Research Article
BibTex RIS Cite

Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation

Year 2025, Volume: 15 Issue: 1, 330 - 342, 01.03.2025
https://doi.org/10.21597/jist.1526603

Abstract

Acrylamide, a chemical contaminant found in foods, poses a significant health threat because of its toxic and carcinogenic properties. One of the most effective methods for reducing acrylamide is the application of L-asparaginase (L-ASNase) to decrease the asparagine content in foods before cooking or processing. In this study, L-ASNase (RsASNase) from Rheinheimera sp. was expressed heterologously in Escherichia coli Rosetta™2 (DE3) host cells. The enzyme was purified using Ni2+-NTA affinity chromatography, yielding a specific activity of 392.2 U/mg and a purification fold of 4.0. Acrylamide reduction was assessed using a starch-L-asparagine model analyzed by high-performance liquid chromatography (HPLC). The highest acrylamide mitigation (52.3%) was achieved using 100 U of the enzyme after 120 min of incubation. Additionally, the three-dimensional structure of RsASNase was modeled using the ProMod3. Bioinformatics analyses, including docking studies, revealed interactions between the RsASNase enzyme's active site and the L-asparagine substrate, involving the amino acids THR162A, LYS242A, THR273A, LEU304A, and GLU305A. These findings showed that RsASNase has the potential for further development and application in biotechnological processes aimed at acrylamide mitigation.

