Research Article
BibTex RIS Cite

Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties

Year 2024, Volume: 14 Issue: 3, 1031 - 1049, 01.09.2024
https://doi.org/10.21597/jist.1489821

Abstract

In this research, physical and mechanical properties, as well as color changes and FT-IR analyzes of 13 different wheat varieties, which are intensively produced, were examined. For this purpose, Altay, Harmankaya, Çetinel, Yunus, Mufitbey, Soyer 02, Dumlupınar, Bezostaja, Sönmez, ES-26, Reis, Karaman2000, and Nacibey varieties were used. As a result of the research the Soyer-02 variety exhibited the largest seed width (3.42 mm) and thickness (2.96 mm), while the Müfitbey variety had the smallest width (2.72 mm) and thickness (2.36 mm). Dumlupınar showed the greatest seed length (7.82 mm), with Müfitbey having the shortest (6.07 mm). Surface area was greatest in Dumlupınar (53.35 mm²) and lowest in Müfitbey (36.03 mm²). Arithmetic and geometric mean diameters were largest in Dumlupınar (4.61 mm and 4.12 mm, respectively), with Müfitbey showing the smallest (3.72 mm and 3.54 mm). Sphericity ranged from 61.22% in Reis to 52.67% in Dumlupınar. The thousand-kernel weight varied significantly, with Reis recording the highest (46.36 g) and Altay the lowest (33.58 g). Fracture resistance was highest in Dumlupınar and Bezostaja (10.89 N to 11.3 N), with the lowest in Altay (5.89 N). Color analysis revealed L values ranging from 63.77 in Çetinel to 51.16 in Harmankaya, with all varieties showing positive 'a' values, indicating red tones, and 'b' values indicating yellow tones, with Soyer-02 having the highest (32.81) and Harmankaya the lowest (24.68). FT-IR analysis revealed broad O-H stretch vibrations (3270-3300 1/cm) in Müfitbey, Altay, Soyer, and Reis, suggesting high moisture or phenolic content. Amide I (1640-1650 1/cm) and Amide II (1540-1545 1/cm) bands in Bezostaja, Yunus, Dumlupınar, and Çetinel indicated high protein content. Aliphatic C-H stretch vibrations (2920-2925 1/cm and 2850-2854 1/cm) in ES-26 and Karaman 2000 suggested high lipid content, while carbohydrate-specific C-O and C-C stretch vibrations (1000-1240 1/cm) in Sönmez and Harmankaya suggested high starch content.

