Research Article
BibTex RIS Cite

Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi

Year 2024, Volume: 14 Issue: 4, 1461 - 1473, 01.12.2024
https://doi.org/10.21597/jist.1429637

Abstract

Referans evapotrasnpirasyon (ETo), toprak yüzeyinden buharlaşma ve referans çim bitkisinden terleme yolu ile atmosfere transfer edilen toplam su buharı kütlesi olarak tanımlanmaktadır. Hidroloji bilimi kapsamındaki birçok çalışmada temel veri olarak kullanılan ETo, atmosferik buhar basıncı açığına dayalı kütle transferi yolu ile gerçekleşmektedir. ETo, lizimetre sistemleri ile doğrudan ölçülebilmektedir. Ancak, bu sistemler ile gerçekleştirilen ölçme işlemleri zor ve zaman alıcıdır. Bu nedenle, kütle transferine dayalı ampirik modeller kullanılarak ETo miktarının tahmin edilmesi yaklaşımı pratikte daha fazla tercih edilmektedir. Bu çalışmada, Van ili mikroklima alanı iklim ve çevre koşulları ile uyumlu kütle transferine dayalı bir ampirik ETo tahmin modelinin oluşturulması amaçlanmıştır. Tahmin modeli, 2012 ile 2022 yılları arasında ölçülen 11 yıllık günlük ortalama iklim verileri kullanılarak, Microsoft Excel programı çözücü eklentisi aracılığıyla oluşturulmuş ve aynı verilerle test edilmiştir. Bu model kullanılarak tahmin edilen günlük ETo değerleri ile standart FAO-56 Penman & Monteith (PM) eşitliği kullanılarak tahmin edilen günlük ETo değerleri arasındaki sapmanın bir göstergesi olarak hesaplanan ortalama mutlak hata (MAE), ortalama mutlak yüzde hata (MAPE), karekök ortalama karesel hata (RMSE) ve regresyon katsayısı (R2) katsayısı sırasıyla 0.27 mm/gün, %7.02, 0.32 mm/gün ve 0.98 olarak belirlenmiştir. Kütle transferine dayalı modelin Van ili koşullarında standart FAO-56 PM eşitliğinin alternatifi olarak kullanılabileği sonucuna ulaşılmıştır. Ayrıca, bu modelin yöre koşullarında hazırlanacak sulama programı ve kuraklık eylem planı çalışmalarında faydalı olacağı düşünülmektedir.

