Research Article
BibTex RIS Cite

Fosfor ve Molibden Uygulamalarının Fasulye (Phaseolus vulgaris) Saman ve Tanesinin Makro ve Mikro Besin Element İçeriklerine Etkisi

Year 2024, Volume: 14 Issue: 3, 1342 - 1352, 01.09.2024
https://doi.org/10.21597/jist.1498773

Abstract

Bu çalışmanın amacı, fosfor (P) ve molibden (Mo) uygulamasının fasulyede makro ve mikro besin biyofortifikasyonuna etkisini incelemektir. Çalışma Phaseolus vulgaris'te fosfor ve molibdenin makro ve mikro besin alımı ve biyofortifikasyonu üzerine bireysel ve interaktif etkisine ışık tutmaktadır. Üç fosfor ve molibden seviyesi kullanılan çalışma tesadüf blokları deneme desenine göre dört tekerrürlü olarak yürütülmüştür. Fosfor ve molibden uygulaması hem sap hem de tohumda azot birikimini artırmıştır. Artan fosfor dozlarına bağlı olarak samanda ve tanede azot içeriği kontrole göre sırasıyla %42.3 ve %7.4 oranında artmıştır. Ayrıca, fosfor ilavesi sapta mangan içeriğini artırırken, molibden sapta manganı artırmıştır. Ek olarak, 4 g Mo kg-tohum-1 uygulaması tohumdaki magnezyum konsantrasyonunu kontrole göre %28.2 oranında artırmış, ancak deneme alanının toprak bileşiminde bu besinlerin yeterli seviyelerde bulunması nedeniyle bitki materyallerinde fosfor, potasyum, bakır, demir ve çinko içeriğinde bir artış gözlenmemiştir. Çalışma sonuçlarına göre, samanda ve tanede sırasıyla azot %3.15-7.05 ve %17.5-19.2, fosfor 586-990 ppm ve 1049-1355 ppm, potasyum 695-2690 ppm ve 1021-1727 ppm, kalsiyum 5839-11162 ppm ve 559-1303 ppm, magnezyum 690-1474 ppm ve 348-1036 ppm, manganez 25.3-38.3 ppm ve 8.29-9.29 ppm, bakır 8.6-16.9 ppm ve 11.3-19.9 ppm, demir 469-927 ppm ve 70.2-80.3 ppm, çinko 6.5-10.8 ppm ve 17.9-23.3 ppm aralığında değişmiştir. Sonuç olarak, fasulye yetiştirilen alanlarda, özellikle asidik topraklarda, fosfor gübrelemesiyle beraber molibden takviyesinin de gerekli olduğu belirlenmiştir.

