Research Article
BibTex RIS Cite

Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater

Year 2025, Volume: 15 Issue: 2, 593 - 605, 01.06.2025
https://doi.org/10.21597/jist.1514822

Abstract

Olive mill wastewater (OMW) is one of the major environmental issues due to high amount of phenolic compounds and organic substances. Physical, chemical and biological processes are applied to decrease the concentrations of these compounds; however, more ecofriendly and cost-effective applications are needed. Among biological treatments, enzymes, especially laccase, come to the front for the reduction of phenolic content of OMW. Nevertheless, laccase is often inactivated in harsh conditions, therefore, immobilizing laccase offers an effective alternative. To this aim, a laccase-immobilized cryogel was prepared to improve its stability and to obtain a reusable catalyst. Laccase was covalently-immobilized onto a magnetic poly(HEMA) cryogel decorated with epoxy groups of epichlorohydrin. Insolubilization improved its stability in terms of pH, temperature, storage and reuse. Km and Vmax of free and immobilized laccase were determined as 1.248 μM and 23.75 μM, and 0.450 U/mg and 0.405 U/mg, respectively. Laccase-immobilized cryogel was evaluated for the potential to reduce phenolic compound amount of OMW and resulted in 79% reduction. Effects of enzyme concentration, time and OMW volume on dephenolization were also evaluated.

