Research Article
BibTex RIS Cite

Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors

Year 2024, Volume: 14 Issue: 4, 1538 - 1549, 01.12.2024
https://doi.org/10.21597/jist.1529537

Abstract

In the study, Tungsten oxide (WO3) was synthesized via the sol-gel method on P-type 〈100〉 silicon wafer. Electrical characterization of the Al/WO3/p-Si (MOS) capacitor was performed through capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at different frequencies (from 50 kHz to 1 MHz). As the applied voltage frequency increased, the maximum values of the measured C-V and G/ω-V characteristics decreased. This phenomenon was attributed to interface state trap (Dit) charges following low-frequency AC voltage signals. The variation of series resistance (Rs) and barrier height (ΦB) with frequency was examined. It was shown that Rs significantly affects the device behaviour. The ΦB also decreased with increasing frequency. This situation is suggested to indirectly affect the mobility of charge carriers directly through the Vo value. Ultimately, although WO3 material exhibits variable results in terms of dielectric properties, the study's finding of a high dielectric constant (e.g., 3688.75) is consistent with similar results in the literature. This high dielectric property underscores the material's importance for future applications.

Supporting Institution

Türkiye Cumhurbaşkanlığı, Strateji ve Bütçe Başkanlığı,

Project Number

2016K12-2834, 2020,

References

  • Adhikari, S., Murmu, M., & Kim, D. (2022). Core‐Shell Engineered WO3 Architectures: Recent Advances from Design to Applications. Small, 18(30), 2202654.
  • Seçkin Altındal YERİŞKİN, S. (2019). Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms(CMs) in the Au/n-Si (MS) structures at room temperature. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 835–846. https://doi.org/10.21597/jist.521351
  • Bentarzi, H. (2011). Transport in metal-oxide-semiconductor structures: mobile ions effects on the oxide properties. Springer Science & Business Media.
  • Caban-Zeda, H. P. (1969). Interface states measurements by MOS low temperature transient capacitance. Case Western Reserve University.
  • Çetinkaya, H. G., Bengi, S., Durmuş, P., Demirezen, S., & Altındal. (2024). The Frequency Dependent of Main Electrical Parameters, Conductivity and Surface States in the Al/ (%0.5 Bi:ZnO)/p-Si/Au (MIS) Structures. Silicon, 16(5), 2315–2322. https://doi.org/10.1007/s12633-024-02929-6
  • Cristoloveanu, S., & Li, S. (2013). Electrical characterization of silicon-on-insulator materials and devices (Vol. 305). Springer Science & Business Media.
  • Gowtham, B., Balasubramani, V., Ramanathan, S., Ubaidullah, M., Shaikh, S. F., & Sreedevi, G. (2021). Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures. Journal of Alloys and Compounds, 888. https://doi.org/10.1016/j.jallcom.2021.161490
  • Güçlü, Tanrıkulu, E. E., Ulusoy, M., Kalandargh, Y. A., & Altındal. (2024). Frequency-dependent physical parameters, the voltage-dependent profile of surface traps, and their lifetime of Au/(ZnCdS-GO:PVP)/n-Si structures by using the conductance method. Journal of Materials Science: Materials in Electronics, 35(5). https://doi.org/10.1007/s10854-024-12111-8
  • Hirose, T., & Furukawa, K. (2006). Dielectric anomaly of tungsten trioxide WO 3 with giant dielectric constant. Physica Status Solidi (A) Applications and Materials Science, 203(3), 608–615. https://doi.org/10.1002/pssa.200521407
  • Huang, C. C., Xing, W., & Zhuo, S. P. (2009). Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Materialia, 61(10), 985–987. https://doi.org/10.1016/j.scriptamat.2009.08.009
  • Lee, Y. J., Kim, Y., Gim, H., Hong, K., & Jang, H. W. (2024). Nanoelectronics Using Metal–Insulator Transition. Advanced Materials, 36(5), 2305353.
  • Li, S. S., & Li, S. S. (1993). Metal—Oxide—Semiconductor Field-Effect Transistors. Semiconductor Physical Electronics, 423–454.
  • Li, X., Fu, L., Karimi-Maleh, H., Chen, F., & Zhao, S. (2024). Innovations in WO3 gas sensors: Nanostructure engineering, functionalization, and future perspectives. Heliyon.