References

  • Arun, M., Hebbar, S. S., Bhanuprakas, K. and Senthivel, T. (2017). Seed priming improves irrigation water use efficiency, yield and yield components of summer cowpea under limited water conditions. Legume Research-An International Journal, 40(5), 864-871. https://doi.org/10.18805/LR-3785.
  • Ahmad, Z., Tariq, R. M. S., Ramzan, M., Bukhari, M. A., Raza, A., Iqbal, M. A., Meena, R. S., Islam, M. S., Sytar, O., Godswill, N. N., Wasaya, A., Singh, K., Hossain, A., Raza, M. A., Hasanuzzaman, M., Soysal, S., Erman, M., Cig, F., Ceritoglu, M., Açıkbaş, S., Uçar, Ö., Özçinar, A. B., Kılıç, R., Sabagh, A. E. L. (2022). Biological nitrogen fixation: An analysis of intoxicating tribulations from pesticides for sustainable legume production. In: Managing Plant Production Under Changing Environment. Springer Nature, Singapore. https://doi.org/10.1007/978-981-16-5059-8_14.
  • Baber, K., Jones, C., Miller, P., Lamb, P. and Atencio, S. (2023). Lentil nitrogen fixation response to fertilizer and inoculant in the northern Great Plains. Agronomy Journal, 115(5), 2614-2630. https://doi.org/10.1002/agj2.21421
  • Banerjee, P., Kumari, V. V., Nath, R. and Bandyopadhyay, P. (2019). Seed priming and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. Journal of Crop and Weed, 15(3), 72-78. https://doi.org/10.22271/09746315.2019.v15.i3.1240.
  • Basak, A., Mandal, L.N. and Haldar, M. (1982). Interaction of phosphorus and molybdenum in relation to uptake and utilization of molybdenum, phosphorus, zinc, copper and manganese by rice. Plant and Soil, 68, 261-269. https://doi.org/10.1007/BF02373712 .
  • Biswas, S., Banerjee, A., Acharyya, P. and Chakraborty, N. (2020). Response of French bean (Phaseolus vulgaris L. cv. Arka Arjun) to Rhizobium inoculation under varied levels of nitrogen and molybdenum. International Journal of Current Microbiology and Applied Sciences, 9(3), 2759-2767. https://doi.org/10.20546/ijcmas.2020.903.316.
  • Ceritoglu, M. (2024). Tohuma priming uygulamalarının farklı fosfor seviyelerine bağlı olarak mercimekte (Lens culinaris L.) bitki gelişimi, tane verimi ve kalitesi üzerine etkilerinin incelenmesi. Ph.D. thesis, Siirt University, Siirt.
  • Chandra, G., Gambhir, L. and Upadhyay, R. (2020). Effects of biofertilizer with and without molybdenum on growth and seed yield of chickpea under Doon Valley of Uttarakhand. Current Journal of Applied Science and Technology, 39(15), 133-139. https://doi.org/10.9734/cjast/2020/v39i1530727.
  • De Vos, B., Lettens, S., Muys, B., and Deckers, J. A. (2007). Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23(3), 221-229. https://doi.org/10.1111/j.1475-2743.2007.00084.x.
  • Siskawardani, D. W., Khwunta, J. O. and Khawmee. (2015). Effect of Phosphate Fertilizers on Growth and Manganese Uptake of Rubber Seedlings 3rd AASIC: Sustainable Development of Asian Community, May 14-15, Bangkok, Thailand.
  • Dissanayaka, D., Ghahremani, M., Siebers, M., Wasaki, J. and Plaxton, W. C. (2021). Recent insights into the metabolic adaptations of phosphorus-deprived plants. Journal of Experimental Botany, 72(2), 199-223. https://doi.org/10.1093/jxb/eraa482.
  • Erman, M., Çığ, F. and Bakirtaş, E. (2012). Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 1, 64-67.
  • Erman, M., Çığ, F., Sönmez, F., Ceritoglu, M. (2024). Sheep manure and sewage sludge boost biofortification of barley and restricts heavy metal accumulation in plant tissues. Journal of Plant Nutrition, 47(9), 1494-1512. https://doi.org/10.1080/01904167.2024.2315969.
  • Ferrando, M. G., Barbazán, M. M., García, F. O. and Mallarino, A. P. (2020). Comparison of the ammonium acetate, Mehlich 3, and sodium tetraphenylboron as extractants to evaluate crop available potassium. Communications in Soil Science and Plant Analysis, 51(8), 997-1005. https://doi.org/10.1080/00103624.2020.1744625.
  • Galvez, L., Clark, R., Gourley, L. and Maranville, J. (1989). Effects of silicon on mineral composition of sorghum grown with excess manganese. Journal of Plant Nutrition, 12(5), 547-561. https://doi.org/10.1080/01904168909363973.
  • Hansen, T., De Bang, T., Laursen, K., Pedas, P., Husted, S. and Schjoerring, J. (2013). Multielement plant tissue analysis using ICP spectrometry. Plant Mineral Nutrients: Methods and Protocols, 121-141. https://doi.org/10.1007/978-1-62703-152-3_8.
  • Himelblau, E. and Amasino, R. M. (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of plant physiology, 158(10), 1317-1323. https://doi.org/10.1078/0176-1617-00608.
  • Huang, X.-Y., Hu, D.-W. and Zhao, F.-J. (2022). Molybdenum: Mo re than an essential element. Journal of Experimental Botany, 73(6), 1766-1774. https://doi.org/10.1093/jxb/erab534.
  • Jindal, C., Khanna, V. and Sharma, P. (2008). Impact of Rhizobium and PSB inoculation on P-economy, symbiotic parameters and yield of lentil (Lens culinaris Medikus). Journal of Research, 45(1and2), 1-3.
  • Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T. and Tyerman, S. D. (2005). The role of molybdenum in agricultural plant production. Annals of botany, 96(5), 745-754. https://doi.org/10.1093/aob/mci226.
  • Kandil, H., Gad, N. and Abdelhamid, M. T. (2013). Effects of different rates of phosphorus and molybdenum application on two varieties common bean of (Phaseolus vulgaris L.). Journal of Agriculture and Food Technology, 3(3), 8-16.
  • Khan, N., Tariq, M., Ullah, K., Muhammad, D., Khan, I., Rahatullah, K., Ahmed, N. and Ahmed, S. (2014). The effect of molybdenum and iron on nodulation, nitrogen fixation and yield of chickpea genotypes (Cicer arietinum L.). IOSR Journal of Agriculture and Veterinary Science, 7(1), 63-79. Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738.
