Research Article
BibTex RIS Cite

Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization

Year 2025, Volume: 15 Issue: 1, 252 - 263, 01.03.2025
https://doi.org/10.21597/jist.1529231

Abstract

An aromatic diamine compound of 1,3-phenylenediamine dichloride (monomer), containing two polymerizable functional groups was submitted to selective polymerization in water via oxidative coupling polymerization with sodium hypochloride as the oxidant. Characterization of the synthesized polymer was performed utilizing UV-Vis, FT-IR, SEM, and photoluminescence techniques, identifying benzeneoid an quinoid units along the polymer chain. Based on the results of Gel Permeation Chromatography (GPC) analysis, the synthesized compound was identified as being in a polymeric form. The number of repeating units, as determined from Mw and Mn, was calculated as 151 and 86, respectively. Under visible light excitation, the polymer exhibited green light emission with a quantum yield of 11.2% in DMF. The monomer is oxidized via oxidative polymerization to a polymer with a higher electrochemical band gap. Scanning Electron Microscopy (SEM) revealed that the polymer particles with polyhedral and irregular sharp edges as well as spherical in the range from micro to nanometer in size were exhibited in the morphology of polymer.

References

  • Baran, N. Y. & Saçak, M. (2017). Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: thermal stability, conductivity and antimicrobial properties. Journal of Molecular Structure, 1146, 104-112.
  • Borole, D. D., Kapadi, U. R., Mahulikar, P. P., & Hundiwale, D. G. (2006). Conducting polymers: an emerging field of biosensors. Designed Monomers and Polymers, 9(1), 1–11.
  • Cervini, R., Li, X.C., Spencer, G.W.C., Holme, A.B., Moratti, S.C. & Friend, R.H. (1997). Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles), Synthetic Metals 84, 359-360.
  • Chaoa, D., Chena, J., Lua, X., Chena, L., Zhang, W., & Wei, Y. (2005). SEM study of the morphology of high molecular weight polyaniline. Synthetic Metals, 150(1), 47-51.
  • Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200-211.
  • da Rocha Rodrigues, R., da Silva, R. L. C. G., Caseli, L., & Péres, L. O. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Advances in Colloid Interface Science, 285 (2020), Article 102277.
  • Deng, X. Y. (2011). Light-emitting devices with conjugated polymers. International Journal of Molecular Science, 12, 1575-1594.
  • Gerard, M., Chaubey, A., & Malhotra, B.D. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345-359.
  • Giraud, L., Grelier, S., Grau, E., Garel, L., Hadziioannou, G., Kauffmann, B., Cloutet, É., Cramail, H., & Brochon, C. (2022). Synthesis and characterization of vanillin-based π-conjugated polyazomethines and their oligomer model compounds. Molecules, 27, Article e4138.
  • Hwang, K. H., Kim, D. H., Choi, M. H., Han, J. P., & Moon, D. K. (2016). Effect of side chain position and conformation of quinacridone–quinoxaline based conjugated polymers on photovoltaic properties, Journal of Industrial and Engineering Chemistry, 34, 66-75.
  • Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M. & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation, Polymer International, 55, 31-39.
  • Li, S., Zhou, J., Noroozifar, M., & Kerman, K. (2021). Gold-Platinum Core-Shell Nanoparticles with Thiolated Polyaniline and Multi-Walled Carbon Nanotubes for the Simultaneous Voltammetric Determination of Six Drug Molecules. Chemosensors, 2021, 9, 24-46.