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294.
  • Adimas, M. A., Abera, B. D., Adimas, Z. T., Woldemariam, H. W., & Delele, M. A. (2024). Traditional food processing and acrylamide formation: A review. Heliyon, 10(9), e30258. https://doi.org/10.1016/j.heliyon.2024.e30258.
  • Ahmed, Z. A. & Mohammed, N. K. (2024). Investigating influencing factors on acrylamide content in fried potatoes and mitigating measures: a review. Food Production, Processing and Nutrition, 6(1), 1–16. https://doi.org/10.1186/s43014-023-00212-6.
  • Ameur, H., Tlais, A. Z. A., Paganoni, C., Cozzi, S., Suman, M., Di Cagno, R., Gobbetti, M., & Polo, A. (2024). Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. International Journal of Food Microbiology, 410, 110513. https://doi.org/10.1016/j.ijfoodmicro.2023.110513.
  • Bachir, N., Haddarah, A., Sepulcre, F., & Pujola, M. (2022). Formation, mitigation, and detection of acrylamide in foods. Food Analytical Methods, 15(6), 1736–1747. https://doi.org/10.1007/s12161-022-02239-w/tables/3.
  • Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Garmiri, P., da Costa Gonzales, L. J., Hatton-Ellis, E., Hussein, A., Ignatchenko, A., & Zhang, J. (2023). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052.
  • Boyaci Gunduz, C. P. (2023). Formulation and processing strategies to reduce acrylamide in thermally processed cereal-based foods. International Journal of Environmental Research and Public Health, 20(13). https://doi.org/10.3390/ijerph20136272.
  • Bruno, F., Ledbetter, M., Davies, B., Riedinger, L., Blidi, S., Sturrock, K., McNamara, G., Montague, G., & Fiore, A. (2024). Effect of ultrasound and additives treatment as mitigation strategies to reduce acrylamide formation in potato crisps on industrial scale. LWT- Food Science and Technology, 197, 115876. https://doi.org/10.1016/j.lwt.2024.115876.
  • Chi, H., Chen, M., Jiao, L., Lu, Z., Bie, X., Zhao, H., & Lu, F. (2021). Characterization of a novel l-asparaginase from Mycobacterium gordonae with acrylamide mitigation potential. Foods, 10(11), 2819. https://doi.org/10.3390/foods10112819/s1.
  • Díaz-Ávila, W. Y., Villarreal-Archila, S. M., & Castellanos-Galeano, F. J. (2023). Acrylamide in starchy foods subjected to deep-frying, 20 years after its discovery (2002-2022): a patent review. F1000Research, 12. https://doi.org/10.12688/f1000research.140948.2.
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203.
  • Filippini, T., Halldorsson, T. I., Capitão, C., Martins, R., Giannakou, K., Hogervorst, J., Vinceti, M., Åkesson, A., Leander, K., Katsonouri, A., Santos, O., Virgolino, A., & Laguzzi, F. (2022). Dietary acrylamide exposure and risk of site-specific cancer: A systematic review and dose-response meta-analysis of epidemiological studies. Frontiers in Nutrition, 9, 875607. https://doi.org/10.3389/fnut.2022.875607.
  • Gazi, S., Göncüoğlu Taş, N., Görgülü, A., & Gökmen, V. (2023). Effectiveness of asparaginase on reducing acrylamide formation in bakery products according to their dough type and properties. Food Chemistry, 402, 134224. https://doi.org/10.1016/j.foodchem.2022.134224.
  • Govindaraju, I., Sana, M., Chakraborty, I., Rahman, M. H., Biswas, R., & Mazumder, N. (2024). Dietary acrylamide: A detailed review on formation, detection, mitigation, and its health impacts. Foods, 13(4). https://doi.org/10.3390/foods13040556.
  • Hogervorst, J. G. F. & Schouten, L. J. (2022). Dietary acrylamide and human cancer; even after 20 years of research an open question. The American Journal of Clinical Nutrition, 116(4), 846. https://doi.org/10.1093/ajcn/nqac192.
  • Hossein Abedini, A., Vakili Saatloo, N., Salimi, M., Sadighara, P., Alizadeh Sani, M., Garcia-Oliviera, P., Prieto, M. A., Saeed Kharazmi, M., & Mahdi Jafari, S. (2024). The role of additives on acrylamide formation in food products: a systematic review. Critical Reviews in Food Science and Nutrition, 64(10), 2773–2793. https://doi.org/10.1080/10408398.2022.2126428.
  • Jia, R., Wan, X., Geng, X., Xue, D., Xie, Z., & Chen, C. (2021). Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms, 9(8). https://doi.org/10.3390/microorganisms9081659.
  • Jiao, L., Chi, H., Lu, Z., Zhang, C., Chia, S. R., Show, P. L., Tao, Y., & Lu, F. (2020). Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 129(6), 672–678. https://doi.org/10.1016/j.jbiosc.2020.01.007.
  • Joshi, D., Patel, H., Suthar, S., Patel, D. H., & Kikani, B. A. (2024). Evaluation of the efficiency of thermostable l-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World Journal of Microbiology and Biotechnology, 40(3), 1–15. https://doi.org/10.1007/s11274-024-03907-1.
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
  • Keramat, J., LeBail, A., Prost, C., & Jafari, M. (2011). Acrylamide in baking products: A review Article. Food and Bioprocess Technology, 4(4), 530–543. https://doi.org/10.1007/s11947-010-0495-1.
  • Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum L-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625–2637. https://doi.org/10.1007/s00203-021-02198-6.
  • Kocadağlı, T. & Gökmen, V. (2022). Formation of acrylamide in coffee. Current Opinion in Food Science, 45, 100842. https://doi.org/10.1016/j.cofs.2022.100842.
  • Kopańska, M., Łagowska, A., Kuduk, B., & Banaś-Ząbczyk, A. (2022). Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. International Journal of Molecular Sciences, 23(4). https://doi.org/10.3390/ijms23042030.
  • Lim, L. T., Zwicker, M., & Wang, X. (2019). Coffee: One of the most consumed beverages in the world. Comprehensive Biotechnology, 275–285. https://doi.org/10.1016/b978-0-444-64046-8.00462-6.
  • Lubkowski, J. & Wlodawer, A. (2019). Geometric considerations support the double-displacement catalytic mechanism of L-asparaginase. Protein Science, 28(10), 1850–1864. https://doi.org/10.1002/pro.3709.
  • Lund, M. N. & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552. https://doi.org/10.1021/acs.jafc.7b00882.
  • Maan, A. A., Anjum, M. A., Khan, M. K. I., Nazir, A., Saeed, F., Afzaal, M., & Aadil, R. M. (2022). Acrylamide formation and different mitigation strategies during food processing – A review. Food Reviews International, 38(1), 70–87. https://doi.org/10.1080/87559129.2020.1719505.
  • Makiso, M. U., Tola, Y. B., Ogah, O., & Endale, F. L. (2024). Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Science & Nutrition, 12(2), 734. https://doi.org/10.1002/fsn3.3848.
  • Özdemir, F. İ., Didem Orhan, M., Atasavum, Z. T., & Tülek, A. (2022). Biochemical characterization and detection of antitumor activity of L-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263T. Protein Expression and Purification, 199. https://doi.org/10.1016/j.pep.2022.106146.
  • Özdemir, F. İ., Tülek, A., Karaaslan, B., & Yildirim, D. (2024). Evaluation of multi-walled carbon nanotubes bearing aldehyde groups of different lengths for the immobilization of Geobacillus kaustophilus L-asparaginase. Molecular Catalysis, 555, 113903. https://doi.org/10.1016/j.mcat.2024.113903.
  • Pandiselvam, R., Süfer, Ö., Özaslan, Z. T., Gowda, N. N., Pulivarthi, M. K., Charles, A. P. R., Ramesh, B., Ramniwas, S., Rustagi, S., Jafari, Z., & Jeevarathinam, G. (2024). Acrylamide in food products: Formation, technological strategies for mitigation, and future outlook. Food Frontiers, 5(3), 1063–1095. https://doi.org/10.1002/fft2.368.
  • Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001.
  • Perera, D. N., Hewavitharana, G. G., & Navaratne, S. B. (2021). Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Research International, 2021. https://doi.org/10.1155/2021/6258508.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.
  • Shahana Kabeer, S., Francis, B., Vishnupriya, S., Kattatheyil, H., Joseph, K. J., Krishnan, K. P., & Mohamed Hatha, A. A. (2023). Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips. Brazilian Journal of Microbiology, 54(3), 1645–1654. https://doi.org/10.1007/s42770-023-00967-7.
  • Tardiff, R. G., Gargas, M. L., Kirman, C. R., Leigh Carson, M., & Sweeney, L. M. (2010). Estimation of safe dietary intake levels of acrylamide for humans. Food and Chemical Toxicology, 48(2), 658–667. https://doi.org/10.1016/j.fct.2009.11.048.
  • Tegel, H., Tourle, S., Ottosson, J., & Persson, A. (2010). Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expression and Purification, 69(2), 159–167. https://doi.org/10.1016/j.pep.2009.08.017.
  • Timmermann, C. A. G., Mølck, S. S., Kadawathagedara, M., Bjerregaard, A. A., Törnqvist, M., Brantsæter, A. L., & Pedersen, M. (2021). A review of dietary intake of acrylamide in humans. Toxics, 9(7). https://doi.org/10.3390/toxics9070155/s1.
  • Trott, O. & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Virk-Baker, M. K., Nagy, T. R., Barnes, S., & Groopman, J. (2014). Dietary Acrylamide and Human Cancer: A Systematic Review of Literature. Nutrition and Cancer, 66(5), 774. https://doi.org/10.1080/01635581.2014.916323.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427.
  • Yilmazer Aktar, B., Georgakis, N., Labrou, N., Turunen, O., & Binay, B. (2023). Comparative structural and kinetic study for development of a novel candidate L-asparaginase based pharmaceutical. Biochemical Engineering Journal, 191, 108806. https://doi.org/10.1016/j.bej.2023.108806.
  • Yun, M. K., Nourse, A., White, S. W., Rock, C. O., & Heath, R. J. (2007). Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-Asparaginase I. Journal of Molecular Biology, 369(3), 794–811. https://doi.org/10.1016/j.jmb.2007.03.061.
  • Zuo, S., Zhang, T., Jiang, B., & Mu, W. (2015). Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles, 19(4), 841–851. https://doi.org/10.1007/s00792-015-0763-0.
Year 2025, Volume: 15 Issue: 1, 330 - 342, 01.03.2025
https://doi.org/10.21597/jist.1526603