References

  • Adom, K. K., Sorrells, M. E., & Liu, R. H. (2003). Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 51(26), 7825-7834. doi:10.1021/jf030404l
  • Al-Dairi, M., & Pathare, P. B. (2024). Evaluation of physio-chemical characteristics of ‘Fard’ banana using computer vision system. Journal of Agriculture and Food Research, 15, 101057. doi:https://doi.org/10.1016/j.jafr.2024.101057
  • Al-Mahasneh, M. A., & Rababah, T. M. (2007). Effect of moisture content on some physical properties of green wheat. Journal of Food Engineering, 79(4), 1467-1473. doi:https://doi.org/10.1016/j.jfoodeng.2006.04.045
  • Altıkat, S. (2020). The modelling of rupture force of white kidney beans (Phaseolus vulgaris L.) using the multiple linear regression (MLP) and artificial neural networks (ANN). Ege Üniversitesi Ziraat Fakültesi Dergisi, 57(1), 129-136. doi:10.20289/zfdergi.554929
  • Altıkat, S., & Yasar, S. (2019). Differentiation in gravimetrical and frictional properties of Phaseolus vulgaris L. by a partial least square regression model. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi.
  • Arslan, F. N., Akin, G., Karuk Elmas, Ş. N., Üner, B., Yilmaz, I., Janssen, H.-G., & Kenar, A. (2020). FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. Journal of Consumer Protection and Food Safety, 15(3), 245-261. doi:10.1007/s00003-019-01267-9
  • Arzani, A., & Ashraf, M. (2017). Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477-488. doi:https://doi.org/10.1111/1541-4337.12262
  • Badaró, A. T., Hebling e Tavares, J. P., Blasco, J., Aleixos-Borrás, N., & Barbin, D. F. (2022). Near infrared techniques applied to analysis of wheat-based products: Recent advances and future trends. Food Control, 140, 109115. doi:https://doi.org/10.1016/j.foodcont.2022.109115
  • Batey, I. (2017). Chapter 20 - Maintaining Grain Quality During Storage and Transport. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 571-590): Woodhead Publishing.
  • Bigdeli, b., Valadan Zouj, M. J., & Maghsoudi, Y. (2016). Evaluation of Spectral Reflectance of Iranian Wheat and barley Varieties Canopies at different growth stages using vegetation. Journal of Geospatial Information Technology, 4(1), 61-82. doi:10.29252/jgit.4.1.61
  • Cano-Lara, M., & Rostro-Gonzalez, H. (2024). Tomato quality assessment and enhancement through Fuzzy Logic: A ripe perspective on precision agriculture. Postharvest Biology and Technology, 212, 112875. doi:https://doi.org/10.1016/j.postharvbio.2024.112875
  • Chen, N., Li, H. N., Wu, J., Li, Z., Li, L., Liu, G., & He, N. (2021). Advances in micro milling: From tool fabrication to process outcomes. International Journal of Machine Tools and Manufacture, 160, 103670. doi:https://doi.org/10.1016/j.ijmachtools.2020.103670
  • Chen, X., & Öpöz, T. T. (2016). Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Production & Manufacturing Research, 4(1), 190-208. doi:10.1080/21693277.2016.1255159
  • Cozzolino, D., Degner, S., & Eglinton, J. (2014). A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods. Foods, 3(4), 605-621.
  • De Girolamo, A., Lippolis, V., Nordkvist, E., & Visconti, A. (2009). Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Additives & Contaminants: Part A, 26(6), 907-917. doi:10.1080/02652030902788946
  • Delwiche, S. R., Graybosch, R. A., Nelson, L. A., & Hruschka, W. R. (2002). Environmental Effects on Developing Wheat as Sensed by Near-Infrared Reflectance of Mature Grains. Cereal Chemistry, 79(6), 885-891. doi:https://doi.org/10.1094/CCHEM.2002.79.6.885
  • do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice Germination and Its Impact on Technological and Nutritional Properties: A Review. Rice Science, 29(3), 201-215. doi:https://doi.org/10.1016/j.rsci.2022.01.009
  • Dong, X.-c., Qian, T.-f., Chu, J.-p., Zhang, X., Liu, Y.-j., Dai, X.-l., & He, M.-r. (2023). Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose. Journal of Integrative Agriculture, 22(5), 1351-1365. doi:https://doi.org/10.1016/j.jia.2022.08.024
  • El-Bahy, G. M. S. (2005). FTIR and Raman spectroscopic study of Fenugreek (Trigonella foenum graecum L.) seeds. Journal of Applied Spectroscopy, 72(1), 111-116. doi:10.1007/s10812-005-0040-6
  • El-Sheikha, M. A., El - Morsy, H. E., & Al- Rajhi, M. A. I. (2010). SOME PHYSICAL AND MECHANICAL PROPERTIES OF WHEAT GRAIN. Journal of Soil Sciences and Agricultural Engineering, 1(3), 299-309. doi:10.21608/jssae.2010.60494
  • Feng, J., Xu, B., Ma, D., Hao, Z., Jia, Y., Wang, C., & Wang, L. (2022). Metabolite identification in fresh wheat grains of different colors and the influence of heat processing on metabolites via targeted and non-targeted metabolomics. Food Research International, 160, 111728. doi:https://doi.org/10.1016/j.foodres.2022.111728
  • Fetouhi, A., Benatallah, L., Nawrocka, A., Szymańska-Chargot, M., Bouasla, A., Tomczyńska-Mleko, M., . . . Sujak, A. (2019). Investigation of viscoelastic behaviour of rice-field bean gluten-free dough using the biophysical characterization of proteins and starch: a FT-IR study. Journal of Food Science and Technology, 56(3), 1316-1327. doi:10.1007/s13197-019-03602-2
  • Fevzioglu, M., Ozturk, O. K., Hamaker, B. R., & Campanella, O. H. (2020). Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. International Journal of Biological Macromolecules, 164, 2753-2760. doi:https://doi.org/10.1016/j.ijbiomac.2020.07.299
  • Figueroa, M., Hammond-Kosack, K. E., & Solomon, P. S. (2018). A review of wheat diseases-a field perspective. Mol Plant Pathol, 19(6), 1523-1536. doi:10.1111/mpp.12618
  • Golea, C. M., Codină, G. G., & Oroian, M. (2023). Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control, 143, 109318. doi:https://doi.org/10.1016/j.foodcont.2022.109318
  • Haghshenas, A., Emam, Y., & Jafarizadeh, S. (2022). Wheat grain width: a clue for re-exploring visual indicators of grain weight. Plant Methods, 18(1), 58. doi:10.1186/s13007-022-00891-1
  • Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C., & Abecassis, J. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science, 46(3), 327-347. doi:https://doi.org/10.1016/j.jcs.2007.09.008
  • Horigane, A., Yamada, S., Hikichi, Y., Kiribuchi-Otobe, C., Fujita, M., Yamaguchi, T., & Horiguchi, M. (2003). Evaluation of Color Characteristics of Cross-Sectioned Wheat Kernels. Food Science and Technology Research, 9(4), 327-331. doi:10.3136/fstr.9.327
  • Hou, Z. B., & Komanduri, R. (2003). On the mechanics of the grinding process – Part I. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 43(15), 1579-1593. doi:https://doi.org/10.1016/S0890-6955(03)00186-X
  • Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front Nutr, 10, 1053196. doi:10.3389/fnut.2023.1053196
  • Khan, T., Jamil, M., Ali, A., Rasheed, S., Irshad, A., Maqsood, M. F., . . . Elshikh, M. S. (2024). Exploring water-absorbing capacity: a digital image analysis of seeds from 120 wheat varieties. Scientific Reports, 14(1), 6757. doi:10.1038/s41598-024-57193-w
  • Kumar, A., Antil, S. K., Rani, V., Antil, P., Jangra, D., Kumar, R., & Pruncu, C. I. (2020). Characterization on Physical, Mechanical, and Morphological Properties of Indian Wheat Crop. Sustainability, 12(5), 2067.
  • Kumar, D., & Kalita, P. (2017). Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods, 6(1). doi:10.3390/foods6010008
  • Li, L., Zhang, Y., Cui, X., Said, Z., Sharma, S., Liu, M., . . . Li, C. (2023). Mechanical behavior and modeling of grinding force: A comparative analysis. Journal of Manufacturing Processes, 102, 921-954. doi:https://doi.org/10.1016/j.jmapro.2023.07.074
