Research Article
BibTex RIS Cite

ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi

Year 2024, Volume: 14 Issue: 4, 1529 - 1537, 01.12.2024
https://doi.org/10.21597/jist.1520695

Abstract

Bu çalışmada, ZnO ince filmler farklı tavlama sıcaklıklarında dip coating (daldırma kaplama) metodu ile cam alt tabakalar üzerine üretildi. Filmlerin yapısal, morfolojik ve fotolüminesans özelliklerine tavlama sıcaklığının etkisi incelendi. XRD yapı analizi sonuçları filmlerin 150°C ve 250 °C’de amorf, 350 °C, 450 °C ve 550 °C’de ise hekzagonal wurtzite kristal yapıya sahip olduğunu gösterdi. Filmlerin yapı parametreleri tercihli yönelim düzlemine (002) göre hesaplandı. SEM yüzey görüntüleri, artan tavlama sıcaklıklarıyla filmlerin homojen bir şekilde kaplandığını gösterdi. SEM kesit görüntülerinden kalınlıkların 407.096 nm-616.310 nm aralığında olduğu belirlendi. Fotolüminesans spektrumlarına göre filmler 385 nm ve 765 nm’de keskin bir pik ve 450 nm ile 735 nm arasında geniş bir band gösterdi. Filmler yakın UV bölgesinde (385 nm) mor bir emisyona sahip olduğu görüldü. Sonuç olarak, tavlama sıcaklığının artmasıyla filmlerin kalitesi iyileşmekte ve homojen bir kristal yapı oluşmaktadır. Buna bağlı olarak da mor renkte bir emisyonuna sahip bu filmlerin tavlama sıcaklığının artması ile emisyon pik şiddeti artmaktadır. Üretilen filmler, mor ışık yayan optoelektronik aletlerde alternatif malzeme olarak kullanılabilir.

Thanks

Fotolüminesans ölçümleri için Balıkesir Üniversitesi Bilim ve Teknoloji Uygulama ve Araştırma Merkezine ve Dr. Mustafa Burak ÇOBAN’a teşekkür ederiz.