Abstract

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294.
  • Adimas, M. A., Abera, B. D., Adimas, Z. T., Woldemariam, H. W., & Delele, M. A. (2024). Traditional food processing and acrylamide formation: A review. Heliyon, 10(9), e30258. https://doi.org/10.1016/j.heliyon.2024.e30258.
  • Ahmed, Z. A. & Mohammed, N. K. (2024). Investigating influencing factors on acrylamide content in fried potatoes and mitigating measures: a review. Food Production, Processing and Nutrition, 6(1), 1–16. https://doi.org/10.1186/s43014-023-00212-6.
  • Ameur, H., Tlais, A. Z. A., Paganoni, C., Cozzi, S., Suman, M., Di Cagno, R., Gobbetti, M., & Polo, A. (2024). Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. International Journal of Food Microbiology, 410, 110513. https://doi.org/10.1016/j.ijfoodmicro.2023.110513.
  • Bachir, N., Haddarah, A., Sepulcre, F., & Pujola, M. (2022). Formation, mitigation, and detection of acrylamide in foods. Food Analytical Methods, 15(6), 1736–1747. https://doi.org/10.1007/s12161-022-02239-w/tables/3.
  • Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bye-A-Jee, H., Cukura, A., Denny, P., Dogan, T., Ebenezer, T. G., Fan, J., Garmiri, P., da Costa Gonzales, L. J., Hatton-Ellis, E., Hussein, A., Ignatchenko, A., & Zhang, J. (2023). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052.
  • Boyaci Gunduz, C. P. (2023). Formulation and processing strategies to reduce acrylamide in thermally processed cereal-based foods. International Journal of Environmental Research and Public Health, 20(13). https://doi.org/10.3390/ijerph20136272.
  • Bruno, F., Ledbetter, M., Davies, B., Riedinger, L., Blidi, S., Sturrock, K., McNamara, G., Montague, G., & Fiore, A. (2024). Effect of ultrasound and additives treatment as mitigation strategies to reduce acrylamide formation in potato crisps on industrial scale. LWT- Food Science and Technology, 197, 115876. https://doi.org/10.1016/j.lwt.2024.115876.
  • Chi, H., Chen, M., Jiao, L., Lu, Z., Bie, X., Zhao, H., & Lu, F. (2021). Characterization of a novel l-asparaginase from Mycobacterium gordonae with acrylamide mitigation potential. Foods, 10(11), 2819. https://doi.org/10.3390/foods10112819/s1.
  • Díaz-Ávila, W. Y., Villarreal-Archila, S. M., & Castellanos-Galeano, F. J. (2023). Acrylamide in starchy foods subjected to deep-frying, 20 years after its discovery (2002-2022): a patent review. F1000Research, 12. https://doi.org/10.12688/f1000research.140948.2.
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203.
  • Filippini, T., Halldorsson, T. I., Capitão, C., Martins, R., Giannakou, K., Hogervorst, J., Vinceti, M., Åkesson, A., Leander, K., Katsonouri, A., Santos, O., Virgolino, A., & Laguzzi, F. (2022). Dietary acrylamide exposure and risk of site-specific cancer: A systematic review and dose-response meta-analysis of epidemiological studies. Frontiers in Nutrition, 9, 875607. https://doi.org/10.3389/fnut.2022.875607.
  • Gazi, S., Göncüoğlu Taş, N., Görgülü, A., & Gökmen, V. (2023). Effectiveness of asparaginase on reducing acrylamide formation in bakery products according to their dough type and properties. Food Chemistry, 402, 134224. https://doi.org/10.1016/j.foodchem.2022.134224.
  • Govindaraju, I., Sana, M., Chakraborty, I., Rahman, M. H., Biswas, R., & Mazumder, N. (2024). Dietary acrylamide: A detailed review on formation, detection, mitigation, and its health impacts. Foods, 13(4). https://doi.org/10.3390/foods13040556.
  • Hogervorst, J. G. F. & Schouten, L. J. (2022). Dietary acrylamide and human cancer; even after 20 years of research an open question. The American Journal of Clinical Nutrition, 116(4), 846. https://doi.org/10.1093/ajcn/nqac192.
  • Hossein Abedini, A., Vakili Saatloo, N., Salimi, M., Sadighara, P., Alizadeh Sani, M., Garcia-Oliviera, P., Prieto, M. A., Saeed Kharazmi, M., & Mahdi Jafari, S. (2024). The role of additives on acrylamide formation in food products: a systematic review. Critical Reviews in Food Science and Nutrition, 64(10), 2773–2793. https://doi.org/10.1080/10408398.2022.2126428.
  • Jia, R., Wan, X., Geng, X., Xue, D., Xie, Z., & Chen, C. (2021). Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms, 9(8). https://doi.org/10.3390/microorganisms9081659.
  • Jiao, L., Chi, H., Lu, Z., Zhang, C., Chia, S. R., Show, P. L., Tao, Y., & Lu, F. (2020). Characterization of a novel type I L-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 129(6), 672–678. https://doi.org/10.1016/j.jbiosc.2020.01.007.
  • Joshi, D., Patel, H., Suthar, S., Patel, D. H., & Kikani, B. A. (2024). Evaluation of the efficiency of thermostable l-asparaginase from B. licheniformis UDS-5 for acrylamide mitigation during preparation of French fries. World Journal of Microbiology and Biotechnology, 40(3), 1–15. https://doi.org/10.1007/s11274-024-03907-1.
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2.
  • Keramat, J., LeBail, A., Prost, C., & Jafari, M. (2011). Acrylamide in baking products: A review Article. Food and Bioprocess Technology, 4(4), 530–543. https://doi.org/10.1007/s11947-010-0495-1.