  • Li, X. G., Duan, W., Huang, M. R., Yang, Y. L. Zhao, D. Y. & Dong, Q. Z. (2003). A soluble ladder copolymer from m-phenylenediamine and ethoxyaniline. Polymer, 44(19), 5579-5595.
  • Marrocchi, A., Facchetti, A., Lanari, D., Petrucci, C., & Vaccaro, L. (2016). Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy & Environmental Science, 9, 763-786.
  • Mohilner, D. M., Adams, R. N. & Argersinger, W. J. (1962). Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. Journal of the American Chemical Society, 84, 3618-3622.
  • Samanta, S., Roy, P. & Kar, P. (2016). Structure and properties of conducting poly(o-phenylenediamine) synthesized in different inorganic acid medium. Macromolecular Research, 24, 342–349.
  • Samanta, S., Roy,P., & Kar, P. (2017). Synthesis of poly(o‐phenylenediamine) nanofiber with novel structure and properties. Polymers for Advanced Technologies, 28(7), 797-804.
  • Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive and Functional Polymers,71(7), 766-773.
  • Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochemistry, 40(3-4), 1155-1159.
  • Stejskal, J., Kratochvil, P., & Špirková, M.(1995). Accelerating on the polymerization effect of some cation radicals of aniline. Polymer, 36(2), 4135-4140.
  • Stejskal, J., Sapurina, I., Trchova, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline, granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530-3536.
  • Stilwell, D. E. & Park, S. M. (1988). Electrochemistry of Conductive Polymers: II . Electrochemical Studies on Growth Properties of Polyaniline. Journal of the Electrochemical Society, 135 (9), 2254-2262.
  • Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) Dispersions. Journal of Colloid and Interface Science, 236, 328-334.
  • Tatum, W. K. & Luscombe, C. K. (2018). -Conjugated polymer nanowires: advances and perspectives toward effective commercial implementation. Polymer Journal, 50, 659-669.
  • Van Krevelen, D. W. (1975). Some basic aspects of flame resistance of polymeric materials, Polymer,16(8), 615-620.
  • Wen, S., Wu, S., Li, J., & Qu, A. (2019). Determinant factors of photocatalytic hydrogen evolution activity for Schiff base conjugated polymers. Chemical Engineering Journal, 374, 1055-1063.
  • Williams, A. T. R., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst, 108, 1067-1071.
  • Yang, H., Wipf, D. O., & Bard. A. J. (1992). Application of rapid scan cyclic voltammetry to a study of the oxidation and dimerization of N,N-dimethylaniline in acetonitrile, Journal of Electroanalytical Chemistry, 331(1-2), 913-924.
  • Yang, D. & Mattes, B. R. (2002). Poly aniline emeraldine base in N-methyl-2-pyrrolidinone containing secondary amine additives: a rheological investigation of solutions. Journal of Polymer Science Part B: Polymer Physics, 40(23), 2702-2713.
  • Zhuang, B., Wang, X., Zhang, Q., Liu, J., Jin, Y., & Wang, H. (2021). Nanoengineering of poly(3,4-ethylenedioxythiophene) for boosting electrochemical applications. Solar Energy Materials and Solar Cells, 232, Article 111357.
  • Zoromba, M. S. & Abdel-Aziz, M. (2017) Ecofriendly method to synthesize poly(ο-aminophenol) based on solid state polymerization and fabrication of nanostructured semiconductor thin film. Polymer, 120, 20-29.
  • Zoromba, M. S. (2017). Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 187, 61-67.
  • Zou, F. & Huang, X. (2018). Electropolymerization in proton-functionalized anilinium salts/glycol deep eutectic solvents. Journal of Materials Science, 53(11), 8132-8140..
Year 2025, Volume: 15 Issue: 1, 252 - 263, 01.03.2025
https://doi.org/10.21597/jist.1529231