References

  • Akin, B. and Ozmen, M. M. (2022). Antimicrobial cryogel dressings towards effective wound healing. Progress in Biomaterials, 11(4), 331-346.
  • Arıca, M. Y., Altıntas, B. and Bayramoğlu, G. (2009). Immobilization of laccase onto spacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresource Technology, 100(2), 665-669.
  • Arica, M. Y., Salih, B., Celikbicak, O., & Bayramoglu, G. (2017). Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chemical Engineering Research and Design, 128, 107-119.
  • Atiroğlu, V., Atiroğlu, A., Atiroğlu, A., Al-Hajri, A. S., & Özacar, M. (2024). Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chemistry, 448, 138978.
  • Atta, A. M., Al‐Lohedan, H. A., Tawfeek, A. M., & Ahmed, M. A. (2018). In situ preparation of magnetic Fe3O4. Cu2O. Fe3O4/cryogel nanocomposite powder via a reduction–coprecipitation method as adsorbent for methylene blue water pollutant. Polymer International, 67(7), 925-935.
  • Bakhshpour, M., Topcu, A. A., Bereli, N., Alkan, H., & Denizli, A. (2020). Poly (hydroxyethyl methacrylate) immunoaffinity cryogel column for the purification of human immunoglobulin M. Gels, 6(1), 4.
  • Bakhshpour, M., Idil, N., Perçin, I., & Denizli, A. (2019). Biomedical applications of polymeric cryogels. Applied Sciences, 9(3), 553.
  • Bani, N., Inanan, T., Acet, Ö., & Odabaşı, M. (2024). IMAC application of extracellular polymeric substances doped composite membranes for α-amylase immobilization and kinetic studies. Molecular Catalysis, 562, 114198.
  • Bayramoğlu, G. and Arıca, M. Y. (2009). Immobilization of laccase onto poly (glycidylmethacrylate) brush grafted poly (hydroxyethylmethacrylate) films: Enzymatic oxidation of phenolic compounds. Materials Science and Engineering: C, 29(6), 1990-1997.
  • Bayramoğlu, G., Yilmaz, M., & Arica, M. Y. (2010). Reversible immobilization of laccase to poly (4-vinylpyridine) grafted and Cu (II) chelated magnetic beads: biodegradation of reactive dyes. Bioresource Technology, 101(17), 6615-6621.
  • Buchner E. (1897) Alkoholische gährung ohne hefezellen. Berichte der deutschen chemischen Gesellschaft, 30(1):117-124.
  • Chen, Z., Oh, W. D., & Yap, P. S. (2022). Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. Chemosphere, 307, 135824.
  • Celikbicak, O., Bayramoglu, G., Yılmaz, M., Ersoy, G., Bicak, N., Salih, B., & Arica, M. Y. (2014). Immobilization of laccase on hairy polymer grafted zeolite particles: Degradation of a model dye and product analysis with MALDI–ToF-MS. Microporous and Mesoporous Materials, 199, 57-65.
  • Daâssi, D., Zouari-Mechichi, H., Prieto, A., Martínez, M. J., Nasri, M., & Mechichi, T. (2013). Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment. World Journal of Microbiology and Biotechnology, 29, 2145-2155.
  • Doğan, T., Bayram, E., Uzun, L., Şenel, S., & Denizli, A. (2015). Trametes versicolor laccase immobilized poly (glycidyl methacrylate) based cryogels for phenol degradation from aqueous media. Journal of Applied Polymer Science, 132(20).
  • Eigel, D., Werner, C. and Newland, B. (2021). Cryogel biomaterials for neuroscience applications. Neurochemistry International, 147, 105012.
  • Ertürk, G. and Mattiasson, B. (2014). Cryogels-versatile tools in bioseparation. Journal of Chromatography A, 1357, 24-35.
  • Fernandez-Fernandez, M., Sanromán, M. Á. and Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology advances, 31(8), 1808-1825.
  • Girelli, A. M., Quattrocchi, L. and Scuto, F. R. (2021). Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. Journal of Biotechnology, 337, 8-17.
  • Hamimed, S., Landoulsi, A. and Chatti, A. (2021). The bright side of olive mill wastewater: valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology, 1-22.
  • Hou, X., Ramakrishnan, S., Audonnet, F., Štrancar, A., Christophe, G., Traikia, M., ... & Pierre, G. (2024). Development of an immobilized laccases-CDI CIMmultus® monolithic reactor for ecofriendly producing gallic acid-dextran conjugate. Process Biochemistry, 144, 256-265.
  • Kashefi, S., Borghei, S. M., & Mahmoodi, N. M. (2019). Covalently immobilized laccase onto graphene oxide nanosheets: preparation, characterization, and biodegradation of azo dyes in colored wastewater. Journal of Molecular Liquids, 276, 153-162.
  • Khdair, A. and Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671.
  • Kuru, C. İ., Türkcan, C., Uygun, M., Okutucu, B., & Akgöl, S. (2016). Preparation and characterization of silanized poly (HEMA) nanoparticles for recognition of sugars. Artificial Cells, Nanomedicine, and Biotechnology, 44(3), 835-841.
  • Leonowicz, A. and Grzywnowicz, K. (1981). Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology, 3(1), 55-58.
  • Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., & Zhou, X. (2017). Laccase–methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. International Journal of Biological Macromolecules, 102, 144-152.
  • Linke, D. and Berger, R. G. (2011). Foaming of proteins: new prospects for enzyme purification processes. Journal of Biotechnology, 152(4), 125-131.
  • Liu, S., Bilal, M., Rizwan, K., Gul, I., Rasheed, T., & Iqbal, H. M. (2021). Smart chemistry of enzyme immobilization using various support matrices–a review. International Journal of Biological Macromolecules, 190, 396-408.
  • Madhavi, V. and Lele, S. S. (2009). Laccase: properties and applications. BioResources, 4(4).
  • Makas, Y. G., Kalkan, N. A., Aksoy, S., Altinok, H., & Hasirci, N. (2010). Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. Journal of Biotechnology, 148(4), 216-220.
  • Mate, D. M. and Alcalde, M. (2017). Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457-1467.
  • Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry Moscow, 72, 1136-1150.
  • Murakami Y, Kikuchi JI, Hisaeda Y, Hayashida O. (1996).Artificial enzymes. Chemical Reviews, 96(2), 721-758.
  • Othman, A. M., Sanromán, Á. and Moldes, D. (2023). Laccase multi-point covalent immobilization: characterization, kinetics, and its hydrophobicity applications. Applied Microbiology and Biotechnology, 107(2), 719-733.
  • Qiu, X., Wang, Y., Xue, Y., Li, W., & Hu, Y. (2020). Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chemical Engineering Journal, 391, 123564.
  • Rodrigues, S. C., Salgado, C. L., Sahu, A., Garcia, M. P., Fernandes, M. H., & Monteiro, F. J. (2013). Preparation and characterization of collagen‐nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Journal of Biomedical Materials Research Part A, 101(4), 1080-1094.
  • Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38(9), 1329-1356.
  • Sahiner, N., Demirci, S., Sahiner, M., Yilmaz, S., & Al-Lohedan, H. (2015). The use of superporous p (3-acrylamidopropyl) trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. Journal of Environmental Management, 152, 66-74.
  • Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R. Z., & Almalki, W. H. (2023). Treatment technologies for olive mill wastewater with impacts on plants. Environmental Research, 216, 114399.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (pp. 152-178). Academic press.
  • Sutaoney, P., Pandya, S., Gajarlwar, D., Joshi, V., & Ghosh, P. (2022). Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. Environmental Science and Pollution Research, 29(57), 86499-86527.
  • Tripathi, A. and Melo, J. S. (2019). Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. Journal of Chemical Sciences, 131, 1-11.
  • Wang, Z., Ren, D., Yu, H., Zhang, S., Zhang, X., & Chen, W. (2022). Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods. Biochemical Engineering Journal, 181, 108401.
  • Yadav, A., Yadav, P., Singh, A. K., Sonawane, V. C., Bharagava, R. N., & Raj, A. (2021). Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts. Bioresource Technology, 340, 125591.
  • Zayed, M. E., Obaid, A. Y., Almulaiky, Y. Q., & El-Shishtawy, R. M. (2024). Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. Journal of Environmental Management, 351, 119503.
  • Zerva, A., Pentari, C., & Topakas, E. (2020). Crosslinked enzyme aggregates (CLEAs) of laccases from Pleurotus citrinopileatus induced in olive oil mill wastewater (OOMW). Molecules, 25(9), 2221.
  • Zhang, K., Yang, W., Liu, Y., Zhang, K., Chen, Y., & Yin, X. (2020). Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. Journal of Molecular Structure, 1220, 128769.
  • Zhang, W., Jiang, Y., Wen, Q., Zhao, Y., Wu, B., & Huang, W. (2024). Inhibit or promote? Trade-off effect of dissolved organic matter on the laccase-mediator system. Journal of Hazardous Materials, 473, 134595.
  • Zofair, S. F. F., Ahmad, S., Hashmi, M. A., Khan, S. H., Khan, M. A., & Younus, H. (2022). Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. Journal of Environmental Management, 309, 114676.
Year 2025, Volume: 15 Issue: 2, 593 - 605, 01.06.2025
https://doi.org/10.21597/jist.1514822