References

  • Abisheva, A. K., Afanasyev, D. A., Ilyassov, B. R., Aimukhanov, A. K., Kulbachinskii, V. A., & Zeinidenov, A. K. (2024). The influence of annealing environment of ZnO thin film on its optical, structural and photovoltaics performance. Physica E: Low-dimensional Systems and Nanostructures, 159, 115932.
  • Ahmad, A. A., Migdadi, A. B., Alsaad, A. M., Al-Bataineh, Q. M., & Telfah, A. (2021). Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Applied Physics A, 127(12), 922.
  • Altinolcek, N., Battal, A., Tavasli, M., Cameron, J., Peveler, W. J., Holly, A. Y., & Skabara, P. J. (2020). Yellowish-orange and red emitting quinoline-based iridium (III) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application. Synthetic Metals, 268, 116504.
  • Badrudin, S. I., Noor, M. M., Abd Samad, M. I., Zakaria, N. S. N., Yunas, J., & Latif, R. (2024). Eliminating surface cracks in metal film-polymer substrate for reliable flexible piezoelectric devices. Engineering Science and Technology, an International Journal, 50, 101617.
  • Bouderbala, I. Y., Guessoum, A., Rabhi, S., Bouhlassa, O., & Bouras, I. E. (2024). Optical band-diagram, Urbach energy tails associated with photoluminescence emission in defected ZnO thin films deposited by sol–gel process dip-coating: effect of precursor concentration. Applied Physics A, 130(3), 205.
  • Bu, I. Y., & Cole, M. T. (2014). A highly conductive and transparent solution processed AZO/MWCNT nanocomposite. Ceramics International, 40(1), 1099-1104.
  • Buzok, E. B., Yalcin, S., Demircan, G., Yılmaz, D., Aktas, B., & Aytar, E. (2024). The structural, optical, electrical and radiation shielding properties of Co-doped ZnO thin films. Radiation Physics and Chemistry, 222, 111840.
  • Chang, Y. C., Guo, J. Y., Chen, C. M., Di, H. W., & Hsu, C. C. (2017). Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency. Nanoscale, 9(35), 13235-13244.
  • Chen, Y. (2018). Review of ZnO transparent conducting oxides for solar applications. In IOP Conference Series: Materials Science and Engineering, 423, 012170. Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146, 106703.
  • Das, A., Das, A., Singha, C., & Bhattacharyya, A. (2023). Al, Mg Co-doped ZnO thin films: Effect of the annealing temperature on the resistivity and ultraviolet photoconductivity. Thin Solid Films, 780, 139958.
  • Dolai, S., Dey, R., Das, S., Hussain, S., Bhar, R., & Pal, A. K. (2017). Cupric oxide (CuO) thin films prepared by reactive dc magnetron sputtering technique for photovoltaic application. Journal of Alloys and Compounds, 724, 456-464.
  • Fan, Q., Li, D., Li, J., & Wang, C. (2020). Structure and piezoelectricity properties of V-doped ZnO thin films fabricated by sol-gel method. Journal of Alloys and Compounds, 829, 154483.
  • Govindaraj, M., Babu, S., Rathinam, R., Vasini, V., & Vijayakumar, K. (2023). Integrated electrocoagulation–photoelectrocatalytic oxidation for effective treatments of aqueous solution bisphenol-A using green-synthesized ZnO nanoparticles. Chemical Papers, 77(1), 169-183.
  • Gültekin, D., Kayış, F., & Akbulut, H. (2016). ZnO ince film kaplamaların kıvrımlı ağ morfolojisinin incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 3(1), 25-28.
  • Handani, S., Putra, I. J., Emriadi, E., Dahlan, D., & Arief, S. (2024). Improved Physical Properties of Green Fabricated ZnO Thin Films by Annealing Temperature. ChemistrySelect, 9(2), e202302868.
  • Hossain, G. M., Jalal, A. H., Pala, N., & Alam, F. (2024). Advancements in glucose monitoring: A thin film ZnO-nanoflakes based highly sensitive wearable biosensor for noninvasive sweat-based point-of-care monitoring for diabetes. ECS Transactions, 113(13), 35.
  • Jain, S., Medlin, W., Uprety, S., Isaacs-Smith, T., Olsson, T., Davis, J., & Laurent, G. M. (2024). Nanosecond-laser annealing of zinc oxide thin-films: The effect of the laser wavelength and fluence. Thin Solid Films, 791, 140236.
  • Kanagamani, K., Muthukrishnan, P., Kathiresan, A., Shankar, K., Sakthivel, P., & Ilayaraja, M. (2021). Detoxication and theranostic aspects of biosynthesised zinc oxide nanoparticles for drug delivery. Acta Metallurgica Sinica (English Letters), 34, 729-740.
  • Kavitha, B., Nirmala, M., Poornachandra, S., & Pavithra, M. (2017). Preparation and characterization of CdO thin films prepared by chemical method. J Environ Nanotechnol, 6(1), 59-66.
  • Koç, M. (2021). Ultrasonik sprey piroliz ile üretilen ZnO ince filmlerin alttaş sıcaklıklarının yapısal ve optik özelliklerine etkisi. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 16(1), 169-178.
  • Korbutyak, D. V., Lytvyn, O. S., Fedorenko, L. L., Matiuk, I. M., Kolomys, O. F., Oberemok, O. S., & Evtukh, A. A. (2024). Photoluminescence spectra of nanocrystalline ZnO films obtained by magnetron deposition technique. Journal of Materials Science: Materials in Electronics, 35(8), 583.
  • Kwon, S. J., Park, J. H., & Park, J. G. (2005). Wrinkling of a sol-gel-derived thin film. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 71(1), 011604.
  • Madadi, M., Heikkinen, M., Philip, A., & Karppinen, M. (2024). Conformal high-aspect-ratio solid electrolyte thin films for li-ion batteries by atomic layer deposition. ACS Applied Electronic Materials, 6(3), 1574-1580.
  • Motla, A., Kumaravelu, T. A., Dong, C. L., Chen, C. L., Asokan, K., & Annapoorni, S. (2024). Role of annealing environments on the local electronic and optical properties of zinc oxide films. Journal of Materials Science: Materials in Electronics, 35(4), 267.
  • Shanmugapriya, V., Arunpandiyan, S., Hariharan, G., Bharathi, S., Selvakumar, B., & Arivarasan, A. (2023). Enhanced supercapacitor performance of ZnO/SnO2: rGO nanocomposites under redox additive electrolyte. Journal of Alloys and Compounds, 935, 167994.
  • Sharma, H., Kumar, S., Yadav, J., Prasad, J., & Singh, M. (2024). Temperature treatment effect on the physical and optical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 35(1), 20.
  • Shkir, M., Khan, M. T., & Khan, A. (2024). Impact of Mo doping on photo-sensing properties of ZnO thin films for advanced photodetection applications. Journal of Alloys and Compounds, 985, 174009.
  • Stolyarchuk, I., Kuzyk, O., Dan’kiv, O., Dziedzic, A., Kleto, G., Stolyarchuk, A., & Hadzaman, I. (2023). Growth of Zn1-xNixO Thin Films and Their Structural, Optical and Magneto-Optical Properties. Coatings, 13(3), 601.
  • Subramanyam, T. K., Uthanna, S., & Naidu, B. S. (1998). Preparation and characterization of CdO films deposited by dc magnetron reactive sputtering. Materials Letters, 35(3-4), 214-220.
  • Suganya, L., Balamurugan, K. S., Sivakami, A., Sakthivel, P., Asthana, N., & Sundaresan, B. (2024). Ferromagnetic, optical and photoluminescence behavior of Ni-doped ZnO thin films. Topics in Catalysis, 67(1), 3-16.
  • Thomas, A., Thirumalaisamy, L., Madanagurusamy, S., & Sivaperuman, K. (2024). Switching the selectivity of ZnO thin films for ultra-sensitive acetaldehyde gas sensors through Co doping. Sensors and Actuators B: Chemical, 401, 135043.
  • Yadav, R. P., & Rai, K. B. (2023). Tailoring of ZnO thin films: effect of number of coating and sample ageing. International Journal of Mathematics and Physics, 14(2), 95-102.
  • Wasman, K. M., & Hamadameen, B. (2022). Review of optoelectronic properties of ZnO photodetector. Journal of Physical Chemistry and Functional Materials, 5(1), 9-21.
  • Xue, D., & Ratajczak, H. (2003). Constituent chemical bonds and nonlinear optical coefficients of Na2SeO4· H2SeO3· H2O molecular crystal. Chemical physics letters, 371(5-6), 601-607.