  • Li, W., Yang, R., Xia, Y., Shao, X., Wang, Y., & Zhang, W. (2024). Image recognition technology provides insights into relationships between anthocyanin degradation and color variation during jet drying of black carrot. Food Chemistry, 139460. doi:https://doi.org/10.1016/j.foodchem.2024.139460
  • Liu, Y., Delwiche, S. R., & Dong, Y. (2009). Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley. Food Additives & Contaminants: Part A, 26(10), 1396-1401. doi:10.1080/02652030903013310
  • Makarenko, S. P., Trufanov, V. A., & Putilina, T. E. (2002). Infrared Spectroscopic Study of the Secondary Structure of Wheat, Rye, and Barley Prolamins. Russian Journal of Plant Physiology, 49(3), 326-331. doi:10.1023/A:1015584700841
  • Markowski, M., Żuk-Gołaszewska, K., & Kwiatkowski, D. (2013). Influence of variety on selected physical and mechanical properties of wheat. Industrial Crops and Products, 47, 113-117. doi:https://doi.org/10.1016/j.indcrop.2013.02.024
  • Mills, E. N. C., Parker, M. L., Wellner, N., Toole, G., Feeney, K., & Shewry, P. R. (2005). Chemical imaging: the distribution of ions and molecules in developing and mature wheat grain. Journal of Cereal Science, 41(2), 193-201. doi:https://doi.org/10.1016/j.jcs.2004.09.003
  • Miskelly, D., & Suter, D. (2017). Chapter 22 - Assessing and Managing Wheat-Flour Quality Before, During and After Milling. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 607-634): Woodhead Publishing.
  • Nashat, S., & Abdullah, M. Z. (2016). Chapter 21 - Quality Evaluation of Bakery Products. In D.-W. Sun (Ed.), Computer Vision Technology for Food Quality Evaluation (Second Edition) (pp. 525-589). San Diego: Academic Press.
  • Nuttall, J. G., O'Leary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., & Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field Crops Research, 202, 136-145. doi:https://doi.org/10.1016/j.fcr.2015.12.011
  • Osman, S. O. M., Saad, A. S. I., Tadano, S., Takeda, Y., Konaka, T., Yamasaki, Y., . . . Akashi, K. (2022). Chemical Fingerprinting of Heat Stress Responses in the Leaves of Common Wheat by Fourier Transform Infrared Spectroscopy. International Journal of Molecular Sciences, 23(5), 2842.
  • Oyeyinka, S. A., & Bassey, I.-A. V. Composition, Functionality, and Baking Quality of Flour from Four Brands of Wheat Flour. Journal of Culinary Science & Technology, 1-21. doi:10.1080/15428052.2023.2191874
  • Pandiselvam, R., Sruthi, N. U., Kumar, A., Kothakota, A., Thirumdas, R., Ramesh, S. V., & Cozzolino, D. (2023). Recent Applications of Vibrational Spectroscopic Techniques in the Grain Industry. Food Reviews International, 39(1), 209-239. doi:10.1080/87559129.2021.1904253
  • Pourmohammadi, K., & Abedi, E. (2021). Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Science & Nutrition, 9(7), 3988-4006. doi:https://doi.org/10.1002/fsn3.2344
  • Qaim, M. (2020). Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Applied Economic Perspectives and Policy, 42(2), 129-150. doi:https://doi.org/10.1002/aepp.13044
  • Radini, I. A., Hasan, N., Malik, M. A., & Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183, 154-163. doi:https://doi.org/10.1016/j.jphotobiol.2018.04.014
  • Safdar, L. B., Dugina, K., Saeidan, A., Yoshicawa, G. V., Caporaso, N., Gapare, B., . . . Fisk, I. D. (2023). Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging. Food and Energy Security, 12(5), e498. doi:https://doi.org/10.1002/fes3.498
  • Schweiggert, R. (2024). Chapter 4 - Physical and biological fundamentals of color. In R. Schweiggert (Ed.), Handbook on Natural Pigments in Food and Beverages (Second Edition) (pp. 75-126): Woodhead Publishing.
  • Sharma, S., Kapoor, P., Kaur, S., Kumari, A., Sharma, N., Kumar, A., . . . Garg, M. (2021). Changing Nutrition Scenario: Colored Wheat – A New Perspective. In S. H. Wani, A. Mohan, & G. P. Singh (Eds.), Physiological, Molecular, and Genetic Perspectives of Wheat Improvement (pp. 71-88). Cham: Springer International Publishing.
  • Shen, F., Zhao, T., Jiang, X., Liu, X., Fang, Y., Liu, Q., Liu, X. (2019). On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy. LWT, 109, 216-224. doi:https://doi.org/10.1016/j.lwt.2019.04.019
  • Singh, S. K., Matsagar, B. M., & Dhepe, P. L. (2024). Lignocellulosic biomass analysis: acidic lignin recovery, characterisation, and depolymerisation. Biomass Conversion and Biorefinery, 14(4), 5239-5249. doi:10.1007/s13399-022-02705-9
  • Stawoska, I., Wesełucha-Birczyńska, A., Skoczowski, A., Dziurka, M., & Waga, J. (2021). FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules, 26(17), 5388.
  • Strelec, I., Mrša, V., Simović, D. Š., Petrović, J., Zahorec, J., & Budžaki, S. (2024). Biochemical and Quality Parameter Changes of Wheat Grains during One-Year Storage under Different Storage Conditions. Sustainability, 16(3), 1155.
  • Thelwall, M. (2016). The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach. Journal of Informetrics, 10(1), 110-123. doi:https://doi.org/10.1016/j.joi.2015.12.001
  • Unal, H., Isık, E., Izli, N., & Tekin, Y. (2008). Geometric and Mechanical Properties of Mung Bean (Vigna Radiata L.) Grain: Effect of Moisture. International Journal of Food Properties, 11(3), 585-599. doi:10.1080/10942910701573024
  • Uthayakumaran, S., & Wrigley, C. (2017). Chapter 5 - Wheat: Grain-Quality Characteristics and Management of Quality Requirements. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 91-134): Woodhead Publishing.
  • Wu, J., Carver, B. F., & Goad, C. L. (1999). Kernel Color Variability of Hard White and Hard Red Winter Wheat. Crop Science, 39(3), cropsci1999.0011183X003900020003x. doi:https://doi.org/10.2135/cropsci1999.0011183X003900020003xa
  • Wysocka, K., Cacak-Pietrzak, G., Feledyn-Szewczyk, B., & Studnicki, M. (2024). The Baking Quality of Wheat Flour (Triticum aestivum L.) Obtained from Wheat Grains Cultivated in Various Farming Systems (Organic vs. Integrated vs. Conventional). Applied Sciences, 14(5), 1886.
  • Xu, X., Geng, Q., Gao, F., Xiong, D., Qiao, H., & Ma, X. (2023). Segmentation and counting of wheat spike grains based on deep learning and textural feature. Plant Methods, 19(1), 77. doi:10.1186/s13007-023-01062-6
  • Yousefian, M., Shahbazi, F., & Hamidian, K. (2021). Crop Yield and Physicochemical Properties of Wheat Grains as Affected by Tillage Systems. Sustainability, 13(9), 4781.
  • Yu, T., Jing, S., Jiaxin, L., Aixia, W., Mengzi, N., Xue, G., . . . Litao, T. (2024). Effects of Milling Methods on Rice Flour Properties and Rice Product Quality: A Review. Rice Science, 31(1), 33-46. doi:https://doi.org/10.1016/j.rsci.2023.11.002
  • Zahra, N., Wahid, A., Hafeez, M. B., Ullah, A., Siddique, K. H. M., & Farooq, M. (2021). Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany, 188, 104517. doi:https://doi.org/10.1016/j.envexpbot.2021.104517
  • Zapotoczny, P., & Majewska, K. (2010). A Comparative Analysis of Colour Measurements of the Seed Coat and Endosperm of Wheat Kernels Performed by Various Techniques. International Journal of Food Properties, 13(1), 75-89. doi:10.1080/10942910802180174
  • Ziegler, V., Paraginski, R. T., & Ferreira, C. D. (2021). Grain storage systems and effects of moisture, temperature and time on grain quality - A review. Journal of Stored Products Research, 91, 101770. doi:https://doi.org/10.1016/j.jspr.2021.101770