References

  • Aghelpour, P., & Norooz-Valashedi, R. (2022). Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stochastic Environmental Research and Risk Assessment, 36, 4133-4155. doi:10.1007/s00477-022-02249-4
  • Albrecht, F. (1950). Die methoden zur bestimmung verdunstung der natürlichen erdoberfläche. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 2, 1-38.
  • Allen, R. G., Pereire, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No: 56. URL: https://www.fao.org/3/x0490e/x0490e00.htm (erişim tarihi: Mart 18, 2022).
  • Berti, A., Tardivo, G., Chiaudani, A., Rech, F., & Borin, M. (2014). Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, 20-25. doi:10.1016/j.agwat.2014.03.015
  • Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological irrigation data. United States Soil Conservation Service Technical Paper No: 96. Washington, DC. URL: https://ia600207.us.archive.org/1/items/determiningwater96blan/ determining water96blan.pdf (erişim tarihi: Ocak 12, 2022).
  • Bogawski, P., & Bednorz, E. (2014). Comparison and validation of selected evapotranspiration models for conditions in Poland. Water Resources Management, 28, 5021-5038. doi:10.1007/s11269-014-0787-8
  • Cobaner, M., Çıtakoğlu, H., Haktanır, T., & Yelkara, F. (2015). Akdeniz bölgesi için en uygun Hargreaves-samani eşitliğinin belirlenmesi. Dicle üniversitesi Mühendislik Fakültesi dergisi, 7(2), 181-189.
  • Dalton, J. (1802). Experimental essays on the constitution of mixed gases: on the force of steam or vapour from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat. Memoirs of the Literary and Philosophical Society of Manchester, 5, 536-602.
  • Djaman, K., Balde, A. B., Sow, A., Muller, B., Irmak, S., Ndiaye, M. K., Manneh, B., Moukoumbi, Y. D., Futakuchi, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under Sahelian Conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139-159. doi:10.1016/j.ejrh.2015.02.002
  • Djaman, K., Koudahe, K., Sall, M., Kabenge, I., Rudnick, D., & Irmak, S. (2017). Performance of twelve mass transfer based reference evapotranspiration models under humid Climate. Journal of Water Resource and Protection, 9, 1347-1363. doi:10.4236/jwarp.2017.912086
  • Farzanpour, H., Shiri, J., Sadraddini, A. A., & Trajkovic, S. (2019). Global comparison of 20 reference evapotranspiration equations in a semi-arid region of Iran. Hydrology Research, 50(1), 282-300.
  • Gocić, M., & Arab Amiri, M. (2021). Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resources Management, 35(6), 1913-1926. doi:10.1007/s11269-021-02820-8
  • Hargreaves, G. L., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99.
  • Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085
  • Irmak, S., & Haman, D. Z. (2003). Evaluation of five methods for estimating class A pan evaporation in a humid climate. HortTechnology, 13(3), 500-508. doi:10.21273/HORTTECH.13.3.0500
  • Islam, S., Abdullah, R. A. B., Tirth, V., Shahid, S., Algarni, S., & Hirol, H. (2020). Evaluation of mass transfer evapotranspiration models under semiarid conditions using MCDM approach. Applied Ecology and Environmental Research, 18(5), 6355-6375. doi:10.15666/aeer/1805_63556375
  • Izadifar, Z., & Elshorbagy, A. (2010). Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrological Processes, 24(23), 3413-3425. doi: 10.1002/hyp.7771
  • Karaca, S., & Sarğın, B. (2022). Determination of soil moisture and temperature regimes with the Newhall Simulation Model: Example of Van Province. Yuzuncu Yil University Journal of Agricultural Sciences, 32(2), 394-413. doi:10.29133/yyutbd.1053917
  • Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. London, UK: Butterworths Scientific.
  • Mahringer, W. (1970). Verdunstungsstudien am Neusiedler See. [Evaporation studies at Lake Neusiedler]. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 18, 1-20.
  • Mehdizadeh, S. (2018): Estimation of daily reference evapotranspiration (ETo) using artificial Intelligence methods: offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, 559, 794-812. doi:10.1016/j.jhydrol.2018.02.060
  • Meyer, A. (1926). Uber einige zusammenha ngezwischen klima und boden in Europa [Some interrelations between climate and soil in Europe]. Chemie der Erde, 2, 209-347.
  • Muniandy, J., Zulkifli, Y., & Muhamad, A. (2016). Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum. Agricultural Water Management, 169, 77-89. doi:10.1016/j.agwat.2016.02.019
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A, 193, 120-145.
  • Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S. G., Solomou, A. D., Bourletsikas, A., Stefanidis, S., & Nwokolo, S. C. (2023). A thorough evaluation of 127 potential evapotranspiration models in two Mediterranean urban green sites. Remote Sensing, 15, 3680. doi:10.3390/rs15143680
  • Rim, C. S. (2000). A comparison of approaches for evapotranspiration estimation. KSCE Journal of Civil Engineering, 4(1), 47-52. doi:10.1007/BF02829173
  • Rohwer, C. (1931). Evaporation from free water surface. USDA Tech Null, 217, 1-96.
  • Romanenko, V. A. (1961). Computation of the autumn soil moisture using a universal relationship for a large area. Ukrainian Hydrometeorological Research Institute, 3, 12-25.
  • Saban Polu, P. (2021). Doğu Anadolu Bölgesi Referans Evapotranspirasyon Hesaplamalarında Güneş Radyasyon Verileri ve Referans Evapotranspirasyon Frekans Analizi (Yüksek lisans tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97, 635-644. doi:10.1016/j.agwat.2009. 12.001
  • Singh, V. P., & Xu, C. Y. (1997). Evaluation and generalization of 13 masstransfer equations for determining free water evaporation. Hydrological Processes, 11, 311-323.
  • Tabari, H., Grismer, M., & Trajkovic, S. (2011). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31, 107-117. doi:10.1007/s00271-011-0295-z
  • TAGEM, (2017). Türkiye’de sulanan bitkilerin bitki su tüketimleri. URL: https://www.tarimorman.
  • gov.tr/TAGEM/Belgeler/yayin/Tu%CC%88rkiyede%20Sulanan%20Bitkilerin%20Bitki%20Su%20Tu%CC%88ketimleri.pdf (erişim tarihi: Temmuz 26, 2020).
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
  • Trabert, W. (1896). Neue neobachtungenûber Verdampfungs Geschwindigkeiten [New observations on evaporation rates]. Meteorologische Zeitschrift, 13, 261-263.
  • Usta, S., & Gençoğlan, S. (2019). Estimation of reference evapotranspiration using multiple linear regression models. International Journal of Scientific and Technological Research, 5(2), 5-19. doi:10.7176/JSTR/5-2-02
  • Usta, S., Gençoğlan, S., Gençoğlan, C., & Uçak, A. B. (2019). Van ili koşullarına uygun Hargreaves-Samani eşitliği kalibrasyon modellerinin geliştirilmesi. In: Proceedings Book. M. Kaliber (Ed.), 1st Erciyes Agriculture, Animal & Food Sciences Conference, (s. 433-439). Kayseri, Türkiye.
  • Uzunlar, A., Öz, A., & Diş, M. Ö. (2022). Modifiye yaklaşımların evapotranspirasyon tahminlerine etkisi: Van örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 973-988. doi:10.21605/cukurovaumfd.1230919
  • Valipour, M., Gholami Sefidkouhi, M. A., & Raeini Sarjaz, M. (2017). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180(3), 50-60. doi:10.1016/j.agwat.2016.08.025