Effect Annealing Temperature on Structural, Morphological and Luminescence Properties of ZnO Thin Films

Year 2024, Volume: 14 Issue: 4, 1529 - 1537, 01.12.2024
https://doi.org/10.21597/jist.1520695

Abstract

In this study, ZnO thin films were fabricated on glass substrates by dip coating method at different annealing temperatures. The effect of annealing temperature on the structural, morphological and photoluminescence properties of the films was investigated. XRD structure analysis results showed that the films were amorphous at 150 °C and 250 °C and hexagonal wurtzite crystal structure at 350 °C, 450 °C and 550 °C. The structure parameters of the films were calculated according to the preferential orientation plane (002). SEM surface images showed that the films were homogeneously coated with increasing annealing temperatures. From the SEM cross-sectional images, it was determined that the thicknesses ranged from 407.096 - 616.310 nm. According to the photoluminescence spectra, the films showed a sharp peak at 385 nm and 765 nm and a broad band between 450 nm and 735 nm. The films were observed to have a violet emission in the near UV region (385 nm). As a result, the quality of the films improves with increasing annealing temperature and a homogeneous crystal structure is formed. Accordingly, the emission peak intensity of these films with a violet emission increases with increasing annealing temperature. The produced films can be used as alternative materials in optoelectronic devices emitting violet light.

