Research Article
BibTex RIS Cite

NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı

Year 2025, Volume: 15 Issue: 1, 122 - 133, 01.03.2025
https://doi.org/10.21597/jist.1510493

Abstract

Bu çalışmada bir tekstil boyası olan metil viyole (MV)’nin sulu çözeltilerden gideriminde, potansiyel bir adsorban olarak kullanılması için NaOH ile modifiye edilen poli(2,5-dihidro-2,5-dimetoksifuran) sentezlendi ve bu polimerin yapısı FT-IR spektrokopisi tekniği kullanılarak karakterize edildi. Kesikli yöntem ile adsorpsiyon için optimum koşullar, temas süresi, çözeltinin başlangıç pH'sı ve konsantrasyonu gibi çeşitli parametreler değerlendirildi. Denge adsorpsiyon derişimi boyanın stok çözelti pH’sında 200 mg/L MV derişiminde 60 dakika sonunda maksimum 637.04 mg/g olarak bulundu. Adsorpsiyon Langmuir izoterm modeli ile iyi bir şekilde uyuşmaktadır. MV adsorpsiyonu, ikinci dereceden hız kinetik modeli ile uyumludur. Bu sonuçlar, modifiye polimerin özellikle katyonik boyaların atık sulardan gideriminde yüksek bir potansiyele sahip olduğunu göstermektedir.