  • Khalil, N. M., Rodríguez-Couto, S., & El-Ghany, M. N. A. (2021). Characterization of Penicillium crustosum L-asparaginase and its acrylamide alleviation efficiency in roasted coffee beans at non-cytotoxic levels. Archives of Microbiology, 203(5), 2625–2637. https://doi.org/10.1007/s00203-021-02198-6.
  • Kocadağlı, T. & Gökmen, V. (2022). Formation of acrylamide in coffee. Current Opinion in Food Science, 45, 100842. https://doi.org/10.1016/j.cofs.2022.100842.
  • Kopańska, M., Łagowska, A., Kuduk, B., & Banaś-Ząbczyk, A. (2022). Acrylamide neurotoxicity as a possible factor responsible for inflammation in the cholinergic nervous system. International Journal of Molecular Sciences, 23(4). https://doi.org/10.3390/ijms23042030.
  • Lim, L. T., Zwicker, M., & Wang, X. (2019). Coffee: One of the most consumed beverages in the world. Comprehensive Biotechnology, 275–285. https://doi.org/10.1016/b978-0-444-64046-8.00462-6.
  • Lubkowski, J. & Wlodawer, A. (2019). Geometric considerations support the double-displacement catalytic mechanism of L-asparaginase. Protein Science, 28(10), 1850–1864. https://doi.org/10.1002/pro.3709.
  • Lund, M. N. & Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552. https://doi.org/10.1021/acs.jafc.7b00882.
  • Maan, A. A., Anjum, M. A., Khan, M. K. I., Nazir, A., Saeed, F., Afzaal, M., & Aadil, R. M. (2022). Acrylamide formation and different mitigation strategies during food processing – A review. Food Reviews International, 38(1), 70–87. https://doi.org/10.1080/87559129.2020.1719505.
  • Makiso, M. U., Tola, Y. B., Ogah, O., & Endale, F. L. (2024). Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Science & Nutrition, 12(2), 734. https://doi.org/10.1002/fsn3.3848.
  • Özdemir, F. İ., Didem Orhan, M., Atasavum, Z. T., & Tülek, A. (2022). Biochemical characterization and detection of antitumor activity of L-asparaginase from thermophilic Geobacillus kaustophilus DSM 7263T. Protein Expression and Purification, 199. https://doi.org/10.1016/j.pep.2022.106146.
  • Özdemir, F. İ., Tülek, A., Karaaslan, B., & Yildirim, D. (2024). Evaluation of multi-walled carbon nanotubes bearing aldehyde groups of different lengths for the immobilization of Geobacillus kaustophilus L-asparaginase. Molecular Catalysis, 555, 113903. https://doi.org/10.1016/j.mcat.2024.113903.
  • Pandiselvam, R., Süfer, Ö., Özaslan, Z. T., Gowda, N. N., Pulivarthi, M. K., Charles, A. P. R., Ramesh, B., Ramniwas, S., Rustagi, S., Jafari, Z., & Jeevarathinam, G. (2024). Acrylamide in food products: Formation, technological strategies for mitigation, and future outlook. Food Frontiers, 5(3), 1063–1095. https://doi.org/10.1002/fft2.368.
  • Pedreschi, F., León, J., Mery, D., Moyano, P., Pedreschi, R., Kaack, K., & Granby, K. (2007). Color development and acrylamide content of pre-dried potato chips. Journal of Food Engineering, 79(3), 786–793. https://doi.org/10.1016/j.jfoodeng.2006.03.001.
  • Perera, D. N., Hewavitharana, G. G., & Navaratne, S. B. (2021). Comprehensive study on the acrylamide content of high thermally processed foods. BioMed Research International, 2021. https://doi.org/10.1155/2021/6258508.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084.
  • Shahana Kabeer, S., Francis, B., Vishnupriya, S., Kattatheyil, H., Joseph, K. J., Krishnan, K. P., & Mohamed Hatha, A. A. (2023). Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips. Brazilian Journal of Microbiology, 54(3), 1645–1654. https://doi.org/10.1007/s42770-023-00967-7.
  • Tardiff, R. G., Gargas, M. L., Kirman, C. R., Leigh Carson, M., & Sweeney, L. M. (2010). Estimation of safe dietary intake levels of acrylamide for humans. Food and Chemical Toxicology, 48(2), 658–667. https://doi.org/10.1016/j.fct.2009.11.048.
  • Tegel, H., Tourle, S., Ottosson, J., & Persson, A. (2010). Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expression and Purification, 69(2), 159–167. https://doi.org/10.1016/j.pep.2009.08.017.
  • Timmermann, C. A. G., Mølck, S. S., Kadawathagedara, M., Bjerregaard, A. A., Törnqvist, M., Brantsæter, A. L., & Pedersen, M. (2021). A review of dietary intake of acrylamide in humans. Toxics, 9(7). https://doi.org/10.3390/toxics9070155/s1.
  • Trott, O. & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Virk-Baker, M. K., Nagy, T. R., Barnes, S., & Groopman, J. (2014). Dietary Acrylamide and Human Cancer: A Systematic Review of Literature. Nutrition and Cancer, 66(5), 774. https://doi.org/10.1080/01635581.2014.916323.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427.
  • Yilmazer Aktar, B., Georgakis, N., Labrou, N., Turunen, O., & Binay, B. (2023). Comparative structural and kinetic study for development of a novel candidate L-asparaginase based pharmaceutical. Biochemical Engineering Journal, 191, 108806. https://doi.org/10.1016/j.bej.2023.108806.
  • Yun, M. K., Nourse, A., White, S. W., Rock, C. O., & Heath, R. J. (2007). Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-Asparaginase I. Journal of Molecular Biology, 369(3), 794–811. https://doi.org/10.1016/j.jmb.2007.03.061.
  • Zuo, S., Zhang, T., Jiang, B., & Mu, W. (2015). Reduction of acrylamide level through blanching with treatment by an extremely thermostable L-asparaginase during French fries processing. Extremophiles, 19(4), 841–851. https://doi.org/10.1007/s00792-015-0763-0.
There are 45 citations in total.