  • Li, M., Zhang, P., Guo, Z., Cao, W., Gao, L., Li, Y., Tian, C. F., Chen, Q., Shen, Y. and Ren, F. (2023). Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS nano, 17(15), 14761-14774. https://doi.org/10.1021/acsnano.3c02783.
  • Liu, H., Hu, C., Sun, X., Tan, Q., Nie, Z., and Hu, X. (2010). Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant and soil, 326, 345-353. https://doi.org/10.1007/s11104-009-0014-1.
  • Lupi, F., Casella, S., Toffanin, A. and Squartini, A. (1988). Introduction of Rhizobium “hedysari” in alkaline clay‐loam soil by different inoculation techniques. Arid Land Research and Management, 2(1), 19-28. https://doi.org/10.1080/15324988809381155.
  • Malvi, U. R. (2011). Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24(1), 106-109.
  • Mendel, R. R. and HaÈnsch, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53(375), 1689-1698. https://doi.org/10.1093/jxb/erf038.
  • Mitran, T., Meena, R. S., Lal, R., Layek, J., Kumar, S. and Datta, R. (2018). Role of soil phosphorus on legume production. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for soil health and sustainable management, Springer, Singapore. pp. 487-510. https://doi.org/10.1007/978-981-13-0253-4_15.
  • Nasar, J. and Shah, Z. (2017). Effect of iron and molybdenum on yield and nodulation of lentil. ARPN ournal of Agricultural and Biological Science, 12(11), 332-339.
  • Nie, Z., Li, S., Hu, C., Sun, X., Tan, Q. and Liu, H. (2015). Effects of molybdenum and phosphorus fertilizers on cold resistance in winter wheat. Journal of plant nutrition, 38(5), 808-820. https://doi.org/10.1080/01904167.2014.939289.
  • Nowak, K., Luniak, N., Witt, C., Wüstefeld, Y., Wachter, A., Mendel, R. R. and Hänsch, R. (2004). Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant and Cell Physiology, 45(12), 1889-1894. https://doi.org/10.1093/pcp/pch212.
  • Pearson, J. and Rengel, Z. (1994). Distribution and remobilization of Zn and Mn during grain development in wheat. Journal of Experimental Botany, 45(12), 1829-1835. https://doi.org/10.1093/jxb/45.12.1829.
  • Pedas, P., Husted, S., Skytte, K. and Schjoerring, J. K. (2011). Elevated phosphorus impedes manganese acquisition by barley plants. Frontiers in Plant Science, 2, 37. https://doi.org/10.3389/fpls.2011.00037. Printz, B., Lutts, S., Hausman, J.-F. and Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in plant science, 7, 176193. https://doi.org/10.3389/fpls.2016.00601.
  • Rahman, M., Bhuiyan, M., Sutradhar, G., Rahman, M. and Paul, A. (2008). Effect of phosphorus, molybdenum and rhizobium inoculation on yield and yield attributes of mungbean. Agricultural and Food Sciences, 3(6), 26-33.
  • Ródenas, R., Martínez, V., Nieves-Cordones, M. and Rubio, F. (2019). High external K+ concentrations impair Pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants. International Journal of Molecular Sciences, 20(9), 2237. https://doi.org/10.3390/ijms20092237.
  • Sale, R., Nazirkar, R., Thakare, R. and Kondvilkar, N. (2018). Effect of foliar spray of zinc, iron and seed priming with molybdenum on growth and yield attributes and quality of soybean in the rainfed condition of Vertisol. International Journal of Chemical Studies, 6(1), 828-831.
  • Schoenau, J. and O’halloran, I. (2008). Sodium bicarbonate-extractable phosphorus. In: M.R. Carter, E.G. Gregorich (Eds.) Soil sampling and methods of analysis, 2nd edn., CRC Press, Boca Raton.
  • Shi, M., Wang, X., Wang, H., Guo, Z., Wang, R., Hui, X., Wang, S., Kopittke, P. M. and Wang, Z. (2021). High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Science of the Total Environment, 787, 147608. https://doi.org/10.1016/j.scitotenv.2021.147608.
  • Singh, D., Khare, A. and Singh, S. (2017). Effect of phosphorus and molybdenum nutrition on yield and nutrient uptake in lentil (Lens culinaris L.). Annals of Plant and Soil Research, 19(1), 37-41.
  • Singh, K., Srinivasarao, C. and Ali, M. (2005). Root growth, nodulation, grain yield, and phosphorus use efficiency of lentil as influenced by phosphorus, irrigation, and inoculation. Communications in Soil Science and Plant Analysis, 36(13-14), 1919-1929. https://doi.org/10.1081/CSS-200062501.
  • Singh, N. and Singh, G. (2016). Response of lentil (Lens culinaris Medikus) to phosphorus-A review. Agricultural Reviews, 37(1), 27-34. https://doi.org/10.18805/ar.v37i1.9261.
  • Tiwari, A. K., Prakash, V., Ahmad, A. and Singh, R.P. (2018). Effect of biofertilizers and micronutrients on nutrient uptake, growth, yield and yield attributes of lentil (Lens culinaris L.). International Journal of Current Microbiology and Applied Sciences 7(2), 3269-3275. https://doi.org/10.20546/ijcmas.2018.702.392.
  • Verma, C., Verma, V. K., Pyare, R. and Singh, D. (2019). Effect of seed priming and foliar spray of boron, molybdenum on pigeonpea pea (Cajanus cajan L.). International Journal of Chemical Studies, 7(4), 2822-2824.
  • Wang, N., and Daun, J. K. (2006). Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food chemistry, 95(3), 493-502. https://doi.org/10.1016/j.foodchem.2005.02.001.
  • Wang, X., Gao, Y., Zhang, H., Shao, Z., Sun, B. and Gao, Q. (2020). Enhancement of rhizosphere citric acid and decrease of NO3-/NH4+ ratio by root interactions facilitate N fixation and transfer. Plant and Soil, 447, 169-182. https://doi.org/10.1007/s11104-018-03918-6.
  • Xie, K., Cakmak, I., Wang, S., Zhang, F. and Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249-256. https://doi.org/10.1016/j.cj.2020.10.005.
  • Zhu, Y.-G., Smith, F. and Smith, S. (2002). Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 53(2), 211-216. https://doi.org/10.1071/AR01085.

Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain

Year 2024, Volume: 14 Issue: 3, 1342 - 1352, 01.09.2024
https://doi.org/10.21597/jist.1498773

Abstract

The aim of this research is to investigate the effect of phosphorus and molybdenum treatment on macro and micronutrient biofortification in bean. The study sheds light on the individual and interactive effects of phosphorus and molybdenum on macro and micronutrient uptake and biofortification in Phaseolus vulgaris. Three levels of phosphorus and molybdenum were used in the experiment laid out in a randomized block design with four replications. Phosphorus and molybdenum treatment promoted nitrogen accumulation in both straw and seed. Nitrogen content increased with rising phosphorus doses in straw and seed over control by 42.3% and 7.4%, respectively. Moreover, phosphorus addition increased straw manganese content while molybdenum enhanced straw manganese. In addition, 4 g Mo kg-1/seed treatment boosted seed magnesium concentration over control by 28.2%, however, no phosphorus, potassium, copper, iron, and zinc in the plant materials, likely due to the sufficient levels of these nutrients in the soil composition of the experimental area. According to results, nitrogen, phosphorus, potassium, calcium, magnesium, manganese, copper, iron, zinc varied in straw and seed between 3.15-7.05% and 17.5-19.2%, 586-990 ppm and 1049-1355 ppm, 695-2690 ppm and 1021-1727 ppm, 5839-11162 ppm and 559-1303 ppm, 690-1474 ppm and 348-1036 ppm, 25.3-38.3 ppm and 8.29-9.29 ppm, 8.6-16.9 ppm and 11.3-19.9 ppm, 469-927 ppm and 70.2-80.3 ppm, 6.5-10.8 ppm and 17.9-23.3 ppm, respectively. Consequently, it has been determined that molybdenum supplementation is necessary along with phosphorus fertilization in areas where beans are grown, especially in acidic soils.