Farklı Buğday Çeşitlerinde Fiziko-mekanik, Renk ve FT-IR Özelliklerinin Kapsamlı Analizi

Year 2024, Volume: 14 Issue: 3, 1031 - 1049, 01.09.2024
https://doi.org/10.21597/jist.1489821

Abstract

Bu araştırmada, yoğun olarak üretilen 13 farklı buğday çeşidinin fiziksel ve mekanik özellikleri, renk değişimleri ve FT-IR analizleri incelenmiştir. Bu amaçla; Altay, Harmankaya, Çetinel, Yunus, Müfitbey, Soyer 02, Dumlupınar, Bezostaja, Sönmez, ES-26, Reis, Karaman 2000 ve Nacibey çeşitleri kullanılmıştır. Araştırma sonucunda, tohum genişliği ve kalınlığı en büyük olan çeşit Soyer-02 (3.42 mm ve 2.96 mm), en küçük olan ise Müfitbey (2.72 mm ve 2.36 mm) olarak belirlenmiştir. Tohum uzunluğu bakımından Dumlupınar en uzun (7.82 mm), Müfitbey ise en kısa (6.07 mm) olarak gözlemlenmiştir. Yüzey alanı en büyük Dumlupınar'da (53.35 mm²) ve en küçük Müfitbey'de (36.03 mm²) bulunmuştur. Aritmetik ve geometrik ortalama çaplar açısından en büyük değerler Dumlupınar'da (4.61 mm ve 4.12 mm), en küçük değerler ise Müfitbey'de (3.72 mm ve 3.54 mm) ölçülmüştür. Küresellik, Reis'te %61.22 ile en yüksek seviyede, Dumlupınar'da %52.67 ile en düşük seviyede bulunmuştur. Bin-tane ağırlığı açısından en ağır çeşit Reis (46.36 g), en hafif çeşit ise Altay (33.58 g) olarak kaydedilmiştir. Kırılma direnci bakımından en yüksek değerler Dumlupınar ve Bezostaja'da (10.89 N ile 11.3 N), en düşük değer ise Altay'da (5.89 N) bulunmuştur. Renk analizinde, L değerleri en yüksek Çetinel'de (63.77), en düşük ise Harmankaya'da (51.16) olarak belirlenmiştir. Tüm çeşitlerde pozitif 'a' değerleri kırmızı tonlarını, 'b' değerleri ise sarı tonlarını göstermiştir; en yüksek 'b' değeri Soyer-02'de (32.81) ve en düşük Harmankaya'da (24.68) bulunmuştur. FT-IR analizinde, Müfitbey, Altay, Soyer ve Reis'te geniş O-H gerilme titreşimlerinin (3270-3300 1/cm) yüksek nem veya fenolik içeriği gösterdiği düşünülmüştür. Bezostaja, Yunus, Dumlupınar ve Çetinel'de Amide I (1640-1650 1/cm) ve Amide II (1540-1545 1/cm) bantları yüksek protein içeriğine işaret etmiştir. ES-26 ve Karaman 2000'de alifatik C-H gerilme titreşimleri (2920-2925 1/cm ve 2850-2854 1/cm) yüksek lipid içeriğini gösterirken, Sönmez ve Harmankaya'da karbonhidrat spesifik C-O ve C-C gerilme titreşimleri (1000-1240 1/cm) yüksek nişasta içeriğini düşündürmüştür.