  • Lok, R., Kaya, S., Karacali, H., & Yilmaz, E. (2016). A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. Journal of Materials Science: Materials in Electronics, 27(12), 13154–13160. https://doi.org/10.1007/s10854-016-5461-x
  • Malta, G., FIS, S. S. D., PATANÉ, S., ROMANO, D. R. G., & CRUPI, V. (2024). Metal-Oxide-Metal (MOM) capacitors and GaN-based High Electron Mobility Transistors (HEMTs) devices for integrated circuits: a reliability study.
  • Mander, H. F. (1982). Physics of Semiconductor Devices, SM Sze, Wiley, Amsterdam (1981). Elsevier.
  • Morkoc, B., Kahraman, A., Aktag, A., & Yilmaz, E. (2019). Electrical Parameters of the Erbium Oxide MOS Capacitor for Different Frequencies. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 139–143. https://doi.org/10.18466/cbayarfbe.460022
  • Nabeel, M. I., Hussain, D., Ahmad, N., Najam-ul-Haq, M., & Musharraf, S. G. (2023). Recent Advancements in Fabrication and Photocatalytic Applications of Graphitic‎ Carbon Nitride-Tungsten Oxide Nanocomposites. Nanoscale Advances.
  • Ocak, Y. S., Genisel, M. F., & Kiliçoǧlu, T. (2010). Ta/Si Schottky diodes fabricated by magnetron sputtering technique. Microelectronic Engineering, 87(11), 2338–2342. https://doi.org/10.1016/j.mee.2010.04.003
  • Pande, P., Haasmann, D., Han, J., Moghadam, H. A., Tanner, P., & Dimitrijev, S. (2020). Electrical characterization of SiC MOS capacitors: A critical review. Microelectronics Reliability, 112, 113790.
  • Rideout, V. L. (1975). A review of the theory and technology for ohmic contacts to group III–V compound semiconductors. Solid-State Electronics, 18(6), 541–550.
  • Rocca, T., Gurel, A., Schaming, D., Limoges, B., & Balland, V. (2024). Multivalent-Ion versus Proton Insertion into Nanostructured Electrochromic WO3 from Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 16(18), 23567–23575. https://doi.org/10.1021/acsami.4c02152
  • Santos, L., Neto, J. P., Crespo, A., Baião, P., Barquinha, P., Pereira, L., Martins, R., & Fortunato, E. (2015). Electrodeposition of WO3 nanoparticles for sensing applications. Electroplating of Nanostructures, 1–22.
  • Sevgili, Ö., Orak, İ., & Tiras, K. S. (2022). The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-Dimensional Systems and Nanostructures, 144. https://doi.org/10.1016/j.physe.2022.115380
  • Silva, J. F., Redondo, L., Canacsinh, H., & Dillard, W. C. (2024). Solid-state pulsed power modulators and capacitor charging applications. In Power Electronics Handbook (pp. 621–685). Elsevier.
  • Tan, S. O. (2018). Schottky Yapılar Üzerine İnceleme ve Analiz Çalışması. Journal of Polytechnic. https://doi.org/10.2339/politeknik.426648
  • TAŞCI, E. (2023). A Wide Frequency Range C-V and G-V Characteristics Study in Schottky Contacts with a BODIPY-Pyridine Organic Interface. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 11(2), 398–406. https://doi.org/10.29109/gujsc.1246327
  • Taşçıoğlu, I., Pirgholi-Givi, G., Yerişkin, S. A., & Azizian-Kalandaragh, Y. (2023). Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4 –PVP interfacial layers. Journal of Sol-Gel Science and Technology, 107(3), 536–547. https://doi.org/10.1007/s10971-023-06177-9
  • Thummavichai, K. (2018). Tungsten oxide nanostructures and their electrochromic performance. University of Exeter (United Kingdom).
  • Tucci, M., Serenelli, L., De Iuliis, S., Izzi, M., De Cesare, G., & Caputo, D. (2011). Back contact formation for p‐type based a‐Si: H/c‐Si heterojunction solar cells. Physica Status Solidi c, 8(3), 932–935.
  • Wieder, H. H. (1982). MOS (metal oxide semiconductors) physics and technology by EH Nicollian and JR Brews. Journal of Vacuum Science Technology, 21(4), 1048–1049.
  • Ytterdal, T., Cheng, Y., & Fjeldly, T. A. (2003). MOSFET device physics and operation. Device Modeling for Analog and RF CMOS Circuit Design, 1–45.
  • Zhang, C., Boudiba, A., De Marco, P., Snyders, R., Olivier, M.-G., & Debliquy, M. (2013). Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sensors and Actuators B: Chemical, 181, 395–401. https://doi.org/https://doi.org/10.1016/j.snb.2013.01.082
  • Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar‐zadeh, K. (2011). Nanostructured tungsten oxide–properties, synthesis, and applications. Advanced Functional Materials, 21(12), 2175–2196.