References

  • Abisheva, A. K., Afanasyev, D. A., Ilyassov, B. R., Aimukhanov, A. K., Kulbachinskii, V. A., & Zeinidenov, A. K. (2024). The influence of annealing environment of ZnO thin film on its optical, structural and photovoltaics performance. Physica E: Low-dimensional Systems and Nanostructures, 159, 115932.
  • Ahmad, A. A., Migdadi, A. B., Alsaad, A. M., Al-Bataineh, Q. M., & Telfah, A. (2021). Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co-doped ZnO thin films. Applied Physics A, 127(12), 922.
  • Altinolcek, N., Battal, A., Tavasli, M., Cameron, J., Peveler, W. J., Holly, A. Y., & Skabara, P. J. (2020). Yellowish-orange and red emitting quinoline-based iridium (III) complexes: Synthesis, thermal, optical and electrochemical properties and OLED application. Synthetic Metals, 268, 116504.
  • Badrudin, S. I., Noor, M. M., Abd Samad, M. I., Zakaria, N. S. N., Yunas, J., & Latif, R. (2024). Eliminating surface cracks in metal film-polymer substrate for reliable flexible piezoelectric devices. Engineering Science and Technology, an International Journal, 50, 101617.
  • Bouderbala, I. Y., Guessoum, A., Rabhi, S., Bouhlassa, O., & Bouras, I. E. (2024). Optical band-diagram, Urbach energy tails associated with photoluminescence emission in defected ZnO thin films deposited by sol–gel process dip-coating: effect of precursor concentration. Applied Physics A, 130(3), 205.
  • Bu, I. Y., & Cole, M. T. (2014). A highly conductive and transparent solution processed AZO/MWCNT nanocomposite. Ceramics International, 40(1), 1099-1104.
  • Buzok, E. B., Yalcin, S., Demircan, G., Yılmaz, D., Aktas, B., & Aytar, E. (2024). The structural, optical, electrical and radiation shielding properties of Co-doped ZnO thin films. Radiation Physics and Chemistry, 222, 111840.
  • Chang, Y. C., Guo, J. Y., Chen, C. M., Di, H. W., & Hsu, C. C. (2017). Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency. Nanoscale, 9(35), 13235-13244.
  • Chen, Y. (2018). Review of ZnO transparent conducting oxides for solar applications. In IOP Conference Series: Materials Science and Engineering, 423, 012170. Cheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146, 106703.
  • Das, A., Das, A., Singha, C., & Bhattacharyya, A. (2023). Al, Mg Co-doped ZnO thin films: Effect of the annealing temperature on the resistivity and ultraviolet photoconductivity. Thin Solid Films, 780, 139958.
  • Dolai, S., Dey, R., Das, S., Hussain, S., Bhar, R., & Pal, A. K. (2017). Cupric oxide (CuO) thin films prepared by reactive dc magnetron sputtering technique for photovoltaic application. Journal of Alloys and Compounds, 724, 456-464.
  • Fan, Q., Li, D., Li, J., & Wang, C. (2020). Structure and piezoelectricity properties of V-doped ZnO thin films fabricated by sol-gel method. Journal of Alloys and Compounds, 829, 154483.
  • Govindaraj, M., Babu, S., Rathinam, R., Vasini, V., & Vijayakumar, K. (2023). Integrated electrocoagulation–photoelectrocatalytic oxidation for effective treatments of aqueous solution bisphenol-A using green-synthesized ZnO nanoparticles. Chemical Papers, 77(1), 169-183.
  • Gültekin, D., Kayış, F., & Akbulut, H. (2016). ZnO ince film kaplamaların kıvrımlı ağ morfolojisinin incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 3(1), 25-28.
  • Handani, S., Putra, I. J., Emriadi, E., Dahlan, D., & Arief, S. (2024). Improved Physical Properties of Green Fabricated ZnO Thin Films by Annealing Temperature. ChemistrySelect, 9(2), e202302868.
  • Hossain, G. M., Jalal, A. H., Pala, N., & Alam, F. (2024). Advancements in glucose monitoring: A thin film ZnO-nanoflakes based highly sensitive wearable biosensor for noninvasive sweat-based point-of-care monitoring for diabetes. ECS Transactions, 113(13), 35.
  • Jain, S., Medlin, W., Uprety, S., Isaacs-Smith, T., Olsson, T., Davis, J., & Laurent, G. M. (2024). Nanosecond-laser annealing of zinc oxide thin-films: The effect of the laser wavelength and fluence. Thin Solid Films, 791, 140236.