References

  • Adom, K. K., Sorrells, M. E., & Liu, R. H. (2003). Phytochemical profiles and antioxidant activity of wheat varieties. J Agric Food Chem, 51(26), 7825-7834. doi:10.1021/jf030404l
  • Al-Dairi, M., & Pathare, P. B. (2024). Evaluation of physio-chemical characteristics of ‘Fard’ banana using computer vision system. Journal of Agriculture and Food Research, 15, 101057. doi:https://doi.org/10.1016/j.jafr.2024.101057
  • Al-Mahasneh, M. A., & Rababah, T. M. (2007). Effect of moisture content on some physical properties of green wheat. Journal of Food Engineering, 79(4), 1467-1473. doi:https://doi.org/10.1016/j.jfoodeng.2006.04.045
  • Altıkat, S. (2020). The modelling of rupture force of white kidney beans (Phaseolus vulgaris L.) using the multiple linear regression (MLP) and artificial neural networks (ANN). Ege Üniversitesi Ziraat Fakültesi Dergisi, 57(1), 129-136. doi:10.20289/zfdergi.554929
  • Altıkat, S., & Yasar, S. (2019). Differentiation in gravimetrical and frictional properties of Phaseolus vulgaris L. by a partial least square regression model. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi.
  • Arslan, F. N., Akin, G., Karuk Elmas, Ş. N., Üner, B., Yilmaz, I., Janssen, H.-G., & Kenar, A. (2020). FT-IR spectroscopy with chemometrics for rapid detection of wheat flour adulteration with barley flour. Journal of Consumer Protection and Food Safety, 15(3), 245-261. doi:10.1007/s00003-019-01267-9
  • Arzani, A., & Ashraf, M. (2017). Cultivated Ancient Wheats (Triticum spp.): A Potential Source of Health-Beneficial Food Products. Comprehensive Reviews in Food Science and Food Safety, 16(3), 477-488. doi:https://doi.org/10.1111/1541-4337.12262
  • Badaró, A. T., Hebling e Tavares, J. P., Blasco, J., Aleixos-Borrás, N., & Barbin, D. F. (2022). Near infrared techniques applied to analysis of wheat-based products: Recent advances and future trends. Food Control, 140, 109115. doi:https://doi.org/10.1016/j.foodcont.2022.109115
  • Batey, I. (2017). Chapter 20 - Maintaining Grain Quality During Storage and Transport. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 571-590): Woodhead Publishing.
  • Bigdeli, b., Valadan Zouj, M. J., & Maghsoudi, Y. (2016). Evaluation of Spectral Reflectance of Iranian Wheat and barley Varieties Canopies at different growth stages using vegetation. Journal of Geospatial Information Technology, 4(1), 61-82. doi:10.29252/jgit.4.1.61
  • Cano-Lara, M., & Rostro-Gonzalez, H. (2024). Tomato quality assessment and enhancement through Fuzzy Logic: A ripe perspective on precision agriculture. Postharvest Biology and Technology, 212, 112875. doi:https://doi.org/10.1016/j.postharvbio.2024.112875
  • Chen, N., Li, H. N., Wu, J., Li, Z., Li, L., Liu, G., & He, N. (2021). Advances in micro milling: From tool fabrication to process outcomes. International Journal of Machine Tools and Manufacture, 160, 103670. doi:https://doi.org/10.1016/j.ijmachtools.2020.103670
  • Chen, X., & Öpöz, T. T. (2016). Effect of different parameters on grinding efficiency and its monitoring by acoustic emission. Production & Manufacturing Research, 4(1), 190-208. doi:10.1080/21693277.2016.1255159
  • Cozzolino, D., Degner, S., & Eglinton, J. (2014). A Review on the Role of Vibrational Spectroscopy as An Analytical Method to Measure Starch Biochemical and Biophysical Properties in Cereals and Starchy Foods. Foods, 3(4), 605-621.
  • De Girolamo, A., Lippolis, V., Nordkvist, E., & Visconti, A. (2009). Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. Food Additives & Contaminants: Part A, 26(6), 907-917. doi:10.1080/02652030902788946
  • Delwiche, S. R., Graybosch, R. A., Nelson, L. A., & Hruschka, W. R. (2002). Environmental Effects on Developing Wheat as Sensed by Near-Infrared Reflectance of Mature Grains. Cereal Chemistry, 79(6), 885-891. doi:https://doi.org/10.1094/CCHEM.2002.79.6.885
  • do Nascimento, L. Á., Abhilasha, A., Singh, J., Elias, M. C., & Colussi, R. (2022). Rice Germination and Its Impact on Technological and Nutritional Properties: A Review. Rice Science, 29(3), 201-215. doi:https://doi.org/10.1016/j.rsci.2022.01.009
  • Dong, X.-c., Qian, T.-f., Chu, J.-p., Zhang, X., Liu, Y.-j., Dai, X.-l., & He, M.-r. (2023). Late sowing enhances lodging resistance of wheat plants by improving the biosynthesis and accumulation of lignin and cellulose. Journal of Integrative Agriculture, 22(5), 1351-1365. doi:https://doi.org/10.1016/j.jia.2022.08.024
  • El-Bahy, G. M. S. (2005). FTIR and Raman spectroscopic study of Fenugreek (Trigonella foenum graecum L.) seeds. Journal of Applied Spectroscopy, 72(1), 111-116. doi:10.1007/s10812-005-0040-6
  • El-Sheikha, M. A., El - Morsy, H. E., & Al- Rajhi, M. A. I. (2010). SOME PHYSICAL AND MECHANICAL PROPERTIES OF WHEAT GRAIN. Journal of Soil Sciences and Agricultural Engineering, 1(3), 299-309. doi:10.21608/jssae.2010.60494
  • Feng, J., Xu, B., Ma, D., Hao, Z., Jia, Y., Wang, C., & Wang, L. (2022). Metabolite identification in fresh wheat grains of different colors and the influence of heat processing on metabolites via targeted and non-targeted metabolomics. Food Research International, 160, 111728. doi:https://doi.org/10.1016/j.foodres.2022.111728
  • Fetouhi, A., Benatallah, L., Nawrocka, A., Szymańska-Chargot, M., Bouasla, A., Tomczyńska-Mleko, M., . . . Sujak, A. (2019). Investigation of viscoelastic behaviour of rice-field bean gluten-free dough using the biophysical characterization of proteins and starch: a FT-IR study. Journal of Food Science and Technology, 56(3), 1316-1327. doi:10.1007/s13197-019-03602-2