Developing a Mass Transfer-Based Reference Evapotranspiration Estimation Model Using Nonlinear Regression Method

Year 2024, Volume: 14 Issue: 4, 1461 - 1473, 01.12.2024
https://doi.org/10.21597/jist.1429637

Abstract

Reference evapotranspiration (ETo) is defined as the total mass of water vapour transferred to the atmosphere by evaporation from the soil surface and transpiration from the reference grass plant. ETo occurs through mass transfer based on atmospheric vapour pressure deficit and is used as primary data in many studies within the scope of hydrology science. ETo can be measured directly with lysimeter systems. However, measurement processes performed with these systems are difficult and time-consuming. For this reason, the approach of estimating the ETo using mass transfer-based empirical models is more preferred in practice. This study aims to create a mass transfer-based ETo estimation model compatible with Van province microclimate area climatic and environmental conditions. The estimation model was created via the Microsoft Excel program solver add-on using the 11-year daily average climate data measured between 2012 and 2022, and was tested with the same data. The mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE) and determination coefficient (R2) calculated as an indicator of the deviation between the daily ETo values estimated using this model and the daily ETo values estimated using the standard FAO-56 Penman & Monteith (PM) equation, were determined as 0.27 mm/day, 7.02%, 0.32 mm/day and 0.98, respectively. It is concluded that the mass transfer-based model can be used as an alternative to the standard FAO-56 PM equation in Van conditions. Additionally, it is believed that this model will be beneficial for preparing irrigation schedules and drought action plans under local conditions.

