthermaleng.2023.121505.
  • Pereira, J. S., Ribeiro, J., Mendes, R., Vaz, G. C., & André, J. (2018). ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges. Renewable & Sustainable Energy Reviews, 92, 728–743. https://doi.org/10.1016/j.rser.2018.04.039.
  • Peris, B., Navarro-Esbrí, J., Molés, F., Martí, J. P., & Mota-Babiloni, A. (2015). Experimental characterization of an Organic Rankine Cycle (ORC) for micro-scale CHP applications. Applied Thermal Engineering, 79, 1–8. https://doi.org/10.1016/j.applthermaleng.2015.01.020.
  • Pinto, C. R., & Mady, C. E. K. (2020). Comparing the thermodynamic performance of organic Rankine and Kalina cycles in solar energy systems. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(11). https://doi.org/10.1007/s40430-020-02682-y.
  • Pourpasha, H., Mohammadfam, Y., Khani, L., Mohammadpourfard, M., & Heris, S. Z. (2020). Thermodynamic and thermoeconomic analyses of a new dual-loop organic Rankine – Generator absorber heat exchanger power and cooling cogeneration system. Energy Conversion and Management, 224, 113356. https://doi.org/10.1016/j.enconman.2020.113356.
  • Qiu, G. (2012). Selection of working fluids for micro-CHP systems with ORC. Renewable Energy, 48, 565–570. https://doi.org/10.1016/j.renene.2012.06.006.
  • Qiu, G., Liu, H., & Riffat, S. (2011). Expanders for micro-CHP systems with organic Rankine cycle. Applied Thermal Engineering, 31(16), 3301–3307. https://doi.org/10.1016/j.applthermaleng.2011.06.008.
  • Quoilin, S. (2011) Sustainable energy conversion through the use of Organic Rankine Cycles for waste heat recovery and solar applications, PhD Thesis. University of Liège, Belgium.
  • Quoilin, S., Aumann, R., Grill, A., Schuster, A., Lemort, V., & Spliethoff, H. (2011). Dynamic modeling and optimal control strategy of waste heat recovery Organic Rankine Cycles. Applied Energy, 88(6), 2183–2190. https://doi.org/10.1016/j.apenergy.2011.01.015.
  • Quoilin, S., Lemort, V., & Lebrun, J. (2010). Experimental study and modeling of an Organic Rankine Cycle using scroll expander. Applied Energy, 87(4), 1260–1268. https://doi.org/10.1016/j.apenergy.2009.06.026.
  • Quoilin, S., Orosz, M., Hemond, H. F., & Lemort, V. (2011). Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation. Solar Energy, 85(5), 955–966. https://doi.org/10.1016/j.solener.2011.02.010.
  • Quoilin, S., Van Den Broek, M., Declaye, S., Dewallef, P., & Lemort, V. (2013). Techno-economic survey of Organic Rankine Cycle (ORC) systems. Renewable & Sustainable Energy Reviews, 22, 168–186. https://doi.org/10.1016/j.rser.2013.01.028.
  • Saghlatoun, S., Zhuge, W., & Zhang, Y. (2014). Review of Expander Selection for Small-Scale Organic Rankine Cycle. American Society of Mechanical Engineers. https://doi.org/10.1115/fedsm2014-21904.
  • Saleh, B., Koglbauer, G., Wendland, M., & Fischer, J. (2007). Working fluids for low-temperature organic Rankine cycles. Energy, 32(7), 1210–1221. https://doi.org/10.1016/j.energy.2006.07.001.
  • Shankar, R., & Srinivas, T. (2016). Options in Kalina cycle systems. Energy Procedia, 90, 260–266. https://doi.org/10.1016/j.egypro.2016.11.193.
  • Sharabi, M., Ambrosini, W., He, S., & Jackson, J. D. (2008). Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels. Annals of Nuclear Energy, 35(6), 993–1005. https://doi.org/10.1016/j.anucene.2007.11.006.
  • Smith, I. K., Stošić, N., Mujić, E., & Kovačević, A. (2011). Steam as the working fluid for power recovery from exhaust gases by means of screw expanders. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 225(2), 117–125. https://doi.org/10.1177/2041300910393429.
  • Tartière, T., & Astolfi, M. (2017b). A world overview of the organic rankine cycle market. Energy Procedia, 129, 2–9. https://doi.org/10.1016/j.egypro.2017.09.159.
  • Tchanche, B., Papadakis, G., Lambrinos, G., & Frangoudakis, A. (2009). Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering, 29(11–12), 2468–2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025.
  • Tchanche, B., Pétrissans, M., & Papadakis, G. (2014). Heat resources and organic Rankine cycle machines. Renewable & Sustainable Energy Reviews, 39, 1185–1199. https://doi.org/10.1016/j.rser.2014.07.139.
  • Tourkov, K., & Schaefer, L. (2015). Performance evaluation of a PVT/ORC (photovoltaic thermal/organic Rankine cycle) system with optimization of the ORC and evaluation of several PV (photovoltaic) materials. Energy, 82, 839–849. https://doi.org/10.1016/j.energy.2015.01.094.
  • Turchi, C., Ma, Z., Neises, T., & Wagner, M. J. (2013). Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering-transactions of the Asme, 135(4). https://doi.org/10.1115/1.4024030.
  • Udeh, G. T., Michailos, S., Ingham, D., Hughes, K. J., Ma, L., & Pourkashanian, M. (2021). A techno-enviro-economic assessment of a biomass fuelled micro-CCHP driven by a hybrid Stirling and ORC engine. Energy Conversion and Management, 227, 113601. https://doi.org/10.1016/j.enconman.2020.113601.
  • Vélez, F., Segovia, J. J., Martín, M. C., Antolı́N, G., Chejne, F., & Quijano, A. (2012). A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable & Sustainable Energy Reviews, 16(6), 4175–4189. https://doi.org/10.1016/j.rser.2012.03.022.
  • Vetter, C., Wiemer, H., & Kühn, D. (2013). Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Applied Thermal Engineering, 51(1–2), 871–879. https://doi.org/10.1016/j.applthermaleng.2012.10.042.
  • Vijayaraghavan, S., & Goswami, D. Y. (2006). A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage. Energy, 31(8–9), 1177–1196. https://doi.org/10.1016/j.energy.2005.04.014.
  • Vittorini, D., Antonini, A., Cipollone, R., Carapellucci, R., & Villante, C. (2018). Solar Thermal-Based ORC Power Plant for Micro Cogeneration – Performance analysis and Control Strategy. Energy Procedia, 148, 774–781. https://doi.org/10.1016/j.egypro.2018.08.133.
  • Wang, X., Feng, Y., Hung, T., He, Z., Lin, C., & Sultan, M. (2020). Investigating the system behaviors of a 10 kW organic rankine cycle (ORC) prototype using plunger pump and centrifugal pump. Energies, 13(5), 1141. https://doi.org/10.3390/en13051141.
  • Yamaguchi, H., Zhang, X., Fujima, K., Enomoto, M., & Sawada, N. (2006). Solar energy powered Rankine cycle using supercritical CO2. Applied Thermal Engineering, 26(17–18), 2345–2354. https://doi.org/10.1016/j.applthermaleng.2006.02.029.
  • Yari, M. (2009). Performance analysis of the different Organic Rankine Cycles (ORCs) using dry fluids. International Journal of Exergy, 6(3), 323. https://doi.org/10.1504/ijex.2009.025324.
  • Zamfirescu, C., & Dinçer, İ. (2008). Thermodynamic analysis of a novel ammonia–water trilateral Rankine cycle. Thermochimica Acta, 477(1–2), 7–15. https://doi.org/10.1016/j.tca.2008.08.002.
  • Zhang, S., Wang, H., & Guo, T. (2011). Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Applied Energy, 88(8), 2740–2754. https://doi.org/10.1016/j.apenergy.2011.02.034.
  • Ziviani, D., Desideri, A., Lemort, V., De Paepe, M., & Van Den Broek, M. (2015). Low-order models of a single-screw expander for organic Rankine cycle applications. IOP Conference Series: Materials Science and Engineering, 90, 012061. https://doi.org/10.1088/1757-899x/90/1/012061.
  • Żywica, G., Kaczmarczyk, T. Z., & Ihnatowicz, E. (2016). A review of expanders for power generation in small-scale organic Rankine cycle systems: Performance and operational aspects. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 230(7), 669–684. https://doi.org/10.1177/0957650916661465.
There are 59 citations in total.