  • Fevzioglu, M., Ozturk, O. K., Hamaker, B. R., & Campanella, O. H. (2020). Quantitative approach to study secondary structure of proteins by FT-IR spectroscopy, using a model wheat gluten system. International Journal of Biological Macromolecules, 164, 2753-2760. doi:https://doi.org/10.1016/j.ijbiomac.2020.07.299
  • Figueroa, M., Hammond-Kosack, K. E., & Solomon, P. S. (2018). A review of wheat diseases-a field perspective. Mol Plant Pathol, 19(6), 1523-1536. doi:10.1111/mpp.12618
  • Golea, C. M., Codină, G. G., & Oroian, M. (2023). Prediction of wheat flours composition using fourier transform infrared spectrometry (FT-IR). Food Control, 143, 109318. doi:https://doi.org/10.1016/j.foodcont.2022.109318
  • Haghshenas, A., Emam, Y., & Jafarizadeh, S. (2022). Wheat grain width: a clue for re-exploring visual indicators of grain weight. Plant Methods, 18(1), 58. doi:10.1186/s13007-022-00891-1
  • Hemery, Y., Rouau, X., Lullien-Pellerin, V., Barron, C., & Abecassis, J. (2007). Dry processes to develop wheat fractions and products with enhanced nutritional quality. Journal of Cereal Science, 46(3), 327-347. doi:https://doi.org/10.1016/j.jcs.2007.09.008
  • Horigane, A., Yamada, S., Hikichi, Y., Kiribuchi-Otobe, C., Fujita, M., Yamaguchi, T., & Horiguchi, M. (2003). Evaluation of Color Characteristics of Cross-Sectioned Wheat Kernels. Food Science and Technology Research, 9(4), 327-331. doi:10.3136/fstr.9.327
  • Hou, Z. B., & Komanduri, R. (2003). On the mechanics of the grinding process – Part I. Stochastic nature of the grinding process. International Journal of Machine Tools and Manufacture, 43(15), 1579-1593. doi:https://doi.org/10.1016/S0890-6955(03)00186-X
  • Khalid, A., Hameed, A., & Tahir, M. F. (2023). Wheat quality: A review on chemical composition, nutritional attributes, grain anatomy, types, classification, and function of seed storage proteins in bread making quality. Front Nutr, 10, 1053196. doi:10.3389/fnut.2023.1053196
  • Khan, T., Jamil, M., Ali, A., Rasheed, S., Irshad, A., Maqsood, M. F., . . . Elshikh, M. S. (2024). Exploring water-absorbing capacity: a digital image analysis of seeds from 120 wheat varieties. Scientific Reports, 14(1), 6757. doi:10.1038/s41598-024-57193-w
  • Kumar, A., Antil, S. K., Rani, V., Antil, P., Jangra, D., Kumar, R., & Pruncu, C. I. (2020). Characterization on Physical, Mechanical, and Morphological Properties of Indian Wheat Crop. Sustainability, 12(5), 2067.
  • Kumar, D., & Kalita, P. (2017). Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods, 6(1). doi:10.3390/foods6010008
  • Li, L., Zhang, Y., Cui, X., Said, Z., Sharma, S., Liu, M., . . . Li, C. (2023). Mechanical behavior and modeling of grinding force: A comparative analysis. Journal of Manufacturing Processes, 102, 921-954. doi:https://doi.org/10.1016/j.jmapro.2023.07.074
  • Li, W., Yang, R., Xia, Y., Shao, X., Wang, Y., & Zhang, W. (2024). Image recognition technology provides insights into relationships between anthocyanin degradation and color variation during jet drying of black carrot. Food Chemistry, 139460. doi:https://doi.org/10.1016/j.foodchem.2024.139460
  • Liu, Y., Delwiche, S. R., & Dong, Y. (2009). Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley. Food Additives & Contaminants: Part A, 26(10), 1396-1401. doi:10.1080/02652030903013310
  • Makarenko, S. P., Trufanov, V. A., & Putilina, T. E. (2002). Infrared Spectroscopic Study of the Secondary Structure of Wheat, Rye, and Barley Prolamins. Russian Journal of Plant Physiology, 49(3), 326-331. doi:10.1023/A:1015584700841
  • Markowski, M., Żuk-Gołaszewska, K., & Kwiatkowski, D. (2013). Influence of variety on selected physical and mechanical properties of wheat. Industrial Crops and Products, 47, 113-117. doi:https://doi.org/10.1016/j.indcrop.2013.02.024
  • Mills, E. N. C., Parker, M. L., Wellner, N., Toole, G., Feeney, K., & Shewry, P. R. (2005). Chemical imaging: the distribution of ions and molecules in developing and mature wheat grain. Journal of Cereal Science, 41(2), 193-201. doi:https://doi.org/10.1016/j.jcs.2004.09.003
  • Miskelly, D., & Suter, D. (2017). Chapter 22 - Assessing and Managing Wheat-Flour Quality Before, During and After Milling. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 607-634): Woodhead Publishing.
  • Nashat, S., & Abdullah, M. Z. (2016). Chapter 21 - Quality Evaluation of Bakery Products. In D.-W. Sun (Ed.), Computer Vision Technology for Food Quality Evaluation (Second Edition) (pp. 525-589). San Diego: Academic Press.
  • Nuttall, J. G., O'Leary, G. J., Panozzo, J. F., Walker, C. K., Barlow, K. M., & Fitzgerald, G. J. (2017). Models of grain quality in wheat—A review. Field Crops Research, 202, 136-145. doi:https://doi.org/10.1016/j.fcr.2015.12.011
  • Osman, S. O. M., Saad, A. S. I., Tadano, S., Takeda, Y., Konaka, T., Yamasaki, Y., . . . Akashi, K. (2022). Chemical Fingerprinting of Heat Stress Responses in the Leaves of Common Wheat by Fourier Transform Infrared Spectroscopy. International Journal of Molecular Sciences, 23(5), 2842.
  • Oyeyinka, S. A., & Bassey, I.-A. V. Composition, Functionality, and Baking Quality of Flour from Four Brands of Wheat Flour. Journal of Culinary Science & Technology, 1-21. doi:10.1080/15428052.2023.2191874