References

  • Aghelpour, P., & Norooz-Valashedi, R. (2022). Predicting daily reference evapotranspiration rates in a humid region, comparison of seven various data-based predictor models. Stochastic Environmental Research and Risk Assessment, 36, 4133-4155. doi:10.1007/s00477-022-02249-4
  • Albrecht, F. (1950). Die methoden zur bestimmung verdunstung der natürlichen erdoberfläche. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 2, 1-38.
  • Allen, R. G., Pereire, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No: 56. URL: https://www.fao.org/3/x0490e/x0490e00.htm (erişim tarihi: Mart 18, 2022).
  • Berti, A., Tardivo, G., Chiaudani, A., Rech, F., & Borin, M. (2014). Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy. Agricultural Water Management, 140, 20-25. doi:10.1016/j.agwat.2014.03.015
  • Blaney, H. F., & Criddle, W. D. (1950). Determining water requirements in irrigated areas from climatological irrigation data. United States Soil Conservation Service Technical Paper No: 96. Washington, DC. URL: https://ia600207.us.archive.org/1/items/determiningwater96blan/ determining water96blan.pdf (erişim tarihi: Ocak 12, 2022).
  • Bogawski, P., & Bednorz, E. (2014). Comparison and validation of selected evapotranspiration models for conditions in Poland. Water Resources Management, 28, 5021-5038. doi:10.1007/s11269-014-0787-8
  • Cobaner, M., Çıtakoğlu, H., Haktanır, T., & Yelkara, F. (2015). Akdeniz bölgesi için en uygun Hargreaves-samani eşitliğinin belirlenmesi. Dicle üniversitesi Mühendislik Fakültesi dergisi, 7(2), 181-189.
  • Dalton, J. (1802). Experimental essays on the constitution of mixed gases: on the force of steam or vapour from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat. Memoirs of the Literary and Philosophical Society of Manchester, 5, 536-602.
  • Djaman, K., Balde, A. B., Sow, A., Muller, B., Irmak, S., Ndiaye, M. K., Manneh, B., Moukoumbi, Y. D., Futakuchi, K., & Saito, K. (2015). Evaluation of sixteen reference evapotranspiration methods under Sahelian Conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies, 3, 139-159. doi:10.1016/j.ejrh.2015.02.002
  • Djaman, K., Koudahe, K., Sall, M., Kabenge, I., Rudnick, D., & Irmak, S. (2017). Performance of twelve mass transfer based reference evapotranspiration models under humid Climate. Journal of Water Resource and Protection, 9, 1347-1363. doi:10.4236/jwarp.2017.912086
  • Farzanpour, H., Shiri, J., Sadraddini, A. A., & Trajkovic, S. (2019). Global comparison of 20 reference evapotranspiration equations in a semi-arid region of Iran. Hydrology Research, 50(1), 282-300.
  • Gocić, M., & Arab Amiri, M. (2021). Reference evapotranspiration prediction using neural networks and optimum time lags. Water Resources Management, 35(6), 1913-1926. doi:10.1007/s11269-021-02820-8
  • Hargreaves, G. L., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96-99.
  • Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. doi:10.1016/j.jhydrol.2019.04.085
  • Irmak, S., & Haman, D. Z. (2003). Evaluation of five methods for estimating class A pan evaporation in a humid climate. HortTechnology, 13(3), 500-508. doi:10.21273/HORTTECH.13.3.0500
  • Islam, S., Abdullah, R. A. B., Tirth, V., Shahid, S., Algarni, S., & Hirol, H. (2020). Evaluation of mass transfer evapotranspiration models under semiarid conditions using MCDM approach. Applied Ecology and Environmental Research, 18(5), 6355-6375. doi:10.15666/aeer/1805_63556375
  • Izadifar, Z., & Elshorbagy, A. (2010). Prediction of hourly actual evapotranspiration using neural networks, genetic programming, and statistical models. Hydrological Processes, 24(23), 3413-3425. doi: 10.1002/hyp.7771
  • Karaca, S., & Sarğın, B. (2022). Determination of soil moisture and temperature regimes with the Newhall Simulation Model: Example of Van Province. Yuzuncu Yil University Journal of Agricultural Sciences, 32(2), 394-413. doi:10.29133/yyutbd.1053917
  • Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. London, UK: Butterworths Scientific.
  • Mahringer, W. (1970). Verdunstungsstudien am Neusiedler See. [Evaporation studies at Lake Neusiedler]. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie B, 18, 1-20.
  • Mehdizadeh, S. (2018): Estimation of daily reference evapotranspiration (ETo) using artificial Intelligence methods: offering a new approach for lagged ETo data-based modeling. Journal of Hydrology, 559, 794-812. doi:10.1016/j.jhydrol.2018.02.060
  • Meyer, A. (1926). Uber einige zusammenha ngezwischen klima und boden in Europa [Some interrelations between climate and soil in Europe]. Chemie der Erde, 2, 209-347.
  • Muniandy, J., Zulkifli, Y., & Muhamad, A. (2016). Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum. Agricultural Water Management, 169, 77-89. doi:10.1016/j.agwat.2016.02.019
  • Penman, H. L. (1948). Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A, 193, 120-145.
  • Proutsos, N., Tigkas, D., Tsevreni, I., Alexandris, S. G., Solomou, A. D., Bourletsikas, A., Stefanidis, S., & Nwokolo, S. C. (2023). A thorough evaluation of 127 potential evapotranspiration models in two Mediterranean urban green sites. Remote Sensing, 15, 3680. doi:10.3390/rs15143680
  • Rim, C. S. (2000). A comparison of approaches for evapotranspiration estimation. KSCE Journal of Civil Engineering, 4(1), 47-52. doi:10.1007/BF02829173
  • Rohwer, C. (1931). Evaporation from free water surface. USDA Tech Null, 217, 1-96.
  • Romanenko, V. A. (1961). Computation of the autumn soil moisture using a universal relationship for a large area. Ukrainian Hydrometeorological Research Institute, 3, 12-25.
  • Saban Polu, P. (2021). Doğu Anadolu Bölgesi Referans Evapotranspirasyon Hesaplamalarında Güneş Radyasyon Verileri ve Referans Evapotranspirasyon Frekans Analizi (Yüksek lisans tezi). Erişim adresi: https://tez.yok.gov.tr/UlusalTezMerkezi
  • Sentelhas, P. C., Gillespie, T. J., & Santos, E. A. (2010). Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada. Agricultural Water Management, 97, 635-644. doi:10.1016/j.agwat.2009. 12.001
  • Singh, V. P., & Xu, C. Y. (1997). Evaluation and generalization of 13 masstransfer equations for determining free water evaporation. Hydrological Processes, 11, 311-323.
  • Tabari, H., Grismer, M., & Trajkovic, S. (2011). Comparative analysis of 31 reference evapotranspiration methods under humid conditions. Irrigation Science, 31, 107-117. doi:10.1007/s00271-011-0295-z
  • TAGEM, (2017). Türkiye’de sulanan bitkilerin bitki su tüketimleri. URL: https://www.tarimorman.
  • gov.tr/TAGEM/Belgeler/yayin/Tu%CC%88rkiyede%20Sulanan%20Bitkilerin%20Bitki%20Su%20Tu%CC%88ketimleri.pdf (erişim tarihi: Temmuz 26, 2020).
  • Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
  • Trabert, W. (1896). Neue neobachtungenûber Verdampfungs Geschwindigkeiten [New observations on evaporation rates]. Meteorologische Zeitschrift, 13, 261-263.
  • Usta, S., & Gençoğlan, S. (2019). Estimation of reference evapotranspiration using multiple linear regression models. International Journal of Scientific and Technological Research, 5(2), 5-19. doi:10.7176/JSTR/5-2-02
  • Usta, S., Gençoğlan, S., Gençoğlan, C., & Uçak, A. B. (2019). Van ili koşullarına uygun Hargreaves-Samani eşitliği kalibrasyon modellerinin geliştirilmesi. In: Proceedings Book. M. Kaliber (Ed.), 1st Erciyes Agriculture, Animal & Food Sciences Conference, (s. 433-439). Kayseri, Türkiye.
  • Uzunlar, A., Öz, A., & Diş, M. Ö. (2022). Modifiye yaklaşımların evapotranspirasyon tahminlerine etkisi: Van örneği. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 37(4), 973-988. doi:10.21605/cukurovaumfd.1230919
  • Valipour, M., Gholami Sefidkouhi, M. A., & Raeini Sarjaz, M. (2017). Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agricultural Water Management, 180(3), 50-60. doi:10.1016/j.agwat.2016.08.025
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Water Resources Engineering, Water Resources and Water Structures, Biosystem, Irrigation Systems
Journal Section Biyosistem Mühendisliği / Biosystem Engineering
Authors