References

  • Ahmed, M., Mashkoor, F., & Nasar, A. (2020). Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundwater for sustainable development, 10, 100322.
  • Akinterinwa, A., Oladele, E., Adebayo, A., & Adamu, M. (2024). Characterization of aqueous Pb2+ adsorption onto cross-linked-carboxymethyl legume starch phosphate using FTIR and SEM-EDX. Biomass Conversion and Biorefinery, 14(14), 16059-16073.
  • Alavinia, S., Ghorbani-Vaghei, R., Asadabadi, S., & Atrian, A. (2023). Sodium alginate/diethyleneamine-triazine-sulfonamide nanocomposite for adsorptive removal of Pb (II) and methyl violet from aqueous solutions. Materials Chemistry and Physics, 293, 126915.
  • Alsawat, M. (2024). Congo Red Dye Adsorption using CuSnO2TiO2 Nanocomposites: Adsorption Data Interpretation by Statistical Modeling. International Journal of Electrochemical Science, 100611.
  • Alsulaili, A., Elsayed, K., & Refaie, A. (2023). Utilization of agriculture waste materials as sustainable adsorbents for heavy metal removal: a comprehensive review. Journal of Engineering Research. Article in press.
  • Ardelean, R., Popa, A., Visa, A., Dragan, E. S., & Davidescu, C. M. (2024). Synthesis, characterization and applications of poly (styrene-co-divinylbenzene) functionalized with aminophosphinic acid pendant groups as high-performance adsorbents for acetylsalicylic acid. Polymer Bulletin, 81(10), 8783-8809.
  • Armour, M., Davies, A. G., Upadhyay, J., & Wassermann, A. (1967). Colored electrically conducting polymers from furan, pyrrole, and thiophene. Journal of Polymer Science Part A‐1: Polymer Chemistry, 5(7), 1527-1538.
  • Bhattacharyya, R., & Ray, S. K. (2015). Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical engineering journal, 260, 269-283.
  • Bıyıkoğlu, M. (2011). Poli(2,5-dihidro-2,5-dimetoksifuran)’ın fonksiyonlandırılması ve fonksiyonlandırmaların mrtal iyonu adsorpsiyonu üzerine etkilerinin incelenmesi. Doktora Tezi. Kırıkkale Üniversitesi, Kırıkkale.
  • Ciftci, H., Öktem, Z., & Testereci, H. N. (2012). Polymers from renewable resources: synthesis and characterization of poly (2, 5-dihydro-2, 5-dimethoxy furan). Turkish Journal of Chemistry, 36(2), 315-322.
  • Dewi, R. S., Zaharani, L., Johan, M. R., & Khaligh, N. G. (2024). Synthesis and characterization of a new multifunctional aliphatic poly (amic acid): An efficient polymeric adsorbent for removing the heavy metal ions. Journal of Molecular Structure, 1318, 139210.
  • Erduran, N. (2010). Poli(2,5-dihidro-2,5-dimetoksifuran)’ın modifikasyonu ve Cd(II) ve Cr(VI) iyonlarını adsorplama özelliklerinin incelenmesi. Doktora Tezi. Kırıkkale Üniversitesi, Kırıkkale.
  • Faizal, A. N. M., Putra, N. R., & Zaini, M. A. A. (2023). Insight into the adsorptive mechanisms of methyl violet and reactive orange from water—A short review. Particulate Science and Technology, 41(5), 730-739.
  • Faizal, A. N. M., Putra, N. R., Aziz, A. H. A., Agi, A., & Zaini, M. A. A. (2024). Giant mud crab shell biochar: A promising adsorbent for methyl violet removal in wastewater treatment. Journal of Cleaner Production, 141637.
  • Felipe Melo Lima Gomes, B., Araujo, C. M. B. D., do Nascimento, B. F., Silva Santos, R. K. D., Freire, E. M. P. D. L., Da Motta Sobrinho, M. A., & Carvalho, M. N. (2023). Adsorption of Cd (II) ions and methyl violet dye by using an agar-graphene oxide nano-biocomposite. Environmental Technology, 1-12.
  • Gandini, A., & M. Lacerda, T. (2022). Furan polymers: state of the art and perspectives. Macromolecular Materials and Engineering, 307(6), 2100902.
  • González-Tejera, M. J., de la Blanca, E. S., & Carrillo, I. J. S. M. (2008). Polyfuran conducting polymers: Synthesis, properties, and applications. Synthetic Metals, 158(5), 165-189.
  • Iroegbu, A. O. C., & Ray, S. S. (2024). On the chemistry of furfuryl alcohol polymerization: A review. Journal of Polymer Science, 62(6), 1044-1060.
  • Kooh, M. R. R., Dahri, M. K., Lim, L. B., Lim, L. H., & Malik, O. A. (2016). Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environmental Earth Sciences, 75, 1-14.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Li, P., Su, Y. J., Wang, Y., Liu, B., & Sun, L. M. (2010). Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder. Journal of hazardous materials, 179(1-3), 43-48.
  • Liu, C., Bai, R., & San Ly, Q. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water research, 42(6-7), 1511-1522.