  • Pandiselvam, R., Sruthi, N. U., Kumar, A., Kothakota, A., Thirumdas, R., Ramesh, S. V., & Cozzolino, D. (2023). Recent Applications of Vibrational Spectroscopic Techniques in the Grain Industry. Food Reviews International, 39(1), 209-239. doi:10.1080/87559129.2021.1904253
  • Pourmohammadi, K., & Abedi, E. (2021). Hydrolytic enzymes and their directly and indirectly effects on gluten and dough properties: An extensive review. Food Science & Nutrition, 9(7), 3988-4006. doi:https://doi.org/10.1002/fsn3.2344
  • Qaim, M. (2020). Role of New Plant Breeding Technologies for Food Security and Sustainable Agricultural Development. Applied Economic Perspectives and Policy, 42(2), 129-150. doi:https://doi.org/10.1002/aepp.13044
  • Radini, I. A., Hasan, N., Malik, M. A., & Khan, Z. (2018). Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. Journal of Photochemistry and Photobiology B: Biology, 183, 154-163. doi:https://doi.org/10.1016/j.jphotobiol.2018.04.014
  • Safdar, L. B., Dugina, K., Saeidan, A., Yoshicawa, G. V., Caporaso, N., Gapare, B., . . . Fisk, I. D. (2023). Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging. Food and Energy Security, 12(5), e498. doi:https://doi.org/10.1002/fes3.498
  • Schweiggert, R. (2024). Chapter 4 - Physical and biological fundamentals of color. In R. Schweiggert (Ed.), Handbook on Natural Pigments in Food and Beverages (Second Edition) (pp. 75-126): Woodhead Publishing.
  • Sharma, S., Kapoor, P., Kaur, S., Kumari, A., Sharma, N., Kumar, A., . . . Garg, M. (2021). Changing Nutrition Scenario: Colored Wheat – A New Perspective. In S. H. Wani, A. Mohan, & G. P. Singh (Eds.), Physiological, Molecular, and Genetic Perspectives of Wheat Improvement (pp. 71-88). Cham: Springer International Publishing.
  • Shen, F., Zhao, T., Jiang, X., Liu, X., Fang, Y., Liu, Q., Liu, X. (2019). On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy. LWT, 109, 216-224. doi:https://doi.org/10.1016/j.lwt.2019.04.019
  • Singh, S. K., Matsagar, B. M., & Dhepe, P. L. (2024). Lignocellulosic biomass analysis: acidic lignin recovery, characterisation, and depolymerisation. Biomass Conversion and Biorefinery, 14(4), 5239-5249. doi:10.1007/s13399-022-02705-9
  • Stawoska, I., Wesełucha-Birczyńska, A., Skoczowski, A., Dziurka, M., & Waga, J. (2021). FT-Raman Spectroscopy as a Tool to Study the Secondary Structures of Wheat Gliadin Proteins. Molecules, 26(17), 5388.
  • Strelec, I., Mrša, V., Simović, D. Š., Petrović, J., Zahorec, J., & Budžaki, S. (2024). Biochemical and Quality Parameter Changes of Wheat Grains during One-Year Storage under Different Storage Conditions. Sustainability, 16(3), 1155.
  • Thelwall, M. (2016). The precision of the arithmetic mean, geometric mean and percentiles for citation data: An experimental simulation modelling approach. Journal of Informetrics, 10(1), 110-123. doi:https://doi.org/10.1016/j.joi.2015.12.001
  • Unal, H., Isık, E., Izli, N., & Tekin, Y. (2008). Geometric and Mechanical Properties of Mung Bean (Vigna Radiata L.) Grain: Effect of Moisture. International Journal of Food Properties, 11(3), 585-599. doi:10.1080/10942910701573024
  • Uthayakumaran, S., & Wrigley, C. (2017). Chapter 5 - Wheat: Grain-Quality Characteristics and Management of Quality Requirements. In C. Wrigley, I. Batey, & D. Miskelly (Eds.), Cereal Grains (Second Edition) (pp. 91-134): Woodhead Publishing.
  • Wu, J., Carver, B. F., & Goad, C. L. (1999). Kernel Color Variability of Hard White and Hard Red Winter Wheat. Crop Science, 39(3), cropsci1999.0011183X003900020003x. doi:https://doi.org/10.2135/cropsci1999.0011183X003900020003xa
  • Wysocka, K., Cacak-Pietrzak, G., Feledyn-Szewczyk, B., & Studnicki, M. (2024). The Baking Quality of Wheat Flour (Triticum aestivum L.) Obtained from Wheat Grains Cultivated in Various Farming Systems (Organic vs. Integrated vs. Conventional). Applied Sciences, 14(5), 1886.
  • Xu, X., Geng, Q., Gao, F., Xiong, D., Qiao, H., & Ma, X. (2023). Segmentation and counting of wheat spike grains based on deep learning and textural feature. Plant Methods, 19(1), 77. doi:10.1186/s13007-023-01062-6
  • Yousefian, M., Shahbazi, F., & Hamidian, K. (2021). Crop Yield and Physicochemical Properties of Wheat Grains as Affected by Tillage Systems. Sustainability, 13(9), 4781.
  • Yu, T., Jing, S., Jiaxin, L., Aixia, W., Mengzi, N., Xue, G., . . . Litao, T. (2024). Effects of Milling Methods on Rice Flour Properties and Rice Product Quality: A Review. Rice Science, 31(1), 33-46. doi:https://doi.org/10.1016/j.rsci.2023.11.002
  • Zahra, N., Wahid, A., Hafeez, M. B., Ullah, A., Siddique, K. H. M., & Farooq, M. (2021). Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany, 188, 104517. doi:https://doi.org/10.1016/j.envexpbot.2021.104517
  • Zapotoczny, P., & Majewska, K. (2010). A Comparative Analysis of Colour Measurements of the Seed Coat and Endosperm of Wheat Kernels Performed by Various Techniques. International Journal of Food Properties, 13(1), 75-89. doi:10.1080/10942910802180174
  • Ziegler, V., Paraginski, R. T., & Ferreira, C. D. (2021). Grain storage systems and effects of moisture, temperature and time on grain quality - A review. Journal of Stored Products Research, 91, 101770. doi:https://doi.org/10.1016/j.jspr.2021.101770
There are 66 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Biyosistem Mühendisliği / Biosystem Engineering
Authors