Details

Primary Language English
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Celal Tiltay 0009-0004-0615-9191

Early Pub Date May 28, 2024
Publication Date June 1, 2024
Submission Date February 25, 2024
Acceptance Date March 20, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Tiltay, C. (2024). Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources. Journal of the Institute of Science and Technology, 14(2), 848-864. https://doi.org/10.21597/jist.1442608
AMA Tiltay C. Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources. J. Inst. Sci. and Tech. June 2024;14(2):848-864. doi:10.21597/jist.1442608
Chicago Tiltay, Celal. “Organic Rankine Cycle (ORC) Systems: A Fundamental Overview of Small-Scale Applications Fuelled by Low-Grade Heat Sources”. Journal of the Institute of Science and Technology 14, no. 2 (June 2024): 848-64. https://doi.org/10.21597/jist.1442608.
EndNote Tiltay C (June 1, 2024) Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources. Journal of the Institute of Science and Technology 14 2 848–864.
IEEE C. Tiltay, “Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources”, J. Inst. Sci. and Tech., vol. 14, no. 2, pp. 848–864, 2024, doi: 10.21597/jist.1442608.
ISNAD Tiltay, Celal. “Organic Rankine Cycle (ORC) Systems: A Fundamental Overview of Small-Scale Applications Fuelled by Low-Grade Heat Sources”. Journal of the Institute of Science and Technology 14/2 (June 2024), 848-864. https://doi.org/10.21597/jist.1442608.
JAMA Tiltay C. Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources. J. Inst. Sci. and Tech. 2024;14:848–864.
MLA Tiltay, Celal. “Organic Rankine Cycle (ORC) Systems: A Fundamental Overview of Small-Scale Applications Fuelled by Low-Grade Heat Sources”. Journal of the Institute of Science and Technology, vol. 14, no. 2, 2024, pp. 848-64, doi:10.21597/jist.1442608.
Vancouver Tiltay C. Organic Rankine Cycle (ORC) Systems: A fundamental Overview of Small-scale Applications Fuelled by Low-grade Heat Sources. J. Inst. Sci. and Tech. 2024;14(2):848-64.