  • Liu, Q., Liu, Y., Zhang, Z., Wang, X., & Shen, J. (2020). Adsorption of cationic dyes from aqueous solution using hydrophilic silica aerogel via ambient pressure drying. Chinese Journal of Chemical Engineering, 28(9), 2467-2473.
  • Lu, Y. C., Kooh, M. R. R., Lim, L. B. L., & Priyantha, N. (2021). Effective and simple NaOH-modification method to remove methyl violet dye via Ipomoea aquatica roots. Adsorption Science & Technology, 2021, 5932222.
  • Mahmoud, M. E., Nabil, G. M., Khalifa, M. A., El-Mallah, N. M., & Hassouba, H. M. (2019). Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite. Journal of Environmental Chemical Engineering, 7(2), 103009.
  • Musa, S. A., Abdulhameed, A. S., Baharin, S. N. A., ALOthman, Z. A., Wilson, L. D., & Jawad, A. H. (2023). Coal-based activated carbon via microwave-assisted ZnCl2 activation for methyl violet 2B dye removal: optimization, desirability function, and adsorption mechanism. Minerals, 13(3), 438.
  • Mustafanejad, F., Sajjadi, N., Marandi, R., & Zaeimdar, M. (2021). Efficient removal of crystal violet by sulphonic-modified multi-walled carbon nano-tube and graphene oxide. Nanotechnology for Environmental Engineering, 6(2), 30.
  • Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., & Zheng, S. (2009). Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 151(1-3), 19-29.
  • Pathak, H. K., Seth, C. S., Chauhan, P. K., Dubey, G., Singh, G., Jain, D., ... & Khoo, K. S. (2024). Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: mechanism, adsorption kinetic model, plant growth and development. Environmental Research, 119136.
  • Patra, G., Barnwal, R., Behera, S. K., & Meikap, B. C. (2018). Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone. Journal of Environmental Chemical Engineering, 6(4), 5204-5211.
  • Raj, A., Bethi, B., & Sonawane, S. H. (2018). Investigation of removal of crystal violet dye using novel hybrid technique involving hydrodynamic cavitation and hydrogel. Journal of environmental chemical engineering, 6(4), 5311-5319.
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390-397.
  • Sadiku, M., Selimi, T., Berisha, A., Maloku, A., Mehmeti, V., Thaçi, V., & Hasani, N. (2022). Removal of methyl violet from aqueous solution by adsorption onto halloysite nanoclay: experiment and theory. Toxics, 10(8), 445.
  • Saeed, M., Iqbal, M., Iqbal, M., Salman, S. M., & Afridi, S. (2021). Study of the Synthesis and Characterization of Poly (acrylic acid-co-acrylamide)-kaolinite Composite Reference to Adsorption of Cd and Pb from Aqueous Solutions. Journal of the Chemical Society of Pakistan, 43(2).
  • Serafin, J., & Dziejarski, B. (2023). Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous and Mesoporous Materials, 354, 112513.
  • Sharma, G., Kumar, A., Sharma, S., Naushad, M., Ghfar, A. A., Al-Muhtaseb, A. A. H., ... & Stadler, F. J. (2020). Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose, 27, 3677-3691.
  • Silva, V. C., Araújo, M. E. B., Rodrigues, A. M., Vitorino, M. D. B. C., Cartaxo, J. M., Menezes, R. R., & Neves, G. A. (2021). Adsorption behavior of crystal violet and congo red dyes on heat-treated brazilian palygorskite: Kinetic, isothermal and thermodynamic studies. Materials, 14(19), 5688.
  • Thompson, J. D., Deshpande, P., & Yadav, O. (2022).Polyacrylamide polymers for the removal of heavy metals: A review. International Journal of Advances in Engineering and Management, 4 (9), 181-186.
  • Tiwari, A. N., Tapadia, K., & Thakur, C. (2022). An enhanced method for the removal of methyl violet dye using magnetite nanoparticles as an adsorbent: Isotherm, kinetic and thermodynamic study. Water Science & Technology, 86(4), 625-642.
  • Tsyurupa, M. P., & Davankov, V. A. (2006). Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. Reactive and Functional Polymers, 66(7), 768-779.
  • Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508.
  • Verma, S. P., Mallela, N. R., & Sarkar, B. (2020). An efficient removal of crystal violet from aqueous solution using rhamnolipid micellar solubilization followed by ultrafiltration and modeling of flux decline. Journal of Environmental Chemical Engineering, 8(5), 104443.
  • Wang, J., & Guo, X. (2023). Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Critical Reviews in Environmental Science and Technology, 53(21), 1837-1865.