Abstract

References

  • Baran, N. Y. & Saçak, M. (2017). Synthesis, characterization and molecular weight monitoring of a novel Schiff base polymer containing phenol group: thermal stability, conductivity and antimicrobial properties. Journal of Molecular Structure, 1146, 104-112.
  • Borole, D. D., Kapadi, U. R., Mahulikar, P. P., & Hundiwale, D. G. (2006). Conducting polymers: an emerging field of biosensors. Designed Monomers and Polymers, 9(1), 1–11.
  • Cervini, R., Li, X.C., Spencer, G.W.C., Holme, A.B., Moratti, S.C. & Friend, R.H. (1997). Electrochemical and optical studies of PPV derivatives and poly(aromatic oxadiazoles), Synthetic Metals 84, 359-360.
  • Chaoa, D., Chena, J., Lua, X., Chena, L., Zhang, W., & Wei, Y. (2005). SEM study of the morphology of high molecular weight polyaniline. Synthetic Metals, 150(1), 47-51.
  • Ćirić-Marjanović, G., Konyushenko, E. N., Trchová, M., & Stejskal, J. (2008). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200-211.
  • da Rocha Rodrigues, R., da Silva, R. L. C. G., Caseli, L., & Péres, L. O. Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Advances in Colloid Interface Science, 285 (2020), Article 102277.
  • Deng, X. Y. (2011). Light-emitting devices with conjugated polymers. International Journal of Molecular Science, 12, 1575-1594.
  • Gerard, M., Chaubey, A., & Malhotra, B.D. (2002). Application of conducting polymers to biosensors. Biosensors and Bioelectronics, 17(5), 345-359.
  • Giraud, L., Grelier, S., Grau, E., Garel, L., Hadziioannou, G., Kauffmann, B., Cloutet, É., Cramail, H., & Brochon, C. (2022). Synthesis and characterization of vanillin-based π-conjugated polyazomethines and their oligomer model compounds. Molecules, 27, Article e4138.
  • Hwang, K. H., Kim, D. H., Choi, M. H., Han, J. P., & Moon, D. K. (2016). Effect of side chain position and conformation of quinacridone–quinoxaline based conjugated polymers on photovoltaic properties, Journal of Industrial and Engineering Chemistry, 34, 66-75.
  • Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M. & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation, Polymer International, 55, 31-39.
  • Li, S., Zhou, J., Noroozifar, M., & Kerman, K. (2021). Gold-Platinum Core-Shell Nanoparticles with Thiolated Polyaniline and Multi-Walled Carbon Nanotubes for the Simultaneous Voltammetric Determination of Six Drug Molecules. Chemosensors, 2021, 9, 24-46.
  • Li, X. G., Duan, W., Huang, M. R., Yang, Y. L. Zhao, D. Y. & Dong, Q. Z. (2003). A soluble ladder copolymer from m-phenylenediamine and ethoxyaniline. Polymer, 44(19), 5579-5595.
  • Marrocchi, A., Facchetti, A., Lanari, D., Petrucci, C., & Vaccaro, L. (2016). Current methodologies for a sustainable approach to π-conjugated organic semiconductors. Energy & Environmental Science, 9, 763-786.
  • Mohilner, D. M., Adams, R. N. & Argersinger, W. J. (1962). Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode. Journal of the American Chemical Society, 84, 3618-3622.
  • Samanta, S., Roy, P. & Kar, P. (2016). Structure and properties of conducting poly(o-phenylenediamine) synthesized in different inorganic acid medium. Macromolecular Research, 24, 342–349.
  • Samanta, S., Roy,P., & Kar, P. (2017). Synthesis of poly(o‐phenylenediamine) nanofiber with novel structure and properties. Polymers for Advanced Technologies, 28(7), 797-804.
  • Shenashen, M. A., Okamoto, T., & Haraguchi, M. (2011). Study the effect of phenylenediamine compounds on the chemical polymerization of aniline. Reactive and Functional Polymers,71(7), 766-773.
  • Silva, R. N., Asquieri, E. R., & Fernandes, K. F. (2005). Immobilization of Aspergillus niger glucoamylase onto a polyaniline polymer. Process Biochemistry, 40(3-4), 1155-1159.
  • Stejskal, J., Kratochvil, P., & Špirková, M.(1995). Accelerating on the polymerization effect of some cation radicals of aniline. Polymer, 36(2), 4135-4140.
  • Stejskal, J., Sapurina, I., Trchova, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline, granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530-3536.
  • Stilwell, D. E. & Park, S. M. (1988). Electrochemistry of Conductive Polymers: II . Electrochemical Studies on Growth Properties of Polyaniline. Journal of the Electrochemical Society, 135 (9), 2254-2262.
  • Sulimenko, T., Stejskal, J., & Prokeš, J. (2001). Poly(phenylenediamine) Dispersions. Journal of Colloid and Interface Science, 236, 328-334.
  • Tatum, W. K. & Luscombe, C. K. (2018). -Conjugated polymer nanowires: advances and perspectives toward effective commercial implementation. Polymer Journal, 50, 659-669.
  • Van Krevelen, D. W. (1975). Some basic aspects of flame resistance of polymeric materials, Polymer,16(8), 615-620.
  • Wen, S., Wu, S., Li, J., & Qu, A. (2019). Determinant factors of photocatalytic hydrogen evolution activity for Schiff base conjugated polymers. Chemical Engineering Journal, 374, 1055-1063.
  • Williams, A. T. R., Winfield, S. A., & Miller, J. N. (1983). Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst, 108, 1067-1071.
  • Yang, H., Wipf, D. O., & Bard. A. J. (1992). Application of rapid scan cyclic voltammetry to a study of the oxidation and dimerization of N,N-dimethylaniline in acetonitrile, Journal of Electroanalytical Chemistry, 331(1-2), 913-924.
  • Yang, D. & Mattes, B. R. (2002). Poly aniline emeraldine base in N-methyl-2-pyrrolidinone containing secondary amine additives: a rheological investigation of solutions. Journal of Polymer Science Part B: Polymer Physics, 40(23), 2702-2713.
  • Zhuang, B., Wang, X., Zhang, Q., Liu, J., Jin, Y., & Wang, H. (2021). Nanoengineering of poly(3,4-ethylenedioxythiophene) for boosting electrochemical applications. Solar Energy Materials and Solar Cells, 232, Article 111357.
  • Zoromba, M. S. & Abdel-Aziz, M. (2017) Ecofriendly method to synthesize poly(ο-aminophenol) based on solid state polymerization and fabrication of nanostructured semiconductor thin film. Polymer, 120, 20-29.
  • Zoromba, M. S. (2017). Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 187, 61-67.
  • Zou, F. & Huang, X. (2018). Electropolymerization in proton-functionalized anilinium salts/glycol deep eutectic solvents. Journal of Materials Science, 53(11), 8132-8140..
There are 33 citations in total.

