Research Article
BibTex RIS Cite

Morin hidrat yüklü HPAC@MNP nanokompozitinin hazırlanması, karakterizasyonu ve in vitro uygulamaları

Year 2025, Volume: 15 Issue: 1, 217 - 227, 01.03.2025
https://doi.org/10.21597/jist.1533345

Abstract

Kanser, her yıl küresel olarak milyonlarca insanın hayatına mal olan, tüm yaş gruplarından ve etnik kökenlerden bireyleri etkileyen yaygın ve ölümcül bir hastalıktır. Kanser tedavisinde kullanılan ilaçlar ayrım gözetmeksizin hem kötü huylu hem de sağlıklı hücreleri etkilediği için, büyük olumsuz etkilere neden olmasının yanı sıra sistemik toksisiteye de neden olur. Son zamanlarda, ilaçların neden olduğu olumsuz etkileri en aza indirmek için belirli bölgeleri özel olarak hedef alan ilaç verme sistemleri geliştirildi. Morin (MRN), antianjiyojenik, antiinflamatuar, antikanser ve antibakteriyel aktivitelerini araştırmak için yürütülen önemli araştırmaların konusu olan flavonol bazlı bir ilaçtır. Bu çalışma, alıç bitkisinden elde edilen biyouyumlu aktif karbon üzerine bir manyetik nanopartikül tabakası uygulanarak manyetik özelliklere sahip bir ürünün sentezini içermektedir. Alıç bitkisinden (HP) elde edilen aktif karbonun (AC) manyetik nanopartikülleri (MNP'ler) ile sentezlenen HPAC@MNP'lerin karakterizasyonu Fourier Transform Kızılötesi (FTIR), Taramalı Elektron Mikroskobu (SEM), Dinamik Işık Saçılımı (DLS) ve Zeta Potansiyeli ile karakterize edildi. DLS analizi, HPAC@MNP'lerin ve HPAC@MNPs-MRN'nin ortalama partikül boyutunun sırasıyla yaklaşık 105 nm ve 142 nm olduğunu hesaplandı. İlaç yüklü manyetik nanokompozit, MCF-7 (meme), U373 (Glioblastoma) kanser hücre hatları ve İnsan Göbek Kordonu Endotel Hücreleri (HUVEC) sağlıklı hücre hattı üzerindeki sitotoksik etkileri açısından değerlendirildi. HPAC@MNP'lerin MRN yükleme ve salım özellikleri analiz edildi. Sonuçlar, kapalı ilacın salım sırasında uzun bir yayılma süresi sergilediğini gösterdi. Özetle, HPAC@MNPs manyetik nanokompozit taşıyıcıların kullanımı, MRN ilaçlarını belirli bölgelere etkili bir şekilde ulaştırmak için büyük bir potansiyele sahip olabilir.