References

  • Arun, M., Hebbar, S. S., Bhanuprakas, K. and Senthivel, T. (2017). Seed priming improves irrigation water use efficiency, yield and yield components of summer cowpea under limited water conditions. Legume Research-An International Journal, 40(5), 864-871. https://doi.org/10.18805/LR-3785.
  • Ahmad, Z., Tariq, R. M. S., Ramzan, M., Bukhari, M. A., Raza, A., Iqbal, M. A., Meena, R. S., Islam, M. S., Sytar, O., Godswill, N. N., Wasaya, A., Singh, K., Hossain, A., Raza, M. A., Hasanuzzaman, M., Soysal, S., Erman, M., Cig, F., Ceritoglu, M., Açıkbaş, S., Uçar, Ö., Özçinar, A. B., Kılıç, R., Sabagh, A. E. L. (2022). Biological nitrogen fixation: An analysis of intoxicating tribulations from pesticides for sustainable legume production. In: Managing Plant Production Under Changing Environment. Springer Nature, Singapore. https://doi.org/10.1007/978-981-16-5059-8_14.
  • Baber, K., Jones, C., Miller, P., Lamb, P. and Atencio, S. (2023). Lentil nitrogen fixation response to fertilizer and inoculant in the northern Great Plains. Agronomy Journal, 115(5), 2614-2630. https://doi.org/10.1002/agj2.21421
  • Banerjee, P., Kumari, V. V., Nath, R. and Bandyopadhyay, P. (2019). Seed priming and foliar nutrition studies on relay grass pea after winter rice in lower Gangetic plain. Journal of Crop and Weed, 15(3), 72-78. https://doi.org/10.22271/09746315.2019.v15.i3.1240.
  • Basak, A., Mandal, L.N. and Haldar, M. (1982). Interaction of phosphorus and molybdenum in relation to uptake and utilization of molybdenum, phosphorus, zinc, copper and manganese by rice. Plant and Soil, 68, 261-269. https://doi.org/10.1007/BF02373712 .
  • Biswas, S., Banerjee, A., Acharyya, P. and Chakraborty, N. (2020). Response of French bean (Phaseolus vulgaris L. cv. Arka Arjun) to Rhizobium inoculation under varied levels of nitrogen and molybdenum. International Journal of Current Microbiology and Applied Sciences, 9(3), 2759-2767. https://doi.org/10.20546/ijcmas.2020.903.316.
  • Ceritoglu, M. (2024). Tohuma priming uygulamalarının farklı fosfor seviyelerine bağlı olarak mercimekte (Lens culinaris L.) bitki gelişimi, tane verimi ve kalitesi üzerine etkilerinin incelenmesi. Ph.D. thesis, Siirt University, Siirt.
  • Chandra, G., Gambhir, L. and Upadhyay, R. (2020). Effects of biofertilizer with and without molybdenum on growth and seed yield of chickpea under Doon Valley of Uttarakhand. Current Journal of Applied Science and Technology, 39(15), 133-139. https://doi.org/10.9734/cjast/2020/v39i1530727.
  • De Vos, B., Lettens, S., Muys, B., and Deckers, J. A. (2007). Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23(3), 221-229. https://doi.org/10.1111/j.1475-2743.2007.00084.x.
  • Siskawardani, D. W., Khwunta, J. O. and Khawmee. (2015). Effect of Phosphate Fertilizers on Growth and Manganese Uptake of Rubber Seedlings 3rd AASIC: Sustainable Development of Asian Community, May 14-15, Bangkok, Thailand.
  • Dissanayaka, D., Ghahremani, M., Siebers, M., Wasaki, J. and Plaxton, W. C. (2021). Recent insights into the metabolic adaptations of phosphorus-deprived plants. Journal of Experimental Botany, 72(2), 199-223. https://doi.org/10.1093/jxb/eraa482.
  • Erman, M., Çığ, F. and Bakirtaş, E. (2012). Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 1, 64-67.
  • Erman, M., Çığ, F., Sönmez, F., Ceritoglu, M. (2024). Sheep manure and sewage sludge boost biofortification of barley and restricts heavy metal accumulation in plant tissues. Journal of Plant Nutrition, 47(9), 1494-1512. https://doi.org/10.1080/01904167.2024.2315969.
  • Ferrando, M. G., Barbazán, M. M., García, F. O. and Mallarino, A. P. (2020). Comparison of the ammonium acetate, Mehlich 3, and sodium tetraphenylboron as extractants to evaluate crop available potassium. Communications in Soil Science and Plant Analysis, 51(8), 997-1005. https://doi.org/10.1080/00103624.2020.1744625.