Alperay Altıkat 0000-0002-0087-5814

Mehmet Hakkı Alma 0000-0001-6323-7230

Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date May 25, 2024
Acceptance Date July 29, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Altıkat, A., & Alma, M. H. (2024). Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties. Journal of the Institute of Science and Technology, 14(3), 1031-1049. https://doi.org/10.21597/jist.1489821
AMA Altıkat A, Alma MH. Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties. J. Inst. Sci. and Tech. September 2024;14(3):1031-1049. doi:10.21597/jist.1489821
Chicago Altıkat, Alperay, and Mehmet Hakkı Alma. “Comprehensive Analysis of Physico-Mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 1031-49. https://doi.org/10.21597/jist.1489821.
EndNote Altıkat A, Alma MH (September 1, 2024) Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties. Journal of the Institute of Science and Technology 14 3 1031–1049.
IEEE A. Altıkat and M. H. Alma, “Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 1031–1049, 2024, doi: 10.21597/jist.1489821.
ISNAD Altıkat, Alperay - Alma, Mehmet Hakkı. “Comprehensive Analysis of Physico-Mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties”. Journal of the Institute of Science and Technology 14/3 (September 2024), 1031-1049. https://doi.org/10.21597/jist.1489821.
JAMA Altıkat A, Alma MH. Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties. J. Inst. Sci. and Tech. 2024;14:1031–1049.
MLA Altıkat, Alperay and Mehmet Hakkı Alma. “Comprehensive Analysis of Physico-Mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 1031-49, doi:10.21597/jist.1489821.
Vancouver Altıkat A, Alma MH. Comprehensive Analysis of Physico-mechanical, Color, and FT-IR Properties in Diverse Wheat Varieties. J. Inst. Sci. and Tech. 2024;14(3):1031-49.