Research Article
BibTex RIS Cite

Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading

Year 2024, Volume: 14 Issue: 4, 1590 - 1601, 01.12.2024
https://doi.org/10.21597/jist.1521794

Abstract

The combination of auxetic behavior with concrete offers promising advancements in structural materials, providing unique mechanical properties that enhance impact resistance and energy absorption. The study investigates the mechanical behavior of auxetic concrete cellular structures, focusing on elliptic and peanut-shaped unit cells as well as their modified stiffener configurations, under low-velocity impact loading. To compare their impact performance, traditional and stiffened models were analyzed numerically using finite element solver ANSYS/LS-DYNA. The findings indicate significant differences between traditional and stiffened models. Stiffened models, such as SEC and SPC, exhibit higher maximum impact forces compared to traditional models like TEC and TPC. The introduction of stiffeners delays the zero-force phenomenon, resulting in extended energy absorption periods. The TPC model absorbed the most significant proportion of the initial impact velocity among traditional models, whereas the SPC model exhibited the highest energy absorption in models with stiffeners. The study highlights the potential of stiffened auxetic concrete cellular structures to enhance impact resistance and energy dissipation, making them advantageous for applications requiring high structural resilience. Further research into varying impact velocities and loading directions is recommended to optimize these structures for diverse conditions.