  • Galvez, L., Clark, R., Gourley, L. and Maranville, J. (1989). Effects of silicon on mineral composition of sorghum grown with excess manganese. Journal of Plant Nutrition, 12(5), 547-561. https://doi.org/10.1080/01904168909363973.
  • Hansen, T., De Bang, T., Laursen, K., Pedas, P., Husted, S. and Schjoerring, J. (2013). Multielement plant tissue analysis using ICP spectrometry. Plant Mineral Nutrients: Methods and Protocols, 121-141. https://doi.org/10.1007/978-1-62703-152-3_8.
  • Himelblau, E. and Amasino, R. M. (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of plant physiology, 158(10), 1317-1323. https://doi.org/10.1078/0176-1617-00608.
  • Huang, X.-Y., Hu, D.-W. and Zhao, F.-J. (2022). Molybdenum: Mo re than an essential element. Journal of Experimental Botany, 73(6), 1766-1774. https://doi.org/10.1093/jxb/erab534.
  • Jindal, C., Khanna, V. and Sharma, P. (2008). Impact of Rhizobium and PSB inoculation on P-economy, symbiotic parameters and yield of lentil (Lens culinaris Medikus). Journal of Research, 45(1and2), 1-3.
  • Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T. and Tyerman, S. D. (2005). The role of molybdenum in agricultural plant production. Annals of botany, 96(5), 745-754. https://doi.org/10.1093/aob/mci226.
  • Kandil, H., Gad, N. and Abdelhamid, M. T. (2013). Effects of different rates of phosphorus and molybdenum application on two varieties common bean of (Phaseolus vulgaris L.). Journal of Agriculture and Food Technology, 3(3), 8-16.
  • Khan, N., Tariq, M., Ullah, K., Muhammad, D., Khan, I., Rahatullah, K., Ahmed, N. and Ahmed, S. (2014). The effect of molybdenum and iron on nodulation, nitrogen fixation and yield of chickpea genotypes (Cicer arietinum L.). IOSR Journal of Agriculture and Veterinary Science, 7(1), 63-79. Lambers, H. (2022). Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17-42. https://doi.org/10.1146/annurev-arplant-102720-125738.
  • Li, M., Zhang, P., Guo, Z., Cao, W., Gao, L., Li, Y., Tian, C. F., Chen, Q., Shen, Y. and Ren, F. (2023). Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS nano, 17(15), 14761-14774. https://doi.org/10.1021/acsnano.3c02783.
  • Liu, H., Hu, C., Sun, X., Tan, Q., Nie, Z., and Hu, X. (2010). Interactive effects of molybdenum and phosphorus fertilizers on photosynthetic characteristics of seedlings and grain yield of Brassica napus. Plant and soil, 326, 345-353. https://doi.org/10.1007/s11104-009-0014-1.
  • Lupi, F., Casella, S., Toffanin, A. and Squartini, A. (1988). Introduction of Rhizobium “hedysari” in alkaline clay‐loam soil by different inoculation techniques. Arid Land Research and Management, 2(1), 19-28. https://doi.org/10.1080/15324988809381155.
  • Malvi, U. R. (2011). Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24(1), 106-109.
  • Mendel, R. R. and HaÈnsch, R. (2002). Molybdoenzymes and molybdenum cofactor in plants. Journal of Experimental Botany, 53(375), 1689-1698. https://doi.org/10.1093/jxb/erf038.
  • Mitran, T., Meena, R. S., Lal, R., Layek, J., Kumar, S. and Datta, R. (2018). Role of soil phosphorus on legume production. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds) Legumes for soil health and sustainable management, Springer, Singapore. pp. 487-510. https://doi.org/10.1007/978-981-13-0253-4_15.
  • Nasar, J. and Shah, Z. (2017). Effect of iron and molybdenum on yield and nodulation of lentil. ARPN ournal of Agricultural and Biological Science, 12(11), 332-339.
  • Nie, Z., Li, S., Hu, C., Sun, X., Tan, Q. and Liu, H. (2015). Effects of molybdenum and phosphorus fertilizers on cold resistance in winter wheat. Journal of plant nutrition, 38(5), 808-820. https://doi.org/10.1080/01904167.2014.939289.
  • Nowak, K., Luniak, N., Witt, C., Wüstefeld, Y., Wachter, A., Mendel, R. R. and Hänsch, R. (2004). Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant and Cell Physiology, 45(12), 1889-1894. https://doi.org/10.1093/pcp/pch212.
  • Pearson, J. and Rengel, Z. (1994). Distribution and remobilization of Zn and Mn during grain development in wheat. Journal of Experimental Botany, 45(12), 1829-1835. https://doi.org/10.1093/jxb/45.12.1829.
