Research Article
BibTex RIS Cite

Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu

Year 2025, Volume: 15 Issue: 1, 353 - 363, 01.03.2025
https://doi.org/10.21597/jist.1517654

Abstract

Nannospalax cinsi üyesi körfareler toprakaltı ekolojik nişinde yaşamını sürdüren, düşük oksijenli ortama uyum sağlamış kemirgenlerdir. Olağanüstü uzun ömürleri ve hem spontan hem de indüklenmiş tümör oluşumuna karşı dirençleri ile karakterize edilen kemirgenlerdir. Bu kemirgenlerin kansere olan direncinin sebebi bilinmemekle beraber, yüzyıllardır yaşadıkları toprak altı nişinde sirkadiyen ritim veya bu yolakta görev alan genlerle ilişkili olacak şekilde bir kanser mekanizması geliştirebildikleri varsayılmaktadır. Bu çalışmada körfarelerde sirkadiyen ritimde ve melatonin yolağında görev alan MTNR1A genindeki varyasyonların varlığı ve tespit edilen varyasyonların veritabanındaki diğer türlere (Homo sapiens, Mus musculus, Heterocephalus glaber, Rattus norvegicus) ait dizilerle karşılaştırılması amaçlanmıştır. Bu amaçla, Türkiye’de dağılım gösteren dört Nannospalax türüne ait (Nannospalax xanthodon, Nannospalax ehrenbergi, Nannospalax leucodon ve Nannospalax tuncelicus) 9 farklı sitotip içeren toplam 18 adet örneğe ait dokulardan elde edilen DNA örneklerinin PCR analizi gerçekleştirilerek bu ürünler sekanslanmıştır. Sekans sonuçları ile referans genom (Nannospalax galili) karşılaştırılarak ilgili DNA baz farklılıkları tespit edilmiştir. Tespit edilen baz farklılıkları referans dizi ve diğer türlere ait amino asit dizileri ile karşılaştırılarak var olan/olması muhtemel varyasyonlar belirlenmiştir. Buna göre DNA dizilerindeki tek nükleotid değişimlerinden yalnızca biri amino asit dizisinde değişikliğe sebep olmuş; insanda 10. amino asite denk gelen p.N10Q (p.Asp10Glu) varyasyonu, Polyphen-2 veritabanında yaklaşık 0.5 skoru ile değerlendirilmiş ve mevcut değişimin muhtemel zararlı/patojenik etkileri olabileceği sonucuna varılmıştır.