References

  • Abdelwahed, B., Belkassem, B., Pyl, L., & Vantomme, J. (2015). Behaviour of reinforced concrete knee beam-column joint in case of ground corner column loss-numerical analysis. In: COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete Island, Greece.
  • Abedini, M., & Zhang, C. (2021). Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review. Archives of Computational Methods in Engineering, 28(4), 2921–2942.
  • Anonymous, (2016). LS-DYNA Keyword User’s Manual Ver. 971. Livermore Software Technology Corporation, California, USA.
  • Asgharpour, F., & Hosseini, M. (2024). Advancements and Challenges in the Development of self-healing Concrete for Sustainable Construction-A Critical Review. Alpha Journal of Engineering and Applied Sciences, 2(1), 33 – 48.
  • Chen, M., Chen, Z., Xuan, Y., Zhang, T., & Zhang, M. (2023). Static and dynamic compressive behaviour of 3D printed auxetic lattice reinforced ultra-high performance concrete. Cement and Concrete Composites, 139, 105046. Chen, M., Fang, S., Wang, G., Xuan, Y., Gao, D., & Zhang, M. (2024). Compressive and flexural behaviour of engineered cementitious composites based auxetic structures: An experimental and numerical study. Journal of Building Engineering, 86, 108999.
  • Felekoǧlu, K., Felekoǧlu, B., Ranade, R., Lee, B. Y., & Li, V. C. (2014). The role of flaw size and fiber distribution on tensile ductility of PVA-ECC. Composites Part B: Engineering, 56, 536 - 545.
  • Gürbüz, M., & Kocaman, İ. (2024). Enhancing seismic resilience: A proposed reinforcement technique for historical minarets. Engineering Failure Analysis, 156, 107832.
  • Ha, N. S., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496.
  • Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41.
  • Jiang, X., & Koike, R. (2023). High gravity material extrusion system and extruded polylactic acid performance enhancement. Scientific Reports, 13, 14224.
  • Kocaman, İ., & Gürbüz, M. (2024). Enhancing seismic performance of historic mosques through retrofitting measures. Engineering Structures, 301, 117245.
  • Li, V. C. (2003). On engineered cementitious composites (ECC), A review of the material and its applications. Journal of Advanced Concrete Technology, 1(3), 215-230.
  • Li, V. C., Bos, F. P., Yu, K., McGee, W., Ng, T. Y., Figueiredo, S. C., Nefs, K., Mechtcherine, V., Nerella, V. N., Pan, J., Zijl, G., & Kruger, P. J. (2020). On the emergence of 3D printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC). Cement and Concrete Research, 132, 106038.
  • Luo, C., Ren, X., Han, D., Zhang, X. G., Zhong, R., Zhang, X. Y., & Xie, Y. M. (2022). A novel concrete-filled auxetic tube composite structure: Design and compressive characteristic study. Engineering Structures, 268, 114759.
  • Lyngdoh, G. A., Kelter, N. K., Doner, S., Krishnan, N. M. A., & Das, S. (2022). Elucidating the auxetic behavior of cementitious cellular composites using finite element analysis and interpretable machine learning. Materials and Design, 213, 110341.
  • Mobarak, M. H., Islam, M. A., Hossain, N., Al Mahmud, M. Z., Rayhan, M. T., Nishi, N. J., & Chowdhury, M. A. (2023). Recent advances of additive manufacturing in implant fabrication - A review. Applied Surface Science Advances, 18, 100462.
  • Momoh, E. O., Jayasinghe, A., Hajsadeghi, M., Vinai, R., Evans, K. E., Kripakaran, P., & Orr, J. (2024). A state-of-the-art review on the application of auxetic materials in cementitious composites. Thin-Walled Structures, 196, 111447.
  • Murray, Y. (2007). Users Manual for LS-DYNA Concrete Material Model 159. Technical report, Federal Highway Administration, Virginia, USA.
  • Murray, Y. D. (2004). Theory and evaluation of concrete material model 159. In 8th International LS-DYNA Users Conference, Detroit, USA.
  • Orhan, S. N., & Alkan, E. (2024). Rigid fixation of the sternum: a comparative biomechanical study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(6), 1–9.
  • Orhan, S. N., & Erden, Ş. (2022a). Design and finite element analysis of a novel auxetic structure. Challenge Journal of Structural Mechanics, 8(4), 159 - 165.
  • Orhan, S. N., & Erden, Ş. (2022b). Numerical investigation of the mechanical properties of 2D and 3D auxetic structures. Smart Materials and Structures, 31, 065011.
  • Rosewitz, J. A., Choshali, H. A., & Rahbar, N. (2019). Bioinspired design of architected cement-polymer composites. Cement and Concrete Composites, 96, 252 - 265.
  • Solak, K., & Orhan, S. N. (2022). Performance evaluation of peanut-shaped tubular auxetics with enhanced stiffness: a finite element study. Modelling and Simulation in Materials Science and Engineering, 31, 015006.
  • Solak, K., & Orhan, S. N. (2023). Axial compression behaviour of concrete-filled auxetic tubular short columns. Challenge Journal of Concrete Research Letters, 14(1), 1 - 9.
  • Solak, K., & Orhan, S. N. (2024). Quasi-static crashworthiness behaviour of auxetic tubular structures based on rotating deformation mechanism. Smart Materials and Structures, 33, 055016.
  • Stopka, G. (2021). Modelling of Rock Cutting with Asymmetrical Disc Tool Using Discrete-Element Method (DEM). Rock Mechanics and Rock Engineering, 54, 6265 - 6279.
  • Tzortzinis, G., Gross, A., & Gerasimidis, S. (2022). Auxetic boosting of confinement in mortar by 3D reentrant truss lattices for next generation steel reinforced concrete members. Extreme Mechanics Letters, 52, 101681.
  • Wang, H., Zhang, Y., Lin, W., & Qin, Q. H. (2020). A novel two-dimensional mechanical metamaterial with negative Poisson’s ratio. Computational Materials Science, 171, 109232.
  • Weng, Y. H., Qian, K., Fu, F., & Fang, Q. (2020). Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse. Journal of Building Engineering, 29, 101109.
  • Xie, J., Xu, Y., Meng, Z., Liang, M., Wan, Z., & Šavija, B. (2024). Peanut shaped auxetic cementitious cellular composite (ACCC). Construction and Building Materials, 419, 135539.
  • Xu, Y., Meng, Z., Bol, R. J. M., & Šavija, B. (2024). Spring-like behavior of cementitious composite enabled by auxetic hyperelastic frame. International Journal of Mechanical Sciences, 275, 109364.
  • Xu, Y., & Šavija, B. (2021). Architected Cementitious Cellular Materials: Peculiarities and opportunities. Heron, 66(2–3).
  • Xu, Y., & Šavija, B. (2024). Auxetic cementitious composites (ACCs) with excellent compressive ductility: Experiments and modeling. Materials & Design, 237, 112572.
  • Xu, Y., Schlangen, E., Luković, M., & Šavija, B. (2021). Tunable mechanical behavior of auxetic cementitious cellular composites (CCCs): Experiments and simulations. Construction and Building Materials, 266, 121388.
  • Xu, Y., Zhang, H., Schlangen, E., Luković, M., & Šavija, B. (2020). Cementitious cellular composites with auxetic behavior. Cement and Concrete Composites, 111, 103624.
  • Yan, D., Yin, H., Wu, C., Li, Y., Baird, J., & Chen, G. (2016). Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement. Journal of Zhejiang University: Science A, 17, 689-701.
  • Yang, E. H., Yang, Y., & Li, V. C. (2007). Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Materials Journal, 104(6), 620 - 628.
  • Yin, X., Li, Q., Xu, X., Chen, B., Guo, K., & Xu, S. (2023). Investigation of continuous surface cap model (CSCM) for numerical simulation of strain-hardening fibre-reinforced cementitious composites against low-velocity impacts. Composite Structures, 304(1), 116424.
  • Zhong, R., Ren, X., Yu Zhang, X., Luo, C., Zhang, Y., & Min Xie, Y. (2022). Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Construction and Building Materials, 322, 126453. Zhou, H., Jia, K., Wang, X., Xiong, M. X., & Wang, Y. (2020). Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs. Thin-Walled Structures, 154, 106898.
  • Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., Tamimi, Z. A., Hansotte, G., Sunkara, L. D., & Bernat, J. (2024). Additive Manufacturing: A Comprehensive Review. Sensors, 24(9), 2668.
Year 2024, Volume: 14 Issue: 4, 1590 - 1601, 01.12.2024
https://doi.org/10.21597/jist.1521794