Al/WO3/p-Si (MOS) Kapasitörlerde Arayüzey Durumları, Seri Direnç ve Bariyer Yüksekliğinin Frekansla Değişiminin İncelenmesi

Year 2024, Volume: 14 Issue: 4, 1538 - 1549, 01.12.2024
https://doi.org/10.21597/jist.1529537

Abstract

Çalışmada, Tungsten oksit (WO3), sol-jel yöntemiyle P-tipi 〈100〉 silisyum plakası üzerinde sentezlenmiştir. Al/WO3/p-Si (MOS) kapasitör elektriksel karakterizasyonu, farklı frekanslarda (50 kHz'den 1 MHz'e kadar) kapasite-voltaj (C-V) ve iletkenlik-voltaj (G/ω-V) ölçümleri ile gerçekleştirilmiştir. Uygulanan voltaj frekansı arttıkça, ölçülen C-V ve G/ω-V karakteristiklerinin maksimum değerleri azalmıştır. Bu olgu, arayüzey durumu tuzak (Dit) yüklerinin düşük frekanslı AC voltaj sinyallerini takip etmesine bağlanmıştır. Seri direnç (Rs) ve bariyer yüksekliğinin (ΦB) frekansla değişimi incelenmiştir. Rs 'in cihaz davranışını önemli ölçüde etkilediği gösterilmiştir. ΦB de artan frekansla azalmıştır. Bu davranışın, V0 değerini doğrudan etkilerken yük taşıyıcılarının hareketliliğini dolaylı olarak etkilediği öne sürülmüştür. Sonuç olarak, WO3 malzemesi dielektrik özellikler açısından değişken sonuçlar sergilemesine rağmen, çalışmanın yüksek dielektrik sabiti (örneğin, 3688.75) bulgusu literatürdeki benzer sonuçlarla tutarlıdır. Bu yüksek dielektrik özelliği, malzemenin gelecekteki uygulamalar için önemini vurgulamaktadır.