References

  • Aisida, S.O., Akpa, P.A., Ahmad, I., Zhao, T.K., Maaza, M., & Ezema, F.I. (2020). Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. European polymer journal, 122, 109371.
  • Attia, M., Glickman, R.D., Romero, G., Chen, B., Brenner, A.J., & Ye, J.Y. (2022). Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. Journal of Drug Delivery Science and Technology, 76, 103770.
  • Baig, M.M.F.A., Fatima, A., Gao, X., Farid, A., Khan, M.A., Zia, A.W., & Wu, H. (2022). Disrupting biofilm and eradicating bacteria by Ag-Fe3O4@ MoS2 MNPs nanocomposite carrying enzyme and antibiotics. Journal of Controlled Release, 352, 98-120.
  • Baran, A., Ertaş, E., Baran, M.F., Eftekhari, A., Gunes, Z., Keskin, C., Khalilov, R. (2024). Green-Synthesized Characterization, Antioxidant and Antibacterial Applications of CtAC/MNPs-Ag Nanocomposites. Pharmaceuticals, 17(6), 772.
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., & Cho, W.C. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, 1-11.
  • Barrios, C.H. (2022). Global challenges in breast cancer detection and treatment. The Breast, 62, S3-S6.
  • Choi, B.H., Kim, M.R., Jung, Y.N., Kang, S., & Hong, J. (2022). Interfering with color response by porphyrin-related compounds in the MTT tetrazolium-based colorimetric assay. International Journal of Molecular Sciences, 24(1), 562.
  • Cunha, C., Marinheiro, D., Ferreira, B.J., Oliveira, H., & Daniel-da-Silva, A.L. (2023). Morin hydrate encapsulation and release from mesoporous silica nanoparticles for melanoma therapy. Molecules, 28(12), 4776.
  • De Gaetano, F., Margani, F., Barbera, V., D’Angelo, V., Germanò, M.P., Pistarà, V., & Ventura, C.A. (2023). Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics, 15(9), 2209.
  • Jóźwiak, M., Filipowska, A., Fiorino, F., & Struga, M. (2020). Anticancer activities of fatty acids and their heterocyclic derivatives. European journal of pharmacology, 871, 172937.
  • Kamrani, A., Hosseinzadeh, R., Shomali, N., Heris, J.A., Shahabi, P., Mohammadinasab, R., Akbari, M. (2023). New immunotherapeutic approaches for cancer treatment. Pathology-Research and Practice, 248, 154632.
  • Karimian, A., Mohammadrezaei, F.M., Moghadam, A.H., Bahadori, M.H., Ghorbani-Anarkooli, M., Asadi, A., & Abdolmaleki, A. (2022). Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines. Acta Histochemica, 124(1), 151832.
  • Kovrigina, E., Chubarov, A., & Dmitrienko, E. (2022). High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy. Magnetochemistry, 8(5), 54.
  • Meng, Q., Pu, L., Lu, Q., Wang, B., Li, S., Liu, B., & Li, F. (2021). Morin hydrate inhibits atherosclerosis and LPS-induced endothelial cells inflammatory responses by modulating the NFκB signaling-mediated autophagy. International Immunopharmacology, 100, 108096.
  • Palei, N.N., Mounika, G., Mohanta, B.C., & Rajangam, J. (2023). Quercetin and Morin dual drug loaded nanostructured lipid carriers: formulation and in vitro cytotoxicity study on MCF7 breast cancer cells. Journal of Dispersion Science and Technology, 1-9.
  • Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Gu, J. (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209, 193-198.
  • Saif, B., Wang, C., Chuan, D., & Shuang, S. (2015). Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. Journal of Biomaterials and Nanobiotechnology, 6(4), 267-275.
  • Santhosh, A., & Dawn, S.S. (2021). Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Science and Technology, 84(5), 1170-1181.
  • Setia, A., Mehata, A.K., Malik, A.K., Viswanadh, M.K., & Muthu, M.S. (2023). Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications. Journal of Drug Delivery Science and Technology, 81, 104295.
  • Shabatina, T.I., Vernaya, O.I., Shabatin, V.P., & Melnikov, M.Y. (2020). Magnetic nanoparticles for biomedical purposes: Modern trends and prospects. Magnetochemistry, 6(3), 30.
  • Sleeman, K.E., Gomes, B., de Brito, M., Shamieh, O., & Harding, R. (2021). The burden of serious health-related suffering among cancer decedents: Global projections study to 2060. Palliative medicine, 35(1), 231-235.
  • Taguchi, K., Tano, I., Kaneko, N., Matsumoto, T., & Kobayashi, T. (2020). Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomedicine & Pharmacotherapy, 129, 110463.
  • Trendafilova, I., Mihály, J., Momekova, D., Chimshirova, R., Lazarova, H., Momekov, G., & Popova, M. (2020). Antioxidant activity and modified release profiles of Morin and hesperetin flavonoids loaded in Mg-or Ag-modified SBA-16 carriers. Materials Today Communications, 24, 101198.
  • Tural, B., Ertaş, E., Batıbay, H., & Tural, S. (2024). Comparative Study on Silver Nanoparticle Synthesis Using Male and Female Pistacia Khinjuk Leaf Extracts: Enhanced Efficacy of Female Leaf Extracts. ChemistrySelect, 9(30), e202402117.
  • Venskutonis, P.R. (2018). Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. Journal of Food Bioactives, 4, 69-87.

Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite

Year 2025, Volume: 15 Issue: 1, 217 - 227, 01.03.2025
https://doi.org/10.21597/jist.1533345

Abstract

Cancer is a prevalent and fatal illness that claims the lives of millions of people globally every year, impacting individuals across all age groups and ethnicities. Because drugs that are used to treat cancer affect both malignant and healthy cells without discrimination, they are responsible for systemic toxicity in addition to creating major adverse effects Recently, drug delivery systems that specifically target specific sites have been developed to minimize adverse effects caused by drugs. Morin (MRN) is a flavonol-based drugs that has been the subject of substantial research that has been conducted to investigate its antiangiogenic, anti-inflammatory, anticancer, and antibacterial activities. This study included the synthesis of a product with magnetic properties by applying a layer of magnetic nanoparticles onto biocompatible activated carbon derived from the hawthorn plant. Characterization of HPAC@MNPs synthesized with magnetic nanoparticle (MNPs) of activated carbon (AC) obtained from hawthorn plant (HP) was confirmed by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM), dynamic light scattering (DLS) and Zeta Potential. DLS analysis calculated the average particle size of HPAC@MNPs and HPAC@MNPs-MRN to be about 105 nm and 142 nm, respectively. The drug-loaded magnetic nanocomposite was evaluated for its cytotoxic effects on MCF-7 (breast), U373 (Glioblastoma) cancer cell lines, and Human Umbilical Vein Endothelial Cells (HUVEC) healthy cell line. The MRN loading and release characteristics of HPAC@MNPs were analyzed. The results indicated that the enclosed medication exhibited a prolonged spreading time during release. In summary, the use of HPAC@MNPs magnetic nanocomposite carriers may have great potential to effectively deliver MRN drugs to specific sites.