Abstract

References

  • Abdelwahed, B., Belkassem, B., Pyl, L., & Vantomme, J. (2015). Behaviour of reinforced concrete knee beam-column joint in case of ground corner column loss-numerical analysis. In: COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete Island, Greece.
  • Abedini, M., & Zhang, C. (2021). Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review. Archives of Computational Methods in Engineering, 28(4), 2921–2942.
  • Anonymous, (2016). LS-DYNA Keyword User’s Manual Ver. 971. Livermore Software Technology Corporation, California, USA.
  • Asgharpour, F., & Hosseini, M. (2024). Advancements and Challenges in the Development of self-healing Concrete for Sustainable Construction-A Critical Review. Alpha Journal of Engineering and Applied Sciences, 2(1), 33 – 48.
  • Chen, M., Chen, Z., Xuan, Y., Zhang, T., & Zhang, M. (2023). Static and dynamic compressive behaviour of 3D printed auxetic lattice reinforced ultra-high performance concrete. Cement and Concrete Composites, 139, 105046. Chen, M., Fang, S., Wang, G., Xuan, Y., Gao, D., & Zhang, M. (2024). Compressive and flexural behaviour of engineered cementitious composites based auxetic structures: An experimental and numerical study. Journal of Building Engineering, 86, 108999.
  • Felekoǧlu, K., Felekoǧlu, B., Ranade, R., Lee, B. Y., & Li, V. C. (2014). The role of flaw size and fiber distribution on tensile ductility of PVA-ECC. Composites Part B: Engineering, 56, 536 - 545.
  • Gürbüz, M., & Kocaman, İ. (2024). Enhancing seismic resilience: A proposed reinforcement technique for historical minarets. Engineering Failure Analysis, 156, 107832.
  • Ha, N. S., & Lu, G. (2020). A review of recent research on bio-inspired structures and materials for energy absorption applications. Composites Part B: Engineering, 181, 107496.
  • Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41.
  • Jiang, X., & Koike, R. (2023). High gravity material extrusion system and extruded polylactic acid performance enhancement. Scientific Reports, 13, 14224.
  • Kocaman, İ., & Gürbüz, M. (2024). Enhancing seismic performance of historic mosques through retrofitting measures. Engineering Structures, 301, 117245.
  • Li, V. C. (2003). On engineered cementitious composites (ECC), A review of the material and its applications. Journal of Advanced Concrete Technology, 1(3), 215-230.
  • Li, V. C., Bos, F. P., Yu, K., McGee, W., Ng, T. Y., Figueiredo, S. C., Nefs, K., Mechtcherine, V., Nerella, V. N., Pan, J., Zijl, G., & Kruger, P. J. (2020). On the emergence of 3D printable Engineered, Strain Hardening Cementitious Composites (ECC/SHCC). Cement and Concrete Research, 132, 106038.
  • Luo, C., Ren, X., Han, D., Zhang, X. G., Zhong, R., Zhang, X. Y., & Xie, Y. M. (2022). A novel concrete-filled auxetic tube composite structure: Design and compressive characteristic study. Engineering Structures, 268, 114759.
  • Lyngdoh, G. A., Kelter, N. K., Doner, S., Krishnan, N. M. A., & Das, S. (2022). Elucidating the auxetic behavior of cementitious cellular composites using finite element analysis and interpretable machine learning. Materials and Design, 213, 110341.
  • Mobarak, M. H., Islam, M. A., Hossain, N., Al Mahmud, M. Z., Rayhan, M. T., Nishi, N. J., & Chowdhury, M. A. (2023). Recent advances of additive manufacturing in implant fabrication - A review. Applied Surface Science Advances, 18, 100462.
  • Momoh, E. O., Jayasinghe, A., Hajsadeghi, M., Vinai, R., Evans, K. E., Kripakaran, P., & Orr, J. (2024). A state-of-the-art review on the application of auxetic materials in cementitious composites. Thin-Walled Structures, 196, 111447.
  • Murray, Y. (2007). Users Manual for LS-DYNA Concrete Material Model 159. Technical report, Federal Highway Administration, Virginia, USA.
  • Murray, Y. D. (2004). Theory and evaluation of concrete material model 159. In 8th International LS-DYNA Users Conference, Detroit, USA.
  • Orhan, S. N., & Alkan, E. (2024). Rigid fixation of the sternum: a comparative biomechanical study. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(6), 1–9.