Project Number

2016K12-2834, 2020,

References

  • Adhikari, S., Murmu, M., & Kim, D. (2022). Core‐Shell Engineered WO3 Architectures: Recent Advances from Design to Applications. Small, 18(30), 2202654.
  • Seçkin Altındal YERİŞKİN, S. (2019). Effects of (0.01Ni-PVA) interlayer, interface traps (Dit), and series resistance (Rs) on the conduction mechanisms(CMs) in the Au/n-Si (MS) structures at room temperature. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(2), 835–846. https://doi.org/10.21597/jist.521351
  • Bentarzi, H. (2011). Transport in metal-oxide-semiconductor structures: mobile ions effects on the oxide properties. Springer Science & Business Media.
  • Caban-Zeda, H. P. (1969). Interface states measurements by MOS low temperature transient capacitance. Case Western Reserve University.
  • Çetinkaya, H. G., Bengi, S., Durmuş, P., Demirezen, S., & Altındal. (2024). The Frequency Dependent of Main Electrical Parameters, Conductivity and Surface States in the Al/ (%0.5 Bi:ZnO)/p-Si/Au (MIS) Structures. Silicon, 16(5), 2315–2322. https://doi.org/10.1007/s12633-024-02929-6
  • Cristoloveanu, S., & Li, S. (2013). Electrical characterization of silicon-on-insulator materials and devices (Vol. 305). Springer Science & Business Media.
  • Gowtham, B., Balasubramani, V., Ramanathan, S., Ubaidullah, M., Shaikh, S. F., & Sreedevi, G. (2021). Dielectric relaxation, electrical conductivity measurements, electric modulus and impedance analysis of WO3 nanostructures. Journal of Alloys and Compounds, 888. https://doi.org/10.1016/j.jallcom.2021.161490
  • Güçlü, Tanrıkulu, E. E., Ulusoy, M., Kalandargh, Y. A., & Altındal. (2024). Frequency-dependent physical parameters, the voltage-dependent profile of surface traps, and their lifetime of Au/(ZnCdS-GO:PVP)/n-Si structures by using the conductance method. Journal of Materials Science: Materials in Electronics, 35(5). https://doi.org/10.1007/s10854-024-12111-8
  • Hirose, T., & Furukawa, K. (2006). Dielectric anomaly of tungsten trioxide WO 3 with giant dielectric constant. Physica Status Solidi (A) Applications and Materials Science, 203(3), 608–615. https://doi.org/10.1002/pssa.200521407
  • Huang, C. C., Xing, W., & Zhuo, S. P. (2009). Capacitive performances of amorphous tungsten oxide prepared by microwave irradiation. Scripta Materialia, 61(10), 985–987. https://doi.org/10.1016/j.scriptamat.2009.08.009
  • Lee, Y. J., Kim, Y., Gim, H., Hong, K., & Jang, H. W. (2024). Nanoelectronics Using Metal–Insulator Transition. Advanced Materials, 36(5), 2305353.
  • Li, S. S., & Li, S. S. (1993). Metal—Oxide—Semiconductor Field-Effect Transistors. Semiconductor Physical Electronics, 423–454.
  • Li, X., Fu, L., Karimi-Maleh, H., Chen, F., & Zhao, S. (2024). Innovations in WO3 gas sensors: Nanostructure engineering, functionalization, and future perspectives. Heliyon.
  • Lok, R., Kaya, S., Karacali, H., & Yilmaz, E. (2016). A detailed study on the frequency-dependent electrical characteristics of Al/HfSiO4/p-Si MOS capacitors. Journal of Materials Science: Materials in Electronics, 27(12), 13154–13160. https://doi.org/10.1007/s10854-016-5461-x
  • Malta, G., FIS, S. S. D., PATANÉ, S., ROMANO, D. R. G., & CRUPI, V. (2024). Metal-Oxide-Metal (MOM) capacitors and GaN-based High Electron Mobility Transistors (HEMTs) devices for integrated circuits: a reliability study.
  • Mander, H. F. (1982). Physics of Semiconductor Devices, SM Sze, Wiley, Amsterdam (1981). Elsevier.
  • Morkoc, B., Kahraman, A., Aktag, A., & Yilmaz, E. (2019). Electrical Parameters of the Erbium Oxide MOS Capacitor for Different Frequencies. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 15(2), 139–143. https://doi.org/10.18466/cbayarfbe.460022
  • Nabeel, M. I., Hussain, D., Ahmad, N., Najam-ul-Haq, M., & Musharraf, S. G. (2023). Recent Advancements in Fabrication and Photocatalytic Applications of Graphitic‎ Carbon Nitride-Tungsten Oxide Nanocomposites. Nanoscale Advances.
  • Ocak, Y. S., Genisel, M. F., & Kiliçoǧlu, T. (2010). Ta/Si Schottky diodes fabricated by magnetron sputtering technique. Microelectronic Engineering, 87(11), 2338–2342. https://doi.org/10.1016/j.mee.2010.04.003
  • Pande, P., Haasmann, D., Han, J., Moghadam, H. A., Tanner, P., & Dimitrijev, S. (2020). Electrical characterization of SiC MOS capacitors: A critical review. Microelectronics Reliability, 112, 113790.
  • Rideout, V. L. (1975). A review of the theory and technology for ohmic contacts to group III–V compound semiconductors. Solid-State Electronics, 18(6), 541–550.
  • Rocca, T., Gurel, A., Schaming, D., Limoges, B., & Balland, V. (2024). Multivalent-Ion versus Proton Insertion into Nanostructured Electrochromic WO3 from Mild Aqueous Electrolytes. ACS Applied Materials & Interfaces, 16(18), 23567–23575. https://doi.org/10.1021/acsami.4c02152
  • Santos, L., Neto, J. P., Crespo, A., Baião, P., Barquinha, P., Pereira, L., Martins, R., & Fortunato, E. (2015). Electrodeposition of WO3 nanoparticles for sensing applications. Electroplating of Nanostructures, 1–22.
  • Sevgili, Ö., Orak, İ., & Tiras, K. S. (2022). The examination of the electrical properties of Al/Mg2Si/p-Si Schottky diodes with an ecofriendly interfacial layer depending on temperature and frequency. Physica E: Low-Dimensional Systems and Nanostructures, 144. https://doi.org/10.1016/j.physe.2022.115380
  • Silva, J. F., Redondo, L., Canacsinh, H., & Dillard, W. C. (2024). Solid-state pulsed power modulators and capacitor charging applications. In Power Electronics Handbook (pp. 621–685). Elsevier.
  • Tan, S. O. (2018). Schottky Yapılar Üzerine İnceleme ve Analiz Çalışması. Journal of Polytechnic. https://doi.org/10.2339/politeknik.426648
  • TAŞCI, E. (2023). A Wide Frequency Range C-V and G-V Characteristics Study in Schottky Contacts with a BODIPY-Pyridine Organic Interface. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 11(2), 398–406. https://doi.org/10.29109/gujsc.1246327
  • Taşçıoğlu, I., Pirgholi-Givi, G., Yerişkin, S. A., & Azizian-Kalandaragh, Y. (2023). Examination on the current conduction mechanisms of Au/n-Si diodes with ZnO–PVP and ZnO/Ag2WO4 –PVP interfacial layers. Journal of Sol-Gel Science and Technology, 107(3), 536–547. https://doi.org/10.1007/s10971-023-06177-9
  • Thummavichai, K. (2018). Tungsten oxide nanostructures and their electrochromic performance. University of Exeter (United Kingdom).
  • Tucci, M., Serenelli, L., De Iuliis, S., Izzi, M., De Cesare, G., & Caputo, D. (2011). Back contact formation for p‐type based a‐Si: H/c‐Si heterojunction solar cells. Physica Status Solidi c, 8(3), 932–935.
  • Wieder, H. H. (1982). MOS (metal oxide semiconductors) physics and technology by EH Nicollian and JR Brews. Journal of Vacuum Science Technology, 21(4), 1048–1049.
  • Ytterdal, T., Cheng, Y., & Fjeldly, T. A. (2003). MOSFET device physics and operation. Device Modeling for Analog and RF CMOS Circuit Design, 1–45.
  • Zhang, C., Boudiba, A., De Marco, P., Snyders, R., Olivier, M.-G., & Debliquy, M. (2013). Room temperature responses of visible-light illuminated WO3 sensors to NO2 in sub-ppm range. Sensors and Actuators B: Chemical, 181, 395–401. https://doi.org/https://doi.org/10.1016/j.snb.2013.01.082
  • Zheng, H., Ou, J. Z., Strano, M. S., Kaner, R. B., Mitchell, A., & Kalantar‐zadeh, K. (2011). Nanostructured tungsten oxide–properties, synthesis, and applications. Advanced Functional Materials, 21(12), 2175–2196.
There are 34 citations in total.