Project Number

FMT 2023/14-HIDEP

References

  • Adzhubei, I., Jordan, D.M., & Sunyaev, S.R. (2013). Predicting functional effect of human missense mutations using PolyPhen‐2. Current Protocols in Human Genetics, 76(1), 7–20. doi.org/10.1002/0471142905.hg0720s76
  • Avivi, A., Albrecht, U., Oster, H., Joel, A., Beiles, A., & Nevo, E. (2001). Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat. Proceedings of the National Academy of Sciences, 98(24), 13751-13756. doi.org/10.1073/pnas.181484498
  • Civelek, İ., Kankılıç, T., Akın, D. F. (2024). An Investigation of Clock Gene Variations in Turkish Nannospalax Species. Russian Journal of Genetics, 60(5), 626-639. doi.org/10.1134/S1022795424040057
  • David-Gray, Z.K., Cooper, H.M., Janssen, J.W.H., Nevo, E., & Foster, R.G. (1999). Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi). FEBS Letters, 461(3), 343–347. doi.org/10.1016/S0014-5793(99)01455-6
  • Dehdari Ebrahimi, N., Sadeghi, A., Shojaei-Zarghani, S., Shahlaee, M. A., Taherifard, E., Rahimian, Z., ... & Safarpour, A. R. (2023). Protective effects of exogenous melatonin therapy against oxidative stress to male reproductive tissue caused by anti-cancer chemical and radiation therapy: a systematic review and meta-analysis of animal studies. Frontiers in Endocrinology, 14, 1184745. doi.org/10.3389/fendo.2023.1184745
  • Doyle, J. (1991). DNA protocols for plants. In Molecular techniques in taxonomy, Berlin, Heidelberg: Springer Berlin Heidelberg, 283-293.
  • Dubocovich, M. L. (2007). Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Medicine, 8, 34-42. doi.org/10.1016/j.sleep.2007.10.007
  • European Bioinformatics Institute (EMBL-EBI). (n.d.). Ensembl Genome Browser [Veritabanı]. https://www.ensembl.org (Erişim: Haziran, 2024).
  • Flesher, J.W., Horn, J., & Lehner, A.F. (1998). Carcinogenicity of 1-hydroxy-3-methylcholanthrene and its electrophilic sulfate ester 1-sulfooxy-3-methylcholanthrene in Sprague-Dawley rats. Biochemical and Biophysical Research Communications, 243(1), 30–35. doi.org/10.1006/bbrc.1997.8048
  • Foulkes, N.S., Borjigin, J., & Snyder, S.H. (1997). Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends in Neurosciences, 20(10), 487-492. doi.org/10.1016/S0166-2236(97)01109-0
  • Gao, Y., Wu, X., Zhao, S., Zhang, Y., Ma, H., Yang, Z., ... & Zhang, Q. (2019). Melatonin receptor depletion suppressed hCG-induced testosterone expression in mouse Leydig cells. Cellular & Molecular Biology Letters, 24(1), 1-14.
  • Gorbunova, V., Hine, C., Tian, X., Ablaeva, J., Gudkov, A.V, Nevo, E., & Seluanov, A. (2012). Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proceedings of the National Academy of Sciences, 109(47), 19392–19396. doi.org/10.1073/pnas.1217211109
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/N. in Nucleic Acids Symposium Series, Oxford, 95-98.
  • Hannibal, J., Hindersson, P., Nevo, E., & Fahrenkrug, J. (2002). The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax. Neuroreport, 13(11), 1411-1414.
  • Higgins, E. M., Bos, J. M., Mason-Suares, H., Tester, D. J., Ackerman, J. P., MacRae, C. A., ... & Ackerman, M. J. (2017). Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight, 2(5).
  • Human Genome Mutation Database. (n.d.). PolyPhen-2: Prediction of functional effects of human nsSNPs. http://genetics.bwh.harvard.edu/pph2/ (Erişim adresi: Haziran, 2024)
  • Jimenez‐Jorge, S., Guerrero, J. M., Jimenez‐Caliani, A. J., Naranjo, M. C., Lardone, P. J., Carrillo‐Vico, A., ... & Molinero, P. (2007). Evidence for melatonin synthesis in the rat brain during development. Journal of Pineal Research, 42(3), 240-246. doi.org/10.1111/j.1600-079X.2006.00411.x
  • Jung‐Hynes, B., Reiter, R. J., & Ahmad, N. (2010). Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. Journal of Pineal Research, 48(1), 9-19. doi.org/10.1111/j.1600-079X.2009.00729.x
  • Liu, J., Clough, S. J., Hutchinson, A. J., Adamah-Biassi, E. B., Popovska-Gorevski, M., & Dubocovich, M. L. (2016). MT1 and MT2 melatonin receptors: a therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56(1), 361-383. doi.org/10.1146/annurev-pharmtox-010814-124742
  • Ma, Z., Xu, L., Liu, D., Zhang, X., Di, S., Li, W., ... & Yan, X. (2020). Utilizing melatonin to alleviate side effects of chemotherapy: a potentially good partner for treating cancer with ageing. Oxidative Medicine and Cellular Longevity, 2020(1), 6841581. doi.org/10.1155/2020/6841581
  • Manov, I., Hirsh, M., Iancu, T. C., Malik, A., Sotnichenko, N., Band, M., Avivi, A., & Shams, I. (2013). Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitro evidence. BMC Biology, 11(1), 1–18. doi.org/10.1186/1741-7007-11-91
  • Najafi, M., Shirazi, A., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9, 139-148. doi.org/10.1007/s12551-017-0256-8
  • National Center for Biotechnology Information. (n.d.). Basic Local Alignment Search Tool (BLAST) [Veritabanı]. National Institutes of Health. https://blast.ncbi.nlm.nih.gov/Blast.cgi (Erişim: Haziran, 2024).
  • National Center for Biotechnology Information. (2024). NCBI Genome Database. https://www.ncbi.nlm.nih.gov/genome/ (Erişim: Haziran, 2024).
  • Németh, A., Hegyeli, Z., Sendula, T., Horváth, M., Czabán, D., & Csorba, G. (2016). Danger underground and in the open–predation on blind mole rats (Rodentia: Spalacinae) revisited. Mammal Review, 46(3), 204-214.
  • Nevo, E. (2022). Evolution of Communication Systems Underground in a Blind Mammal, Spalax. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. doi.org/10.1007/978-3-030-97419-0_15
  • Pham, T. T., Lee, E. S., Kong, S. Y., Kim, J., Kim, S. Y., Joo, J., ... & Park, B. (2019). Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: Evidence from a case-control study in Korean women. Scientific Reports, 9(1), 10982.
  • Steele, T. A., St Louis, E. K., Videnovic, A., & Auger, R.R. (2021). Circadian rhythm sleep–wake disorders: a contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics, 18(1), 53–74. doi.org/10.1007/s13311-021-01031-8
  • Sun, H., Pan, D., Liu, D., Cheng, Y., Zhang, Y., & Wang, Z. (2022). Melatonin secretion, molecular expression and evolution of MT1/2 in two Lasiopodomys species. Mammalian Biology, 102(1), 99-107.
  • The UniProt Consortium. (n.d.). UniProt Knowledgebase [Veritabanı]. European Bioinformatics Institute. https://www.uniprot.org (Erişim adresi: Haziran, 2024).
  • Topachevskii, W. A. (1969). Fauna USSR Spalacidae. Leningrad, USSR: Nauka (English translation: Springfield, VA, USA: US Department Of Commerce National Technical Information Service).
  • University of Manchester. (n.d). PRINTS Database [Veritabanı]. https://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/ (Erişim: Haziran, 2024).
  • Wang, X. (2009). The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neuroscience & Therapeutics, 15(4), 345-357. doi.org/10.1111/j.1755-5949.2009.00105.x
  • Zhang, J., Jiang, H., Du, K., Xie, T., Wang, B., Chen, C., ... & Yuan, Y. (2021). Pan‐Cancer analyses reveal Genomics and clinical characteristics of the Melatonergic regulators in cancer. Journal of Pineal Research, 71(3), e12758. doi.org/10.1111/jpi.12758.