  • Orhan, S. N., & Erden, Ş. (2022a). Design and finite element analysis of a novel auxetic structure. Challenge Journal of Structural Mechanics, 8(4), 159 - 165.
  • Orhan, S. N., & Erden, Ş. (2022b). Numerical investigation of the mechanical properties of 2D and 3D auxetic structures. Smart Materials and Structures, 31, 065011.
  • Rosewitz, J. A., Choshali, H. A., & Rahbar, N. (2019). Bioinspired design of architected cement-polymer composites. Cement and Concrete Composites, 96, 252 - 265.
  • Solak, K., & Orhan, S. N. (2022). Performance evaluation of peanut-shaped tubular auxetics with enhanced stiffness: a finite element study. Modelling and Simulation in Materials Science and Engineering, 31, 015006.
  • Solak, K., & Orhan, S. N. (2023). Axial compression behaviour of concrete-filled auxetic tubular short columns. Challenge Journal of Concrete Research Letters, 14(1), 1 - 9.
  • Solak, K., & Orhan, S. N. (2024). Quasi-static crashworthiness behaviour of auxetic tubular structures based on rotating deformation mechanism. Smart Materials and Structures, 33, 055016.
  • Stopka, G. (2021). Modelling of Rock Cutting with Asymmetrical Disc Tool Using Discrete-Element Method (DEM). Rock Mechanics and Rock Engineering, 54, 6265 - 6279.
  • Tzortzinis, G., Gross, A., & Gerasimidis, S. (2022). Auxetic boosting of confinement in mortar by 3D reentrant truss lattices for next generation steel reinforced concrete members. Extreme Mechanics Letters, 52, 101681.
  • Wang, H., Zhang, Y., Lin, W., & Qin, Q. H. (2020). A novel two-dimensional mechanical metamaterial with negative Poisson’s ratio. Computational Materials Science, 171, 109232.
  • Weng, Y. H., Qian, K., Fu, F., & Fang, Q. (2020). Numerical investigation on load redistribution capacity of flat slab substructures to resist progressive collapse. Journal of Building Engineering, 29, 101109.
  • Xie, J., Xu, Y., Meng, Z., Liang, M., Wan, Z., & Šavija, B. (2024). Peanut shaped auxetic cementitious cellular composite (ACCC). Construction and Building Materials, 419, 135539.
  • Xu, Y., Meng, Z., Bol, R. J. M., & Šavija, B. (2024). Spring-like behavior of cementitious composite enabled by auxetic hyperelastic frame. International Journal of Mechanical Sciences, 275, 109364.
  • Xu, Y., & Šavija, B. (2021). Architected Cementitious Cellular Materials: Peculiarities and opportunities. Heron, 66(2–3).
  • Xu, Y., & Šavija, B. (2024). Auxetic cementitious composites (ACCs) with excellent compressive ductility: Experiments and modeling. Materials & Design, 237, 112572.
  • Xu, Y., Schlangen, E., Luković, M., & Šavija, B. (2021). Tunable mechanical behavior of auxetic cementitious cellular composites (CCCs): Experiments and simulations. Construction and Building Materials, 266, 121388.
  • Xu, Y., Zhang, H., Schlangen, E., Luković, M., & Šavija, B. (2020). Cementitious cellular composites with auxetic behavior. Cement and Concrete Composites, 111, 103624.
  • Yan, D., Yin, H., Wu, C., Li, Y., Baird, J., & Chen, G. (2016). Blast response of full-size concrete walls with chemically reactive enamel (CRE)-coated steel reinforcement. Journal of Zhejiang University: Science A, 17, 689-701.
  • Yang, E. H., Yang, Y., & Li, V. C. (2007). Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Materials Journal, 104(6), 620 - 628.
  • Yin, X., Li, Q., Xu, X., Chen, B., Guo, K., & Xu, S. (2023). Investigation of continuous surface cap model (CSCM) for numerical simulation of strain-hardening fibre-reinforced cementitious composites against low-velocity impacts. Composite Structures, 304(1), 116424.
  • Zhong, R., Ren, X., Yu Zhang, X., Luo, C., Zhang, Y., & Min Xie, Y. (2022). Mechanical properties of concrete composites with auxetic single and layered honeycomb structures. Construction and Building Materials, 322, 126453. Zhou, H., Jia, K., Wang, X., Xiong, M. X., & Wang, Y. (2020). Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs. Thin-Walled Structures, 154, 106898.
  • Zhou, L., Miller, J., Vezza, J., Mayster, M., Raffay, M., Justice, Q., Tamimi, Z. A., Hansotte, G., Sunkara, L. D., & Bernat, J. (2024). Additive Manufacturing: A Comprehensive Review. Sensors, 24(9), 2668.
There are 41 citations in total.