The Utilisation of NaOH-Modified Poly(2,5-dihydroxy-2,5-dimethoxyfuran) for The Removal of Cationic Dye

Year 2025, Volume: 15 Issue: 1, 122 - 133, 01.03.2025
https://doi.org/10.21597/jist.1510493

Abstract

In this study, NaOH modified poly(2,5-dihydro-2,5-dimethoxyfuran) was synthesized and its structure was characterized by FT-IR spectroscopy technique for its potential use as an adsorbent in the removal of methyl violet (MV), a textile dye, from aqueous solutions. The optimum conditions for adsorption by batch method were evaluated by varying various parameters such as contact time, initial pH and concentration of the solution. The equilibrium adsorption concentration was found to be maximum 637.04 mg/g at the end of 60 min at a concentration of 200 mg/L MV at stock solution pH of the dye. The adsorption was in good agreement with the Langmuir isotherm model. MV adsorption is in good agreement with the pseudo-second-order rate kinetic model. These results indicate that the modified polymer has a high potential, especially for removing cationic dyes from waste water.

References

  • Ahmed, M., Mashkoor, F., & Nasar, A. (2020). Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundwater for sustainable development, 10, 100322.
  • Akinterinwa, A., Oladele, E., Adebayo, A., & Adamu, M. (2024). Characterization of aqueous Pb2+ adsorption onto cross-linked-carboxymethyl legume starch phosphate using FTIR and SEM-EDX. Biomass Conversion and Biorefinery, 14(14), 16059-16073.
  • Alavinia, S., Ghorbani-Vaghei, R., Asadabadi, S., & Atrian, A. (2023). Sodium alginate/diethyleneamine-triazine-sulfonamide nanocomposite for adsorptive removal of Pb (II) and methyl violet from aqueous solutions. Materials Chemistry and Physics, 293, 126915.
  • Alsawat, M. (2024). Congo Red Dye Adsorption using CuSnO2TiO2 Nanocomposites: Adsorption Data Interpretation by Statistical Modeling. International Journal of Electrochemical Science, 100611.
  • Alsulaili, A., Elsayed, K., & Refaie, A. (2023). Utilization of agriculture waste materials as sustainable adsorbents for heavy metal removal: a comprehensive review. Journal of Engineering Research. Article in press.
  • Ardelean, R., Popa, A., Visa, A., Dragan, E. S., & Davidescu, C. M. (2024). Synthesis, characterization and applications of poly (styrene-co-divinylbenzene) functionalized with aminophosphinic acid pendant groups as high-performance adsorbents for acetylsalicylic acid. Polymer Bulletin, 81(10), 8783-8809.
  • Armour, M., Davies, A. G., Upadhyay, J., & Wassermann, A. (1967). Colored electrically conducting polymers from furan, pyrrole, and thiophene. Journal of Polymer Science Part A‐1: Polymer Chemistry, 5(7), 1527-1538.
  • Bhattacharyya, R., & Ray, S. K. (2015). Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chemical engineering journal, 260, 269-283.
  • Bıyıkoğlu, M. (2011). Poli(2,5-dihidro-2,5-dimetoksifuran)’ın fonksiyonlandırılması ve fonksiyonlandırmaların mrtal iyonu adsorpsiyonu üzerine etkilerinin incelenmesi. Doktora Tezi. Kırıkkale Üniversitesi, Kırıkkale.
  • Ciftci, H., Öktem, Z., & Testereci, H. N. (2012). Polymers from renewable resources: synthesis and characterization of poly (2, 5-dihydro-2, 5-dimethoxy furan). Turkish Journal of Chemistry, 36(2), 315-322.
  • Dewi, R. S., Zaharani, L., Johan, M. R., & Khaligh, N. G. (2024). Synthesis and characterization of a new multifunctional aliphatic poly (amic acid): An efficient polymeric adsorbent for removing the heavy metal ions. Journal of Molecular Structure, 1318, 139210.
  • Erduran, N. (2010). Poli(2,5-dihidro-2,5-dimetoksifuran)’ın modifikasyonu ve Cd(II) ve Cr(VI) iyonlarını adsorplama özelliklerinin incelenmesi. Doktora Tezi. Kırıkkale Üniversitesi, Kırıkkale.
  • Faizal, A. N. M., Putra, N. R., & Zaini, M. A. A. (2023). Insight into the adsorptive mechanisms of methyl violet and reactive orange from water—A short review. Particulate Science and Technology, 41(5), 730-739.
  • Faizal, A. N. M., Putra, N. R., Aziz, A. H. A., Agi, A., & Zaini, M. A. A. (2024). Giant mud crab shell biochar: A promising adsorbent for methyl violet removal in wastewater treatment. Journal of Cleaner Production, 141637.
  • Felipe Melo Lima Gomes, B., Araujo, C. M. B. D., do Nascimento, B. F., Silva Santos, R. K. D., Freire, E. M. P. D. L., Da Motta Sobrinho, M. A., & Carvalho, M. N. (2023). Adsorption of Cd (II) ions and methyl violet dye by using an agar-graphene oxide nano-biocomposite. Environmental Technology, 1-12.
  • Gandini, A., & M. Lacerda, T. (2022). Furan polymers: state of the art and perspectives. Macromolecular Materials and Engineering, 307(6), 2100902.
  • González-Tejera, M. J., de la Blanca, E. S., & Carrillo, I. J. S. M. (2008). Polyfuran conducting polymers: Synthesis, properties, and applications. Synthetic Metals, 158(5), 165-189.
  • Iroegbu, A. O. C., & Ray, S. S. (2024). On the chemistry of furfuryl alcohol polymerization: A review. Journal of Polymer Science, 62(6), 1044-1060.
  • Kooh, M. R. R., Dahri, M. K., Lim, L. B., Lim, L. H., & Malik, O. A. (2016). Batch adsorption studies of the removal of methyl violet 2B by soya bean waste: isotherm, kinetics and artificial neural network modelling. Environmental Earth Sciences, 75, 1-14.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), 1361-1403.