Characterization of MTNR1A Genetic Variations in Nannospalax Rodents

Year 2025, Volume: 15 Issue: 1, 353 - 363, 01.03.2025
https://doi.org/10.21597/jist.1517654

Abstract

Members of the genus Nannospalax, commonly known as blind mole rats, are subterranean rodents adapted to low-oxygen environments. These rodents are characterized by their extraordinarily long lifespans and resistance to both spontaneous and induced tumor formation. Although the cause of their cancer resistance is unknown, it is hypothesized that, over centuries of living in their underground niche, these rodents may have developed a cancer resistance mechanism related to circadian rhythms or genes involved in these pathways. This study aims to identify variations in the MTNR1A gene, which is involved in circadian rhythm and melatonin pathway in blind mole rats, and to compare the detected variations with sequences from other species (Homo sapiens, Mus musculus, Heterocephalus glaber, Rattus norvegicus) in databases. For this purpose, PCR analysis of DNA samples obtained from tissues of 18 specimens representing nine different cytotypes belonging four Nannospalax species distributed in Turkey (Nannospalax xanthodon, Nannospalax ehrenbergi, Nannospalax leucodon, and Nannospalax tuncelicus) was performed and these products were sequenced. The relevant DNA base differences were identified by comparing the sequencing results with the reference genome (Nannospalax galili). The detected base differences were compared with the amino acid sequences of the reference and other species to identify existing or potential variations. Accrodingly, only one of the single nucleotide changes in the DNA sequences resulted in an amino acid sequence change. It was concluded that the variation p.N10Q (p.Asp10Glu), corresponding to the 10th amino acid in humans, has been evaluated in the Polyphen-2 database, yielding a score of approximately 0.5, suggesting that this change may have potentially harmful/pathogenic effects.