Selçuk Usta 0000-0001-8970-7333

Publication Date December 1, 2024
Submission Date February 1, 2024
Acceptance Date September 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Usta, S. (2024). Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi. Journal of the Institute of Science and Technology, 14(4), 1461-1473. https://doi.org/10.21597/jist.1429637
AMA Usta S. Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi. J. Inst. Sci. and Tech. December 2024;14(4):1461-1473. doi:10.21597/jist.1429637
Chicago Usta, Selçuk. “Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı Bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi”. Journal of the Institute of Science and Technology 14, no. 4 (December 2024): 1461-73. https://doi.org/10.21597/jist.1429637.
EndNote Usta S (December 1, 2024) Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi. Journal of the Institute of Science and Technology 14 4 1461–1473.
IEEE S. Usta, “Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi”, J. Inst. Sci. and Tech., vol. 14, no. 4, pp. 1461–1473, 2024, doi: 10.21597/jist.1429637.
ISNAD Usta, Selçuk. “Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı Bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi”. Journal of the Institute of Science and Technology 14/4 (December 2024), 1461-1473. https://doi.org/10.21597/jist.1429637.
JAMA Usta S. Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi. J. Inst. Sci. and Tech. 2024;14:1461–1473.
MLA Usta, Selçuk. “Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı Bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi”. Journal of the Institute of Science and Technology, vol. 14, no. 4, 2024, pp. 1461-73, doi:10.21597/jist.1429637.
Vancouver Usta S. Doğrusal Olmayan Regresyon Yöntemi Kullanılarak Kütle Transferine Dayalı bir Referans Evapotranspirasyon Tahmin Modeli Geliştirilmesi. J. Inst. Sci. and Tech. 2024;14(4):1461-73.