  • Kanagamani, K., Muthukrishnan, P., Kathiresan, A., Shankar, K., Sakthivel, P., & Ilayaraja, M. (2021). Detoxication and theranostic aspects of biosynthesised zinc oxide nanoparticles for drug delivery. Acta Metallurgica Sinica (English Letters), 34, 729-740.
  • Kavitha, B., Nirmala, M., Poornachandra, S., & Pavithra, M. (2017). Preparation and characterization of CdO thin films prepared by chemical method. J Environ Nanotechnol, 6(1), 59-66.
  • Koç, M. (2021). Ultrasonik sprey piroliz ile üretilen ZnO ince filmlerin alttaş sıcaklıklarının yapısal ve optik özelliklerine etkisi. Süleyman Demirel University Faculty of Arts and Science Journal of Science, 16(1), 169-178.
  • Korbutyak, D. V., Lytvyn, O. S., Fedorenko, L. L., Matiuk, I. M., Kolomys, O. F., Oberemok, O. S., & Evtukh, A. A. (2024). Photoluminescence spectra of nanocrystalline ZnO films obtained by magnetron deposition technique. Journal of Materials Science: Materials in Electronics, 35(8), 583.
  • Kwon, S. J., Park, J. H., & Park, J. G. (2005). Wrinkling of a sol-gel-derived thin film. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 71(1), 011604.
  • Madadi, M., Heikkinen, M., Philip, A., & Karppinen, M. (2024). Conformal high-aspect-ratio solid electrolyte thin films for li-ion batteries by atomic layer deposition. ACS Applied Electronic Materials, 6(3), 1574-1580.
  • Motla, A., Kumaravelu, T. A., Dong, C. L., Chen, C. L., Asokan, K., & Annapoorni, S. (2024). Role of annealing environments on the local electronic and optical properties of zinc oxide films. Journal of Materials Science: Materials in Electronics, 35(4), 267.
  • Shanmugapriya, V., Arunpandiyan, S., Hariharan, G., Bharathi, S., Selvakumar, B., & Arivarasan, A. (2023). Enhanced supercapacitor performance of ZnO/SnO2: rGO nanocomposites under redox additive electrolyte. Journal of Alloys and Compounds, 935, 167994.
  • Sharma, H., Kumar, S., Yadav, J., Prasad, J., & Singh, M. (2024). Temperature treatment effect on the physical and optical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 35(1), 20.
  • Shkir, M., Khan, M. T., & Khan, A. (2024). Impact of Mo doping on photo-sensing properties of ZnO thin films for advanced photodetection applications. Journal of Alloys and Compounds, 985, 174009.
  • Stolyarchuk, I., Kuzyk, O., Dan’kiv, O., Dziedzic, A., Kleto, G., Stolyarchuk, A., & Hadzaman, I. (2023). Growth of Zn1-xNixO Thin Films and Their Structural, Optical and Magneto-Optical Properties. Coatings, 13(3), 601.
  • Subramanyam, T. K., Uthanna, S., & Naidu, B. S. (1998). Preparation and characterization of CdO films deposited by dc magnetron reactive sputtering. Materials Letters, 35(3-4), 214-220.
  • Suganya, L., Balamurugan, K. S., Sivakami, A., Sakthivel, P., Asthana, N., & Sundaresan, B. (2024). Ferromagnetic, optical and photoluminescence behavior of Ni-doped ZnO thin films. Topics in Catalysis, 67(1), 3-16.
  • Thomas, A., Thirumalaisamy, L., Madanagurusamy, S., & Sivaperuman, K. (2024). Switching the selectivity of ZnO thin films for ultra-sensitive acetaldehyde gas sensors through Co doping. Sensors and Actuators B: Chemical, 401, 135043.
  • Yadav, R. P., & Rai, K. B. (2023). Tailoring of ZnO thin films: effect of number of coating and sample ageing. International Journal of Mathematics and Physics, 14(2), 95-102.
  • Wasman, K. M., & Hamadameen, B. (2022). Review of optoelectronic properties of ZnO photodetector. Journal of Physical Chemistry and Functional Materials, 5(1), 9-21.
  • Xue, D., & Ratajczak, H. (2003). Constituent chemical bonds and nonlinear optical coefficients of Na2SeO4· H2SeO3· H2O molecular crystal. Chemical physics letters, 371(5-6), 601-607.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Condensed Matter Imaging, Condensed Matter Characterisation Technique Development, Structural Properties of Condensed Matter, Surface Properties of Condensed Matter
Journal Section Fizik / Physics
Authors