Ethical Statement

Etik kurul kararı, Niğde Ömer Halisdemir Üniversitesi hayvan deneyleri yerel etik kurul kararlarının 10.11.2023 tarihli toplantısında, E-86837521-050.99-437911 (Kimlik/Dosya No); 05 sayılı toplantısının 2023/12 sayılı kararı ile çıkmıştır.

Supporting Institution

Niğde Ömer Halisdemir Üniversitesi

Project Number

FMT 2023/14-HIDEP

Thanks

Bu çalışma, Niğde Ömer Halisdemir Üniversitesi FMT 2023/14-HIDEP numaralı proje tarafından desteklenmiştir

References

  • Adzhubei, I., Jordan, D.M., & Sunyaev, S.R. (2013). Predicting functional effect of human missense mutations using PolyPhen‐2. Current Protocols in Human Genetics, 76(1), 7–20. doi.org/10.1002/0471142905.hg0720s76
  • Avivi, A., Albrecht, U., Oster, H., Joel, A., Beiles, A., & Nevo, E. (2001). Biological clock in total darkness: the Clock/MOP3 circadian system of the blind subterranean mole rat. Proceedings of the National Academy of Sciences, 98(24), 13751-13756. doi.org/10.1073/pnas.181484498
  • Civelek, İ., Kankılıç, T., Akın, D. F. (2024). An Investigation of Clock Gene Variations in Turkish Nannospalax Species. Russian Journal of Genetics, 60(5), 626-639. doi.org/10.1134/S1022795424040057
  • David-Gray, Z.K., Cooper, H.M., Janssen, J.W.H., Nevo, E., & Foster, R.G. (1999). Spectral tuning of a circadian photopigment in a subterranean ‘blind’ mammal (Spalax ehrenbergi). FEBS Letters, 461(3), 343–347. doi.org/10.1016/S0014-5793(99)01455-6
  • Dehdari Ebrahimi, N., Sadeghi, A., Shojaei-Zarghani, S., Shahlaee, M. A., Taherifard, E., Rahimian, Z., ... & Safarpour, A. R. (2023). Protective effects of exogenous melatonin therapy against oxidative stress to male reproductive tissue caused by anti-cancer chemical and radiation therapy: a systematic review and meta-analysis of animal studies. Frontiers in Endocrinology, 14, 1184745. doi.org/10.3389/fendo.2023.1184745
  • Doyle, J. (1991). DNA protocols for plants. In Molecular techniques in taxonomy, Berlin, Heidelberg: Springer Berlin Heidelberg, 283-293.
  • Dubocovich, M. L. (2007). Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Medicine, 8, 34-42. doi.org/10.1016/j.sleep.2007.10.007
  • European Bioinformatics Institute (EMBL-EBI). (n.d.). Ensembl Genome Browser [Veritabanı]. https://www.ensembl.org (Erişim: Haziran, 2024).
  • Flesher, J.W., Horn, J., & Lehner, A.F. (1998). Carcinogenicity of 1-hydroxy-3-methylcholanthrene and its electrophilic sulfate ester 1-sulfooxy-3-methylcholanthrene in Sprague-Dawley rats. Biochemical and Biophysical Research Communications, 243(1), 30–35. doi.org/10.1006/bbrc.1997.8048
  • Foulkes, N.S., Borjigin, J., & Snyder, S.H. (1997). Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends in Neurosciences, 20(10), 487-492. doi.org/10.1016/S0166-2236(97)01109-0
  • Gao, Y., Wu, X., Zhao, S., Zhang, Y., Ma, H., Yang, Z., ... & Zhang, Q. (2019). Melatonin receptor depletion suppressed hCG-induced testosterone expression in mouse Leydig cells. Cellular & Molecular Biology Letters, 24(1), 1-14.
  • Gorbunova, V., Hine, C., Tian, X., Ablaeva, J., Gudkov, A.V, Nevo, E., & Seluanov, A. (2012). Cancer resistance in the blind mole rat is mediated by concerted necrotic cell death mechanism. Proceedings of the National Academy of Sciences, 109(47), 19392–19396. doi.org/10.1073/pnas.1217211109
  • Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/N. in Nucleic Acids Symposium Series, Oxford, 95-98.
  • Hannibal, J., Hindersson, P., Nevo, E., & Fahrenkrug, J. (2002). The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax. Neuroreport, 13(11), 1411-1414.
  • Higgins, E. M., Bos, J. M., Mason-Suares, H., Tester, D. J., Ackerman, J. P., MacRae, C. A., ... & Ackerman, M. J. (2017). Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight, 2(5).
  • Human Genome Mutation Database. (n.d.). PolyPhen-2: Prediction of functional effects of human nsSNPs. http://genetics.bwh.harvard.edu/pph2/ (Erişim adresi: Haziran, 2024)