Details

Primary Language English
Subjects Polymer Technologies
Journal Section Kimya / Chemistry
Authors

Feyza Kolcu 0000-0002-2004-8859

İsmet Kaya 0000-0002-9813-2962

Early Pub Date February 20, 2025
Publication Date March 1, 2025
Submission Date August 6, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Kolcu, F., & Kaya, İ. (2025). Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization. Journal of the Institute of Science and Technology, 15(1), 252-263. https://doi.org/10.21597/jist.1529231
AMA Kolcu F, Kaya İ. Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization. J. Inst. Sci. and Tech. March 2025;15(1):252-263. doi:10.21597/jist.1529231
Chicago Kolcu, Feyza, and İsmet Kaya. “Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization”. Journal of the Institute of Science and Technology 15, no. 1 (March 2025): 252-63. https://doi.org/10.21597/jist.1529231.
EndNote Kolcu F, Kaya İ (March 1, 2025) Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization. Journal of the Institute of Science and Technology 15 1 252–263.
IEEE F. Kolcu and İ. Kaya, “Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization”, J. Inst. Sci. and Tech., vol. 15, no. 1, pp. 252–263, 2025, doi: 10.21597/jist.1529231.
ISNAD Kolcu, Feyza - Kaya, İsmet. “Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization”. Journal of the Institute of Science and Technology 15/1 (March 2025), 252-263. https://doi.org/10.21597/jist.1529231.
JAMA Kolcu F, Kaya İ. Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization. J. Inst. Sci. and Tech. 2025;15:252–263.
MLA Kolcu, Feyza and İsmet Kaya. “Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization”. Journal of the Institute of Science and Technology, vol. 15, no. 1, 2025, pp. 252-63, doi:10.21597/jist.1529231.
Vancouver Kolcu F, Kaya İ. Chemical Oxidative Polymerization of 1,3-Phenylenediamine Dichloride in Aqueous Solution: Synthesis and Characterization. J. Inst. Sci. and Tech. 2025;15(1):252-63.