Research Article
BibTex RIS Cite

Experimental Investigation of the Effects of Phthalocyanine on Gasoline Engine Performance and Emissions

Year 2024, Volume: 14 Issue: 3, 1253 - 1264, 01.09.2024
https://doi.org/10.21597/jist.1466611

Abstract

Global warming caused by greenhouse gas emissions from the combustion of fossil fuels and the realization of the finite nature of these fuels has led automotive engineers to explore alternative energy sources and vehicle designs. While the adoption of hybrid and electric vehicles (HEVs and EVs) is increasing, internal combustion engine (ICE) vehicles remain prevalent. To address the environmental concerns associated with ICEs, scientists continue research into entirely new vehicle designs such as hydrogen fuel cell electric vehicles (FCEVs) and battery electric vehicles (BEVs) to further reduce dependence on fossil fuels. They are also investigating the use of nanofuels and fuel additives as potential solutions to improve engine efficiency and minimize emissions from the engines used in today's vehicles. An experimental investigation was conducted to evaluate the performance and emissions of gasoline-phthalocyanine blends in an internal combustion gasoline engine. FS7.5 (92.5% gasoline and 7.5% phthalocyanine by volume), FS12.5 (87.5% gasoline and 12.5% phthalocyanine by volume), FS17.5 (82.5% gasoline and 17.5% phthalocyanine by volume) were prepared and then evaluated in the engine. According to the results of the experimental study, engine torque increased by 1.38% and engine power increased by 1.64% when using F17.5 blend fuel compared to gasoline fuel. On the other hand, FS7.5 blend fuel led to a 55.89% reduction in CO emissions. FS17.5 blend fuel resulted in a 2.27% decrease in exhaust gas temperature, while HC, CO2 and NOx emissions of all blend fuels increased. Specific fuel consumption decreased by 5.51%, 4.23% and 2.83% for FS7.5, FS12.5 and FS17.5 blend fuels, respectively.