  • Jimenez‐Jorge, S., Guerrero, J. M., Jimenez‐Caliani, A. J., Naranjo, M. C., Lardone, P. J., Carrillo‐Vico, A., ... & Molinero, P. (2007). Evidence for melatonin synthesis in the rat brain during development. Journal of Pineal Research, 42(3), 240-246. doi.org/10.1111/j.1600-079X.2006.00411.x
  • Jung‐Hynes, B., Reiter, R. J., & Ahmad, N. (2010). Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. Journal of Pineal Research, 48(1), 9-19. doi.org/10.1111/j.1600-079X.2009.00729.x
  • Liu, J., Clough, S. J., Hutchinson, A. J., Adamah-Biassi, E. B., Popovska-Gorevski, M., & Dubocovich, M. L. (2016). MT1 and MT2 melatonin receptors: a therapeutic perspective. Annual Review of Pharmacology and Toxicology, 56(1), 361-383. doi.org/10.1146/annurev-pharmtox-010814-124742
  • Ma, Z., Xu, L., Liu, D., Zhang, X., Di, S., Li, W., ... & Yan, X. (2020). Utilizing melatonin to alleviate side effects of chemotherapy: a potentially good partner for treating cancer with ageing. Oxidative Medicine and Cellular Longevity, 2020(1), 6841581. doi.org/10.1155/2020/6841581
  • Manov, I., Hirsh, M., Iancu, T. C., Malik, A., Sotnichenko, N., Band, M., Avivi, A., & Shams, I. (2013). Pronounced cancer resistance in a subterranean rodent, the blind mole-rat, Spalax: In vivo and in vitro evidence. BMC Biology, 11(1), 1–18. doi.org/10.1186/1741-7007-11-91
  • Najafi, M., Shirazi, A., Motevaseli, E., Geraily, G., Norouzi, F., Heidari, M., & Rezapoor, S. (2017). The melatonin immunomodulatory actions in radiotherapy. Biophysical Reviews, 9, 139-148. doi.org/10.1007/s12551-017-0256-8
  • National Center for Biotechnology Information. (n.d.). Basic Local Alignment Search Tool (BLAST) [Veritabanı]. National Institutes of Health. https://blast.ncbi.nlm.nih.gov/Blast.cgi (Erişim: Haziran, 2024).
  • National Center for Biotechnology Information. (2024). NCBI Genome Database. https://www.ncbi.nlm.nih.gov/genome/ (Erişim: Haziran, 2024).
  • Németh, A., Hegyeli, Z., Sendula, T., Horváth, M., Czabán, D., & Csorba, G. (2016). Danger underground and in the open–predation on blind mole rats (Rodentia: Spalacinae) revisited. Mammal Review, 46(3), 204-214.
  • Nevo, E. (2022). Evolution of Communication Systems Underground in a Blind Mammal, Spalax. In: Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M., Wessel, A. (eds) Biotremology: Physiology, Ecology, and Evolution. Animal Signals and Communication, vol 8. Springer, Cham. doi.org/10.1007/978-3-030-97419-0_15
  • Pham, T. T., Lee, E. S., Kong, S. Y., Kim, J., Kim, S. Y., Joo, J., ... & Park, B. (2019). Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: Evidence from a case-control study in Korean women. Scientific Reports, 9(1), 10982.
  • Steele, T. A., St Louis, E. K., Videnovic, A., & Auger, R.R. (2021). Circadian rhythm sleep–wake disorders: a contemporary review of neurobiology, treatment, and dysregulation in neurodegenerative disease. Neurotherapeutics, 18(1), 53–74. doi.org/10.1007/s13311-021-01031-8
  • Sun, H., Pan, D., Liu, D., Cheng, Y., Zhang, Y., & Wang, Z. (2022). Melatonin secretion, molecular expression and evolution of MT1/2 in two Lasiopodomys species. Mammalian Biology, 102(1), 99-107.
  • The UniProt Consortium. (n.d.). UniProt Knowledgebase [Veritabanı]. European Bioinformatics Institute. https://www.uniprot.org (Erişim adresi: Haziran, 2024).
  • Topachevskii, W. A. (1969). Fauna USSR Spalacidae. Leningrad, USSR: Nauka (English translation: Springfield, VA, USA: US Department Of Commerce National Technical Information Service).
  • University of Manchester. (n.d). PRINTS Database [Veritabanı]. https://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/ (Erişim: Haziran, 2024).
  • Wang, X. (2009). The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neuroscience & Therapeutics, 15(4), 345-357. doi.org/10.1111/j.1755-5949.2009.00105.x
  • Zhang, J., Jiang, H., Du, K., Xie, T., Wang, B., Chen, C., ... & Yuan, Y. (2021). Pan‐Cancer analyses reveal Genomics and clinical characteristics of the Melatonergic regulators in cancer. Journal of Pineal Research, 71(3), e12758. doi.org/10.1111/jpi.12758.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Zoology (Other)
Journal Section Zootekni / Animal Science
Authors