Details

Primary Language English
Subjects Biocatalysis and Enzyme Technology
Journal Section Moleküler Biyoloji ve Genetik / Moleculer Biology and Genetic
Authors

Ahmet Tülek 0000-0003-1079-7837

Early Pub Date February 20, 2025
Publication Date March 1, 2025
Submission Date August 1, 2024
Acceptance Date October 10, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Tülek, A. (2025). Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation. Journal of the Institute of Science and Technology, 15(1), 330-342. https://doi.org/10.21597/jist.1526603
AMA Tülek A. Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation. J. Inst. Sci. and Tech. March 2025;15(1):330-342. doi:10.21597/jist.1526603
Chicago Tülek, Ahmet. “Biotechnological Potential of Rheinheimera Sp. L-Asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation”. Journal of the Institute of Science and Technology 15, no. 1 (March 2025): 330-42. https://doi.org/10.21597/jist.1526603.
EndNote Tülek A (March 1, 2025) Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation. Journal of the Institute of Science and Technology 15 1 330–342.
IEEE A. Tülek, “Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation”, J. Inst. Sci. and Tech., vol. 15, no. 1, pp. 330–342, 2025, doi: 10.21597/jist.1526603.
ISNAD Tülek, Ahmet. “Biotechnological Potential of Rheinheimera Sp. L-Asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation”. Journal of the Institute of Science and Technology 15/1 (March 2025), 330-342. https://doi.org/10.21597/jist.1526603.
JAMA Tülek A. Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation. J. Inst. Sci. and Tech. 2025;15:330–342.
MLA Tülek, Ahmet. “Biotechnological Potential of Rheinheimera Sp. L-Asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation”. Journal of the Institute of Science and Technology, vol. 15, no. 1, 2025, pp. 330-42, doi:10.21597/jist.1526603.
Vancouver Tülek A. Biotechnological Potential of Rheinheimera sp. L-asparaginase: Heterologous Production and Its Role in Acrylamide Mitigation. J. Inst. Sci. and Tech. 2025;15(1):330-42.