References

  • Abu-Hamed, T., Karni, J., & Epstein, M. (2007). The use of boron for thermochemical storage and distribution of solar energy. Solar Energy, 81(1), 93-101.
  • Agarwal, D., Sinha, S., & Agarwal, A. K. (2006). Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renewable energy, 31(14), 2356-2369.
  • Ağbulut, Ü.(2021) Well to Wheel: A life-cycle based analysis of CI engine powered with diesel and various alcohol blends. International Journal of Automotive Science And Technology, 5(4), 289-298.
  • Ağırtaş, M. S., Cabir, B., Gonca, S., & Ozdemir, S. (2022). Antioxidant, antimicrobial, DNA cleavage, fluorescence properties and synthesis of 4-(3, 4, 5-trimethoxybenzyloxy) phenoxy) substituted zinc phthalocyanine. Polycyclic Aromatic Compounds, 42(8), 5029-5043.
  • Amin, A. N. (2009). Reducing Emissions from Private Cars: Incentive measures. UNEP-Green Economy Iniciative, Jakarta.
  • Ardebili, S. M. S., Solmaz, H., Ipci, D., Calam, A., & Mostafaei, M. (2020). A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 279, 118516.
  • Beach, D. B., Rondinone, A. J., Sumpter, B. G., Labinov, S. D., & Richards, R. K. (2007). Solid-state combustion of metallic nanoparticles: new possibilities for an alternative energy carrier.
  • Dahlen, M. A. (1939). The phthalocyanines a new class of synthetic pigments and dyes. Industrial & Engineering Chemistry, 31(7), 839-847.
  • De Simio, L., Iannaccone, S., Guido, C., Napolitano, P., & Maiello, A. (2024). Natural Gas/Hydrogen blends for heavy-duty spark ignition engines: Performance and emissions analysis. International Journal of Hydrogen Energy, 50, 743-757.
  • Gupta, P., Kurien, C., & Mittal, M. (2023). Biogas (a promising bioenergy source): A critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. International Journal of Hydrogen Energy, 48(21), 7747-7769.
  • Gürü, M., Karakaya, U., Altıparmak, D., & Alıcılar, A. (2002). Improvement of diesel fuel properties by using additives. Energy conversion and Management, 43(8), 1021-1025.
  • Hua, Y. (2024). Research progress of higher alcohols as alternative fuels for compression ignition engines. Fuel, 357, 129749.
  • Kadish, K., Smith, K. M., & Guilard, R. (Eds.). (2000). The Porphyrin Handbook, 3.
  • Kasper, M., Sattler, K., Siegmann, K., Matter, U., & Siegmann, H. C. (1999). The influence of fuel additives on the formation of carbon during combustion. Journal of Aerosol Science, 30(2), 217-225.
  • Khajone, V. B., & Bhagat, P. R. (2020). Brønsted acid functionalized phthalocyanine on perylene diimide framework knotted with ionic liquid: an efficient photo-catalyst for production of biofuel component octyl levulinate at ambient conditions under visible light irradiation. Fuel, 279, 118390.
  • Kocakulak, T., Babagiray, M., Nacak, Ç., Ardebili, S. M. S., Calam, A., & Solmaz, H. (2022). Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends. Renewable Energy, 182, 827-841.
  • Kouwenhoven, H. W., & de Kroes, B. (2001). Preparation of zeolite catalysts. In Studies in Surface Science and Catalysis,137, 673-706.
  • Kurien, C., & Mittal, M. (2023). Utilization of green ammonia as a hydrogen energy carrier for decarbonization in spark ignition engines. International Journal of Hydrogen Energy.
  • Lissianski, V. V., Maly, P. M., Zamansky, V. M., & Gardiner, W. C. (2001). Utilization of iron additives for advanced control of NO x emissions from stationary combustion sources. Industrial & engineering chemistry research, 40(15), 3287-3293.
  • Ma, Y., Wang, X. R., Li, T., Zhang, J., Gao, J., & Sun, Z. Y. (2021). Hydrogen and ethanol: production, storage, and transportation. International journal of hydrogen energy, 46(54), 27330-27348.
  • Mandilas, C., Karagiannakis, G., Konstandopoulos, A. G., Beatrice, C., Lazzaro, M., Di Blasio, G., ... & Gil, A. (2014). Study of basic oxidation and combustion characteristics of aluminum nanoparticles under enginelike conditions. Energy & fuels, 28(5), 3430-3441.
  • Markiewicz, M. (2024). Analysis of Performance Parameters of Engines with Spark Ignition with Variable Regulations of the Fuel-Injection System, Powered by E100 Fuel. Energies, 17(3), 601.
  • Rönn, K., Swarts, A., Kalaskar, V., Alger, T., Tripathi, R., Keskiväli, J., ... & Larmi, M. (2023). Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review. Progress in Energy and Combustion Science, 95, 101064.
  • Shkolnikov, E. I., Zhuk, A. Z., & Vlaskin, M. S. (2011). Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and sustainable energy reviews, 15(9), 4611-4623.
  • Solmaz, H. (2020). A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel, 273, 117775.
  • Solmaz, H., Calam, A., Yılmaz, E., Şahin, F., Ardebili, S. M. S., & Aksoy, F. (2023). Evaluation of MWCNT as fuel additive to diesel–biodiesel blend in a direct injection diesel engine. Biofuels, 14(2), 147-156.
  • Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., & Tamaura, Y. (1998). Solar-processed metals as clean energy carriers and water-splitters. International Journal of Hydrogen Energy, 23(9), 767-774.
  • Taymaz, İ., & Benli, M. (2009). Metanolün taşıtlarda enerji kaynağı olarak farklı kullanım yöntemlerinin incelenmesi. Engineer & the Machinery Magazine, (596).
  • Wen, D. (2010). Nanofuel as a potential secondary energy carrier. Energy & Environmental Science, 3(5), 591-600.
  • Yakın, A., Behcet, R., Solmaz, H., & Halis, S. (2022). Testing sodium borohydride as a fuel additive in internal combustion gasoline engine. Energy, 124300.

Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması

Year 2024, Volume: 14 Issue: 3, 1253 - 1264, 01.09.2024
https://doi.org/10.21597/jist.1466611

Abstract

Fosil yakıtların yanmasından kaynaklanan sera gazı emisyonlarının neden olduğu küresel ısınmanın ve bu yakıtların sınırlı doğasının farkına varılması, otomotiv mühendislerini alternatif enerji kaynaklarını ve araç tasarımlarını keşfetmeye yöneltmiştir. Hibrit ve elektrikli araçların (HEV'ler ve EV'ler) benimsenmesi artarken, içten yanmalı motorlu (İYM) araçlar yaygınlığını korumaktadır. İYM' lerle ilgili çevresel kaygıları gidermek için bilim insanları, fosil yakıtlara bağımlılığı daha da azaltmak için hidrojen yakıt hücreli elektrikli araçlar (FCEV'ler) ve bataryalı elektrikli araçlar (BEV'ler) gibi tamamen yeni araç tasarımlarına yönelik araştırmalara devam etmektedirler. Ayrıca günümüz araçlarında kullanılan motorların, motor verimliliğini artırmak ve emisyonları en aza indirmek için potansiyel çözümler olarak nano yakıtların ve yakıt katkı maddelerinin kullanımını araştırmaktadırlar. Benzin-ftalosiyanin karışımlarının içten yanmalı benzinli bir motordaki performans ve emisyonlarını değerlendirmek için deneysel bir araştırma yapılmıştır. FS7.5 (hacimsel olarak %92.5 benzin %7.5 ftalosiyanin), FS12.5 (hacimsel olarak %87.5 benzin %12.5 ftalosiyanin), FS17.5 (hacimsel olarak %82.5 benzin %17.5 ftalosiyanin) hazırlanmış ve daha sonra motorda değerlendirilmiştir. Deneysel çalışma sonuçlarına göre, benzin yakıtına kıyasla F17.5 karışım yakıtı kullanıldığında motor momenti %1.38 ve motor gücü %1.64 oranında artmıştır. Buna karşın, FS7.5 karışım yakıtı CO emisyonunda %55.89 oranında bir düşüşe yol açmıştır. FS17.5 karışım yakıtı ise egzoz gaz sıcaklığında %2.27 oranında bir azalma yaratırken, tüm karışım yakıtlarının HC, CO2 ve NOx emisyonlarında artış gözlenmiştir. Özgül yakıt tüketimleri ise FS7.5, FS12.5 ve FS17.5 karışım yakıtları için sırasıyla %5.51, %4.23 ve %2.83 oranlarında azalmıştır.