Teoman Kankılıç 0000-0002-9576-5887

İlkay Civelek 0000-0002-8241-1596

Burcu Köse 0000-0003-1068-0196

Project Number FMT 2023/14-HIDEP
Early Pub Date February 20, 2025
Publication Date March 1, 2025
Submission Date July 17, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Kankılıç, T., Civelek, İ., & Köse, B. (2025). Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu. Journal of the Institute of Science and Technology, 15(1), 353-363. https://doi.org/10.21597/jist.1517654
AMA Kankılıç T, Civelek İ, Köse B. Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu. J. Inst. Sci. and Tech. March 2025;15(1):353-363. doi:10.21597/jist.1517654
Chicago Kankılıç, Teoman, İlkay Civelek, and Burcu Köse. “Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu”. Journal of the Institute of Science and Technology 15, no. 1 (March 2025): 353-63. https://doi.org/10.21597/jist.1517654.
EndNote Kankılıç T, Civelek İ, Köse B (March 1, 2025) Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu. Journal of the Institute of Science and Technology 15 1 353–363.
IEEE T. Kankılıç, İ. Civelek, and B. Köse, “Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu”, J. Inst. Sci. and Tech., vol. 15, no. 1, pp. 353–363, 2025, doi: 10.21597/jist.1517654.
ISNAD Kankılıç, Teoman et al. “Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu”. Journal of the Institute of Science and Technology 15/1 (March 2025), 353-363. https://doi.org/10.21597/jist.1517654.
JAMA Kankılıç T, Civelek İ, Köse B. Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu. J. Inst. Sci. and Tech. 2025;15:353–363.
MLA Kankılıç, Teoman et al. “Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu”. Journal of the Institute of Science and Technology, vol. 15, no. 1, 2025, pp. 353-6, doi:10.21597/jist.1517654.
Vancouver Kankılıç T, Civelek İ, Köse B. Nannospalax Kemirgenlerinde MTNR1A Genetik Varyasyonlarının Karakterizasyonu. J. Inst. Sci. and Tech. 2025;15(1):353-6.