Details

Primary Language English
Subjects Elemental Semiconductors
Journal Section Fizik / Physics
Authors

Ramazan Lök 0000-0003-3909-2662

Project Number 2016K12-2834, 2020,
Publication Date December 1, 2024
Submission Date August 7, 2024
Acceptance Date September 26, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Lök, R. (2024). Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors. Journal of the Institute of Science and Technology, 14(4), 1538-1549. https://doi.org/10.21597/jist.1529537
AMA Lök R. Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors. J. Inst. Sci. and Tech. December 2024;14(4):1538-1549. doi:10.21597/jist.1529537
Chicago Lök, Ramazan. “Investigation of Interface States, Series Resistance and Barrier Height Variation With Frequency in Al/WO3/P-Si (MOS) Capacitors”. Journal of the Institute of Science and Technology 14, no. 4 (December 2024): 1538-49. https://doi.org/10.21597/jist.1529537.
EndNote Lök R (December 1, 2024) Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors. Journal of the Institute of Science and Technology 14 4 1538–1549.
IEEE R. Lök, “Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors”, J. Inst. Sci. and Tech., vol. 14, no. 4, pp. 1538–1549, 2024, doi: 10.21597/jist.1529537.
ISNAD Lök, Ramazan. “Investigation of Interface States, Series Resistance and Barrier Height Variation With Frequency in Al/WO3/P-Si (MOS) Capacitors”. Journal of the Institute of Science and Technology 14/4 (December 2024), 1538-1549. https://doi.org/10.21597/jist.1529537.
JAMA Lök R. Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors. J. Inst. Sci. and Tech. 2024;14:1538–1549.
MLA Lök, Ramazan. “Investigation of Interface States, Series Resistance and Barrier Height Variation With Frequency in Al/WO3/P-Si (MOS) Capacitors”. Journal of the Institute of Science and Technology, vol. 14, no. 4, 2024, pp. 1538-49, doi:10.21597/jist.1529537.
Vancouver Lök R. Investigation of Interface States, Series Resistance and Barrier Height Variation with Frequency in Al/WO3/p-Si (MOS) Capacitors. J. Inst. Sci. and Tech. 2024;14(4):1538-49.