References

  • Abu-Hamed, T., Karni, J., & Epstein, M. (2007). The use of boron for thermochemical storage and distribution of solar energy. Solar Energy, 81(1), 93-101.
  • Agarwal, D., Sinha, S., & Agarwal, A. K. (2006). Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renewable energy, 31(14), 2356-2369.
  • Ağbulut, Ü.(2021) Well to Wheel: A life-cycle based analysis of CI engine powered with diesel and various alcohol blends. International Journal of Automotive Science And Technology, 5(4), 289-298.
  • Ağırtaş, M. S., Cabir, B., Gonca, S., & Ozdemir, S. (2022). Antioxidant, antimicrobial, DNA cleavage, fluorescence properties and synthesis of 4-(3, 4, 5-trimethoxybenzyloxy) phenoxy) substituted zinc phthalocyanine. Polycyclic Aromatic Compounds, 42(8), 5029-5043.
  • Amin, A. N. (2009). Reducing Emissions from Private Cars: Incentive measures. UNEP-Green Economy Iniciative, Jakarta.
  • Ardebili, S. M. S., Solmaz, H., Ipci, D., Calam, A., & Mostafaei, M. (2020). A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential. Fuel, 279, 118516.
  • Beach, D. B., Rondinone, A. J., Sumpter, B. G., Labinov, S. D., & Richards, R. K. (2007). Solid-state combustion of metallic nanoparticles: new possibilities for an alternative energy carrier.
  • Dahlen, M. A. (1939). The phthalocyanines a new class of synthetic pigments and dyes. Industrial & Engineering Chemistry, 31(7), 839-847.
  • De Simio, L., Iannaccone, S., Guido, C., Napolitano, P., & Maiello, A. (2024). Natural Gas/Hydrogen blends for heavy-duty spark ignition engines: Performance and emissions analysis. International Journal of Hydrogen Energy, 50, 743-757.
  • Gupta, P., Kurien, C., & Mittal, M. (2023). Biogas (a promising bioenergy source): A critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. International Journal of Hydrogen Energy, 48(21), 7747-7769.
  • Gürü, M., Karakaya, U., Altıparmak, D., & Alıcılar, A. (2002). Improvement of diesel fuel properties by using additives. Energy conversion and Management, 43(8), 1021-1025.
  • Hua, Y. (2024). Research progress of higher alcohols as alternative fuels for compression ignition engines. Fuel, 357, 129749.
  • Kadish, K., Smith, K. M., & Guilard, R. (Eds.). (2000). The Porphyrin Handbook, 3.
  • Kasper, M., Sattler, K., Siegmann, K., Matter, U., & Siegmann, H. C. (1999). The influence of fuel additives on the formation of carbon during combustion. Journal of Aerosol Science, 30(2), 217-225.
  • Khajone, V. B., & Bhagat, P. R. (2020). Brønsted acid functionalized phthalocyanine on perylene diimide framework knotted with ionic liquid: an efficient photo-catalyst for production of biofuel component octyl levulinate at ambient conditions under visible light irradiation. Fuel, 279, 118390.
  • Kocakulak, T., Babagiray, M., Nacak, Ç., Ardebili, S. M. S., Calam, A., & Solmaz, H. (2022). Multi objective optimization of HCCI combustion fuelled with fusel oil and n-heptane blends. Renewable Energy, 182, 827-841.
  • Kouwenhoven, H. W., & de Kroes, B. (2001). Preparation of zeolite catalysts. In Studies in Surface Science and Catalysis,137, 673-706.
  • Kurien, C., & Mittal, M. (2023). Utilization of green ammonia as a hydrogen energy carrier for decarbonization in spark ignition engines. International Journal of Hydrogen Energy.
  • Lissianski, V. V., Maly, P. M., Zamansky, V. M., & Gardiner, W. C. (2001). Utilization of iron additives for advanced control of NO x emissions from stationary combustion sources. Industrial & engineering chemistry research, 40(15), 3287-3293.
  • Ma, Y., Wang, X. R., Li, T., Zhang, J., Gao, J., & Sun, Z. Y. (2021). Hydrogen and ethanol: production, storage, and transportation. International journal of hydrogen energy, 46(54), 27330-27348.
  • Mandilas, C., Karagiannakis, G., Konstandopoulos, A. G., Beatrice, C., Lazzaro, M., Di Blasio, G., ... & Gil, A. (2014). Study of basic oxidation and combustion characteristics of aluminum nanoparticles under enginelike conditions. Energy & fuels, 28(5), 3430-3441.
  • Markiewicz, M. (2024). Analysis of Performance Parameters of Engines with Spark Ignition with Variable Regulations of the Fuel-Injection System, Powered by E100 Fuel. Energies, 17(3), 601.
  • Rönn, K., Swarts, A., Kalaskar, V., Alger, T., Tripathi, R., Keskiväli, J., ... & Larmi, M. (2023). Low-speed pre-ignition and super-knock in boosted spark-ignition engines: A review. Progress in Energy and Combustion Science, 95, 101064.
  • Shkolnikov, E. I., Zhuk, A. Z., & Vlaskin, M. S. (2011). Aluminum as energy carrier: Feasibility analysis and current technologies overview. Renewable and sustainable energy reviews, 15(9), 4611-4623.
  • Solmaz, H. (2020). A comparative study on the usage of fusel oil and reference fuels in an HCCI engine at different compression ratios. Fuel, 273, 117775.
  • Solmaz, H., Calam, A., Yılmaz, E., Şahin, F., Ardebili, S. M. S., & Aksoy, F. (2023). Evaluation of MWCNT as fuel additive to diesel–biodiesel blend in a direct injection diesel engine. Biofuels, 14(2), 147-156.
  • Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., & Tamaura, Y. (1998). Solar-processed metals as clean energy carriers and water-splitters. International Journal of Hydrogen Energy, 23(9), 767-774.
  • Taymaz, İ., & Benli, M. (2009). Metanolün taşıtlarda enerji kaynağı olarak farklı kullanım yöntemlerinin incelenmesi. Engineer & the Machinery Magazine, (596).
  • Wen, D. (2010). Nanofuel as a potential secondary energy carrier. Energy & Environmental Science, 3(5), 591-600.
  • Yakın, A., Behcet, R., Solmaz, H., & Halis, S. (2022). Testing sodium borohydride as a fuel additive in internal combustion gasoline engine. Energy, 124300.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering (Other)
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Ahmet Yakın 0000-0001-6716-2811