Osman Salih Gündoğdu 0009-0008-9417-4824

Elif Güngör 0000-0002-7158-9604

Publication Date December 1, 2024
Submission Date July 22, 2024
Acceptance Date September 5, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Gündoğdu, O. S., & Güngör, E. (2024). ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi. Journal of the Institute of Science and Technology, 14(4), 1529-1537. https://doi.org/10.21597/jist.1520695
AMA Gündoğdu OS, Güngör E. ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi. J. Inst. Sci. and Tech. December 2024;14(4):1529-1537. doi:10.21597/jist.1520695
Chicago Gündoğdu, Osman Salih, and Elif Güngör. “ZnO İnce Filmlerin Yapısal, Morfolojik Ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi”. Journal of the Institute of Science and Technology 14, no. 4 (December 2024): 1529-37. https://doi.org/10.21597/jist.1520695.
EndNote Gündoğdu OS, Güngör E (December 1, 2024) ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi. Journal of the Institute of Science and Technology 14 4 1529–1537.
IEEE O. S. Gündoğdu and E. Güngör, “ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi”, J. Inst. Sci. and Tech., vol. 14, no. 4, pp. 1529–1537, 2024, doi: 10.21597/jist.1520695.
ISNAD Gündoğdu, Osman Salih - Güngör, Elif. “ZnO İnce Filmlerin Yapısal, Morfolojik Ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi”. Journal of the Institute of Science and Technology 14/4 (December 2024), 1529-1537. https://doi.org/10.21597/jist.1520695.
JAMA Gündoğdu OS, Güngör E. ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi. J. Inst. Sci. and Tech. 2024;14:1529–1537.
MLA Gündoğdu, Osman Salih and Elif Güngör. “ZnO İnce Filmlerin Yapısal, Morfolojik Ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi”. Journal of the Institute of Science and Technology, vol. 14, no. 4, 2024, pp. 1529-37, doi:10.21597/jist.1520695.
Vancouver Gündoğdu OS, Güngör E. ZnO İnce Filmlerin Yapısal, Morfolojik ve Lüminesans Özelliklerine Tavlama Sıcaklığının Etkisi. J. Inst. Sci. and Tech. 2024;14(4):1529-37.