Ethical Statement

etik beyan yoktur.

Supporting Institution

yok

Thanks

yok

References

  • Aisida, S.O., Akpa, P.A., Ahmad, I., Zhao, T.K., Maaza, M., & Ezema, F.I. (2020). Bio-inspired encapsulation and functionalization of iron oxide nanoparticles for biomedical applications. European polymer journal, 122, 109371.
  • Attia, M., Glickman, R.D., Romero, G., Chen, B., Brenner, A.J., & Ye, J.Y. (2022). Optimized metal-organic-framework based magnetic nanocomposites for efficient drug delivery and controlled release. Journal of Drug Delivery Science and Technology, 76, 103770.
  • Baig, M.M.F.A., Fatima, A., Gao, X., Farid, A., Khan, M.A., Zia, A.W., & Wu, H. (2022). Disrupting biofilm and eradicating bacteria by Ag-Fe3O4@ MoS2 MNPs nanocomposite carrying enzyme and antibiotics. Journal of Controlled Release, 352, 98-120.
  • Baran, A., Ertaş, E., Baran, M.F., Eftekhari, A., Gunes, Z., Keskin, C., Khalilov, R. (2024). Green-Synthesized Characterization, Antioxidant and Antibacterial Applications of CtAC/MNPs-Ag Nanocomposites. Pharmaceuticals, 17(6), 772.
  • Baran, M. F., Keskin, C., Baran, A., Kurt, K., İpek, P., Eftekhari, A., & Cho, W.C. (2023). Green synthesis and characterization of selenium nanoparticles (Se NPs) from the skin (testa) of Pistacia vera L. (Siirt pistachio) and investigation of antimicrobial and anticancer potentials. Biomass Conversion and Biorefinery, 1-11.
  • Barrios, C.H. (2022). Global challenges in breast cancer detection and treatment. The Breast, 62, S3-S6.
  • Choi, B.H., Kim, M.R., Jung, Y.N., Kang, S., & Hong, J. (2022). Interfering with color response by porphyrin-related compounds in the MTT tetrazolium-based colorimetric assay. International Journal of Molecular Sciences, 24(1), 562.
  • Cunha, C., Marinheiro, D., Ferreira, B.J., Oliveira, H., & Daniel-da-Silva, A.L. (2023). Morin hydrate encapsulation and release from mesoporous silica nanoparticles for melanoma therapy. Molecules, 28(12), 4776.
  • De Gaetano, F., Margani, F., Barbera, V., D’Angelo, V., Germanò, M.P., Pistarà, V., & Ventura, C.A. (2023). Characterization and In Vivo Antiangiogenic Activity Evaluation of Morin-Based Cyclodextrin Inclusion Complexes. Pharmaceutics, 15(9), 2209.
  • Jóźwiak, M., Filipowska, A., Fiorino, F., & Struga, M. (2020). Anticancer activities of fatty acids and their heterocyclic derivatives. European journal of pharmacology, 871, 172937.
  • Kamrani, A., Hosseinzadeh, R., Shomali, N., Heris, J.A., Shahabi, P., Mohammadinasab, R., Akbari, M. (2023). New immunotherapeutic approaches for cancer treatment. Pathology-Research and Practice, 248, 154632.
  • Karimian, A., Mohammadrezaei, F.M., Moghadam, A.H., Bahadori, M.H., Ghorbani-Anarkooli, M., Asadi, A., & Abdolmaleki, A. (2022). Effect of astaxanthin and melatonin on cell viability and DNA damage in human breast cancer cell lines. Acta Histochemica, 124(1), 151832.
  • Kovrigina, E., Chubarov, A., & Dmitrienko, E. (2022). High drug capacity doxorubicin-loaded iron oxide nanocomposites for cancer therapy. Magnetochemistry, 8(5), 54.
  • Meng, Q., Pu, L., Lu, Q., Wang, B., Li, S., Liu, B., & Li, F. (2021). Morin hydrate inhibits atherosclerosis and LPS-induced endothelial cells inflammatory responses by modulating the NFκB signaling-mediated autophagy. International Immunopharmacology, 100, 108096.
  • Palei, N.N., Mounika, G., Mohanta, B.C., & Rajangam, J. (2023). Quercetin and Morin dual drug loaded nanostructured lipid carriers: formulation and in vitro cytotoxicity study on MCF7 breast cancer cells. Journal of Dispersion Science and Technology, 1-9.
  • Peng, L., Qin, P., Lei, M., Zeng, Q., Song, H., Yang, J., Gu, J. (2012) Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials, 209, 193-198.
  • Saif, B., Wang, C., Chuan, D., & Shuang, S. (2015). Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. Journal of Biomaterials and Nanobiotechnology, 6(4), 267-275.
  • Santhosh, A., & Dawn, S.S. (2021). Synthesis of zinc chloride activated eco-friendly nano-adsorbent (activated carbon) from food waste for removal of pollutant from biodiesel wash water. Water Science and Technology, 84(5), 1170-1181.
  • Setia, A., Mehata, A.K., Malik, A.K., Viswanadh, M.K., & Muthu, M.S. (2023). Theranostic magnetic nanoparticles: synthesis, properties, toxicity, and emerging trends for biomedical applications. Journal of Drug Delivery Science and Technology, 81, 104295.
  • Shabatina, T.I., Vernaya, O.I., Shabatin, V.P., & Melnikov, M.Y. (2020). Magnetic nanoparticles for biomedical purposes: Modern trends and prospects. Magnetochemistry, 6(3), 30.
  • Sleeman, K.E., Gomes, B., de Brito, M., Shamieh, O., & Harding, R. (2021). The burden of serious health-related suffering among cancer decedents: Global projections study to 2060. Palliative medicine, 35(1), 231-235.
  • Taguchi, K., Tano, I., Kaneko, N., Matsumoto, T., & Kobayashi, T. (2020). Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomedicine & Pharmacotherapy, 129, 110463.
  • Trendafilova, I., Mihály, J., Momekova, D., Chimshirova, R., Lazarova, H., Momekov, G., & Popova, M. (2020). Antioxidant activity and modified release profiles of Morin and hesperetin flavonoids loaded in Mg-or Ag-modified SBA-16 carriers. Materials Today Communications, 24, 101198.
  • Tural, B., Ertaş, E., Batıbay, H., & Tural, S. (2024). Comparative Study on Silver Nanoparticle Synthesis Using Male and Female Pistacia Khinjuk Leaf Extracts: Enhanced Efficacy of Female Leaf Extracts. ChemistrySelect, 9(30), e202402117.
  • Venskutonis, P.R. (2018). Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. Journal of Food Bioactives, 4, 69-87.
There are 25 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Kimya / Chemistry
Authors