  • Li, P., Su, Y. J., Wang, Y., Liu, B., & Sun, L. M. (2010). Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder. Journal of hazardous materials, 179(1-3), 43-48.
  • Liu, C., Bai, R., & San Ly, Q. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms. Water research, 42(6-7), 1511-1522.
  • Liu, Q., Liu, Y., Zhang, Z., Wang, X., & Shen, J. (2020). Adsorption of cationic dyes from aqueous solution using hydrophilic silica aerogel via ambient pressure drying. Chinese Journal of Chemical Engineering, 28(9), 2467-2473.
  • Lu, Y. C., Kooh, M. R. R., Lim, L. B. L., & Priyantha, N. (2021). Effective and simple NaOH-modification method to remove methyl violet dye via Ipomoea aquatica roots. Adsorption Science & Technology, 2021, 5932222.
  • Mahmoud, M. E., Nabil, G. M., Khalifa, M. A., El-Mallah, N. M., & Hassouba, H. M. (2019). Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite. Journal of Environmental Chemical Engineering, 7(2), 103009.
  • Musa, S. A., Abdulhameed, A. S., Baharin, S. N. A., ALOthman, Z. A., Wilson, L. D., & Jawad, A. H. (2023). Coal-based activated carbon via microwave-assisted ZnCl2 activation for methyl violet 2B dye removal: optimization, desirability function, and adsorption mechanism. Minerals, 13(3), 438.
  • Mustafanejad, F., Sajjadi, N., Marandi, R., & Zaeimdar, M. (2021). Efficient removal of crystal violet by sulphonic-modified multi-walled carbon nano-tube and graphene oxide. Nanotechnology for Environmental Engineering, 6(2), 30.
  • Pan, B., Pan, B., Zhang, W., Lv, L., Zhang, Q., & Zheng, S. (2009). Development of polymeric and polymer-based hybrid adsorbents for pollutants removal from waters. Chemical Engineering Journal, 151(1-3), 19-29.
  • Pathak, H. K., Seth, C. S., Chauhan, P. K., Dubey, G., Singh, G., Jain, D., ... & Khoo, K. S. (2024). Recent advancement of nano-biochar for the remediation of heavy metals and emerging contaminants: mechanism, adsorption kinetic model, plant growth and development. Environmental Research, 119136.
  • Patra, G., Barnwal, R., Behera, S. K., & Meikap, B. C. (2018). Removal of dyes from aqueous solution by sorption with fly ash using a hydrocyclone. Journal of Environmental Chemical Engineering, 6(4), 5204-5211.
  • Raj, A., Bethi, B., & Sonawane, S. H. (2018). Investigation of removal of crystal violet dye using novel hybrid technique involving hydrodynamic cavitation and hydrogel. Journal of environmental chemical engineering, 6(4), 5311-5319.
  • Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390-397.
  • Sadiku, M., Selimi, T., Berisha, A., Maloku, A., Mehmeti, V., Thaçi, V., & Hasani, N. (2022). Removal of methyl violet from aqueous solution by adsorption onto halloysite nanoclay: experiment and theory. Toxics, 10(8), 445.
  • Saeed, M., Iqbal, M., Iqbal, M., Salman, S. M., & Afridi, S. (2021). Study of the Synthesis and Characterization of Poly (acrylic acid-co-acrylamide)-kaolinite Composite Reference to Adsorption of Cd and Pb from Aqueous Solutions. Journal of the Chemical Society of Pakistan, 43(2).
  • Serafin, J., & Dziejarski, B. (2023). Application of isotherms models and error functions in activated carbon CO2 sorption processes. Microporous and Mesoporous Materials, 354, 112513.
  • Sharma, G., Kumar, A., Sharma, S., Naushad, M., Ghfar, A. A., Al-Muhtaseb, A. A. H., ... & Stadler, F. J. (2020). Carboxymethyl cellulose structured nano-adsorbent for removal of methyl violet from aqueous solution: isotherm and kinetic analyses. Cellulose, 27, 3677-3691.
  • Silva, V. C., Araújo, M. E. B., Rodrigues, A. M., Vitorino, M. D. B. C., Cartaxo, J. M., Menezes, R. R., & Neves, G. A. (2021). Adsorption behavior of crystal violet and congo red dyes on heat-treated brazilian palygorskite: Kinetic, isothermal and thermodynamic studies. Materials, 14(19), 5688.
  • Thompson, J. D., Deshpande, P., & Yadav, O. (2022).Polyacrylamide polymers for the removal of heavy metals: A review. International Journal of Advances in Engineering and Management, 4 (9), 181-186.
  • Tiwari, A. N., Tapadia, K., & Thakur, C. (2022). An enhanced method for the removal of methyl violet dye using magnetite nanoparticles as an adsorbent: Isotherm, kinetic and thermodynamic study. Water Science & Technology, 86(4), 625-642.
  • Tsyurupa, M. P., & Davankov, V. A. (2006). Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review. Reactive and Functional Polymers, 66(7), 768-779.
  • Velarde, L., Nabavi, M. S., Escalera, E., Antti, M. L., & Akhtar, F. (2023). Adsorption of heavy metals on natural zeolites: A review. Chemosphere, 328, 138508.
  • Verma, S. P., Mallela, N. R., & Sarkar, B. (2020). An efficient removal of crystal violet from aqueous solution using rhamnolipid micellar solubilization followed by ultrafiltration and modeling of flux decline. Journal of Environmental Chemical Engineering, 8(5), 104443.
  • Wang, J., & Guo, X. (2023). Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview. Critical Reviews in Environmental Science and Technology, 53(21), 1837-1865.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Environmental Pollution and Prevention
Journal Section Çevre Mühendisliği / Environment Engineering
Authors