Details

Primary Language English
Subjects Numerical Modelization in Civil Engineering
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Kemal Solak 0000-0001-6957-2689

Süleyman Nazif Orhan 0000-0002-1357-6039

Publication Date December 1, 2024
Submission Date July 24, 2024
Acceptance Date August 21, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Solak, K., & Orhan, S. N. (2024). Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading. Journal of the Institute of Science and Technology, 14(4), 1590-1601. https://doi.org/10.21597/jist.1521794
AMA Solak K, Orhan SN. Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading. J. Inst. Sci. and Tech. December 2024;14(4):1590-1601. doi:10.21597/jist.1521794
Chicago Solak, Kemal, and Süleyman Nazif Orhan. “Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading”. Journal of the Institute of Science and Technology 14, no. 4 (December 2024): 1590-1601. https://doi.org/10.21597/jist.1521794.
EndNote Solak K, Orhan SN (December 1, 2024) Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading. Journal of the Institute of Science and Technology 14 4 1590–1601.
IEEE K. Solak and S. N. Orhan, “Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading”, J. Inst. Sci. and Tech., vol. 14, no. 4, pp. 1590–1601, 2024, doi: 10.21597/jist.1521794.
ISNAD Solak, Kemal - Orhan, Süleyman Nazif. “Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading”. Journal of the Institute of Science and Technology 14/4 (December 2024), 1590-1601. https://doi.org/10.21597/jist.1521794.
JAMA Solak K, Orhan SN. Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading. J. Inst. Sci. and Tech. 2024;14:1590–1601.
MLA Solak, Kemal and Süleyman Nazif Orhan. “Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading”. Journal of the Institute of Science and Technology, vol. 14, no. 4, 2024, pp. 1590-01, doi:10.21597/jist.1521794.
Vancouver Solak K, Orhan SN. Comparative Study of Progressive Collapse Behavior of Auxetic Concrete Cellular Structures Under Low-Velocity Impact Loading. J. Inst. Sci. and Tech. 2024;14(4):1590-601.