  • Pedas, P., Husted, S., Skytte, K. and Schjoerring, J. K. (2011). Elevated phosphorus impedes manganese acquisition by barley plants. Frontiers in Plant Science, 2, 37. https://doi.org/10.3389/fpls.2011.00037. Printz, B., Lutts, S., Hausman, J.-F. and Sergeant, K. (2016). Copper trafficking in plants and its implication on cell wall dynamics. Frontiers in plant science, 7, 176193. https://doi.org/10.3389/fpls.2016.00601.
  • Rahman, M., Bhuiyan, M., Sutradhar, G., Rahman, M. and Paul, A. (2008). Effect of phosphorus, molybdenum and rhizobium inoculation on yield and yield attributes of mungbean. Agricultural and Food Sciences, 3(6), 26-33.
  • Ródenas, R., Martínez, V., Nieves-Cordones, M. and Rubio, F. (2019). High external K+ concentrations impair Pi nutrition, induce the phosphate starvation response, and reduce arsenic toxicity in Arabidopsis plants. International Journal of Molecular Sciences, 20(9), 2237. https://doi.org/10.3390/ijms20092237.
  • Sale, R., Nazirkar, R., Thakare, R. and Kondvilkar, N. (2018). Effect of foliar spray of zinc, iron and seed priming with molybdenum on growth and yield attributes and quality of soybean in the rainfed condition of Vertisol. International Journal of Chemical Studies, 6(1), 828-831.
  • Schoenau, J. and O’halloran, I. (2008). Sodium bicarbonate-extractable phosphorus. In: M.R. Carter, E.G. Gregorich (Eds.) Soil sampling and methods of analysis, 2nd edn., CRC Press, Boca Raton.
  • Shi, M., Wang, X., Wang, H., Guo, Z., Wang, R., Hui, X., Wang, S., Kopittke, P. M. and Wang, Z. (2021). High phosphorus fertilization changes the speciation and distribution of manganese in wheat grains grown in a calcareous soil. Science of the Total Environment, 787, 147608. https://doi.org/10.1016/j.scitotenv.2021.147608.
  • Singh, D., Khare, A. and Singh, S. (2017). Effect of phosphorus and molybdenum nutrition on yield and nutrient uptake in lentil (Lens culinaris L.). Annals of Plant and Soil Research, 19(1), 37-41.
  • Singh, K., Srinivasarao, C. and Ali, M. (2005). Root growth, nodulation, grain yield, and phosphorus use efficiency of lentil as influenced by phosphorus, irrigation, and inoculation. Communications in Soil Science and Plant Analysis, 36(13-14), 1919-1929. https://doi.org/10.1081/CSS-200062501.
  • Singh, N. and Singh, G. (2016). Response of lentil (Lens culinaris Medikus) to phosphorus-A review. Agricultural Reviews, 37(1), 27-34. https://doi.org/10.18805/ar.v37i1.9261.
  • Tiwari, A. K., Prakash, V., Ahmad, A. and Singh, R.P. (2018). Effect of biofertilizers and micronutrients on nutrient uptake, growth, yield and yield attributes of lentil (Lens culinaris L.). International Journal of Current Microbiology and Applied Sciences 7(2), 3269-3275. https://doi.org/10.20546/ijcmas.2018.702.392.
  • Verma, C., Verma, V. K., Pyare, R. and Singh, D. (2019). Effect of seed priming and foliar spray of boron, molybdenum on pigeonpea pea (Cajanus cajan L.). International Journal of Chemical Studies, 7(4), 2822-2824.
  • Wang, N., and Daun, J. K. (2006). Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food chemistry, 95(3), 493-502. https://doi.org/10.1016/j.foodchem.2005.02.001.
  • Wang, X., Gao, Y., Zhang, H., Shao, Z., Sun, B. and Gao, Q. (2020). Enhancement of rhizosphere citric acid and decrease of NO3-/NH4+ ratio by root interactions facilitate N fixation and transfer. Plant and Soil, 447, 169-182. https://doi.org/10.1007/s11104-018-03918-6.
  • Xie, K., Cakmak, I., Wang, S., Zhang, F. and Guo, S. (2021). Synergistic and antagonistic interactions between potassium and magnesium in higher plants. The Crop Journal, 9(2), 249-256. https://doi.org/10.1016/j.cj.2020.10.005.
  • Zhu, Y.-G., Smith, F. and Smith, S. (2002). Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research, 53(2), 211-216. https://doi.org/10.1071/AR01085.
There are 47 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Tarla Bitkileri / Field Crops
Authors