İrfan Uçkan 0000-0003-3679-5661

Beyza Cabir 0000-0003-4735-4511

Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date April 7, 2024
Acceptance Date July 2, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Yakın, A., Uçkan, İ., & Cabir, B. (2024). Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması. Journal of the Institute of Science and Technology, 14(3), 1253-1264. https://doi.org/10.21597/jist.1466611
AMA Yakın A, Uçkan İ, Cabir B. Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması. J. Inst. Sci. and Tech. September 2024;14(3):1253-1264. doi:10.21597/jist.1466611
Chicago Yakın, Ahmet, İrfan Uçkan, and Beyza Cabir. “Ftalosiyaninin Benzinli Motor Performansı Ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 1253-64. https://doi.org/10.21597/jist.1466611.
EndNote Yakın A, Uçkan İ, Cabir B (September 1, 2024) Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması. Journal of the Institute of Science and Technology 14 3 1253–1264.
IEEE A. Yakın, İ. Uçkan, and B. Cabir, “Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 1253–1264, 2024, doi: 10.21597/jist.1466611.
ISNAD Yakın, Ahmet et al. “Ftalosiyaninin Benzinli Motor Performansı Ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Journal of the Institute of Science and Technology 14/3 (September 2024), 1253-1264. https://doi.org/10.21597/jist.1466611.
JAMA Yakın A, Uçkan İ, Cabir B. Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması. J. Inst. Sci. and Tech. 2024;14:1253–1264.
MLA Yakın, Ahmet et al. “Ftalosiyaninin Benzinli Motor Performansı Ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 1253-64, doi:10.21597/jist.1466611.
Vancouver Yakın A, Uçkan İ, Cabir B. Ftalosiyaninin Benzinli Motor Performansı ve Emisyonlar Üzerine Etkilerinin Deneysel Olarak Araştırılması. J. Inst. Sci. and Tech. 2024;14(3):1253-64.