Nuran Erduran 0000-0002-3920-0830

Mutluhan Bıyıkoğlu 0000-0003-0752-2242

Metin Özçam 0009-0008-3428-8010

Early Pub Date February 20, 2025
Publication Date March 1, 2025
Submission Date July 4, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Erduran, N., Bıyıkoğlu, M., & Özçam, M. (2025). NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı. Journal of the Institute of Science and Technology, 15(1), 122-133. https://doi.org/10.21597/jist.1510493
AMA Erduran N, Bıyıkoğlu M, Özçam M. NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı. J. Inst. Sci. and Tech. March 2025;15(1):122-133. doi:10.21597/jist.1510493
Chicago Erduran, Nuran, Mutluhan Bıyıkoğlu, and Metin Özçam. “NaOH Ile Modifiye Edilmiş Poli(2,5-Dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı”. Journal of the Institute of Science and Technology 15, no. 1 (March 2025): 122-33. https://doi.org/10.21597/jist.1510493.
EndNote Erduran N, Bıyıkoğlu M, Özçam M (March 1, 2025) NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı. Journal of the Institute of Science and Technology 15 1 122–133.
IEEE N. Erduran, M. Bıyıkoğlu, and M. Özçam, “NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı”, J. Inst. Sci. and Tech., vol. 15, no. 1, pp. 122–133, 2025, doi: 10.21597/jist.1510493.
ISNAD Erduran, Nuran et al. “NaOH Ile Modifiye Edilmiş Poli(2,5-Dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı”. Journal of the Institute of Science and Technology 15/1 (March 2025), 122-133. https://doi.org/10.21597/jist.1510493.
JAMA Erduran N, Bıyıkoğlu M, Özçam M. NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı. J. Inst. Sci. and Tech. 2025;15:122–133.
MLA Erduran, Nuran et al. “NaOH Ile Modifiye Edilmiş Poli(2,5-Dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı”. Journal of the Institute of Science and Technology, vol. 15, no. 1, 2025, pp. 122-33, doi:10.21597/jist.1510493.
Vancouver Erduran N, Bıyıkoğlu M, Özçam M. NaOH ile Modifiye Edilmiş Poli(2,5-dihidro-2,5-dimetoksifuran)’ın Katyonik Boya Gideriminde Kullanımı. J. Inst. Sci. and Tech. 2025;15(1):122-33.