Ayşe Baran 0000-0002-2317-0489

Erdal Ertaş 0000-0002-0325-1257

Early Pub Date February 20, 2025
Publication Date March 1, 2025
Submission Date August 14, 2024
Acceptance Date January 8, 2025
Published in Issue Year 2025 Volume: 15 Issue: 1

Cite

APA Baran, A., & Ertaş, E. (2025). Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite. Journal of the Institute of Science and Technology, 15(1), 217-227. https://doi.org/10.21597/jist.1533345
AMA Baran A, Ertaş E. Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite. J. Inst. Sci. and Tech. March 2025;15(1):217-227. doi:10.21597/jist.1533345
Chicago Baran, Ayşe, and Erdal Ertaş. “Preparation, Characterization and in Vitro Applications of Morin Hydrate Loaded HPAC@MNPs Nanocomposite”. Journal of the Institute of Science and Technology 15, no. 1 (March 2025): 217-27. https://doi.org/10.21597/jist.1533345.
EndNote Baran A, Ertaş E (March 1, 2025) Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite. Journal of the Institute of Science and Technology 15 1 217–227.
IEEE A. Baran and E. Ertaş, “Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite”, J. Inst. Sci. and Tech., vol. 15, no. 1, pp. 217–227, 2025, doi: 10.21597/jist.1533345.
ISNAD Baran, Ayşe - Ertaş, Erdal. “Preparation, Characterization and in Vitro Applications of Morin Hydrate Loaded HPAC@MNPs Nanocomposite”. Journal of the Institute of Science and Technology 15/1 (March 2025), 217-227. https://doi.org/10.21597/jist.1533345.
JAMA Baran A, Ertaş E. Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite. J. Inst. Sci. and Tech. 2025;15:217–227.
MLA Baran, Ayşe and Erdal Ertaş. “Preparation, Characterization and in Vitro Applications of Morin Hydrate Loaded HPAC@MNPs Nanocomposite”. Journal of the Institute of Science and Technology, vol. 15, no. 1, 2025, pp. 217-2, doi:10.21597/jist.1533345.
Vancouver Baran A, Ertaş E. Preparation, characterization and in vitro applications of morin hydrate loaded HPAC@MNPs nanocomposite. J. Inst. Sci. and Tech. 2025;15(1):217-2.