Murat Erman 0000-0002-1435-1982

Fatih Çığ 0000-0002-4042-0566

Ferit Sönmez 0000-0003-1437-4081

Mustafa Ceritoğlu 0000-0002-4138-4579

Early Pub Date August 27, 2024
Publication Date September 1, 2024
Submission Date June 10, 2024
Acceptance Date July 26, 2024
Published in Issue Year 2024 Volume: 14 Issue: 3

Cite

APA Erman, M., Çığ, F., Sönmez, F., Ceritoğlu, M. (2024). Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain. Journal of the Institute of Science and Technology, 14(3), 1342-1352. https://doi.org/10.21597/jist.1498773
AMA Erman M, Çığ F, Sönmez F, Ceritoğlu M. Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain. J. Inst. Sci. and Tech. September 2024;14(3):1342-1352. doi:10.21597/jist.1498773
Chicago Erman, Murat, Fatih Çığ, Ferit Sönmez, and Mustafa Ceritoğlu. “Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus Vulgaris) Straw and Grain”. Journal of the Institute of Science and Technology 14, no. 3 (September 2024): 1342-52. https://doi.org/10.21597/jist.1498773.
EndNote Erman M, Çığ F, Sönmez F, Ceritoğlu M (September 1, 2024) Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain. Journal of the Institute of Science and Technology 14 3 1342–1352.
IEEE M. Erman, F. Çığ, F. Sönmez, and M. Ceritoğlu, “Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain”, J. Inst. Sci. and Tech., vol. 14, no. 3, pp. 1342–1352, 2024, doi: 10.21597/jist.1498773.
ISNAD Erman, Murat et al. “Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus Vulgaris) Straw and Grain”. Journal of the Institute of Science and Technology 14/3 (September 2024), 1342-1352. https://doi.org/10.21597/jist.1498773.
JAMA Erman M, Çığ F, Sönmez F, Ceritoğlu M. Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain. J. Inst. Sci. and Tech. 2024;14:1342–1352.
MLA Erman, Murat et al. “Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus Vulgaris) Straw and Grain”. Journal of the Institute of Science and Technology, vol. 14, no. 3, 2024, pp. 1342-5, doi:10.21597/jist.1498773.
Vancouver Erman M, Çığ F, Sönmez F, Ceritoğlu M. Effect of Phosphorus and Molybdenum Applications on Macro and Micro Nutrient Content of Bean (Phaseolus vulgaris) Straw and Grain. J. Inst. Sci. and Tech. 2024;14(3):1342-5.