Abstract

References

  • Akin, B. and Ozmen, M. M. (2022). Antimicrobial cryogel dressings towards effective wound healing. Progress in Biomaterials, 11(4), 331-346.
  • Arıca, M. Y., Altıntas, B. and Bayramoğlu, G. (2009). Immobilization of laccase onto spacer-arm attached non-porous poly (GMA/EGDMA) beads: application for textile dye degradation. Bioresource Technology, 100(2), 665-669.
  • Arica, M. Y., Salih, B., Celikbicak, O., & Bayramoglu, G. (2017). Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chemical Engineering Research and Design, 128, 107-119.
  • Atiroğlu, V., Atiroğlu, A., Atiroğlu, A., Al-Hajri, A. S., & Özacar, M. (2024). Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chemistry, 448, 138978.
  • Atta, A. M., Al‐Lohedan, H. A., Tawfeek, A. M., & Ahmed, M. A. (2018). In situ preparation of magnetic Fe3O4. Cu2O. Fe3O4/cryogel nanocomposite powder via a reduction–coprecipitation method as adsorbent for methylene blue water pollutant. Polymer International, 67(7), 925-935.
  • Bakhshpour, M., Topcu, A. A., Bereli, N., Alkan, H., & Denizli, A. (2020). Poly (hydroxyethyl methacrylate) immunoaffinity cryogel column for the purification of human immunoglobulin M. Gels, 6(1), 4.
  • Bakhshpour, M., Idil, N., Perçin, I., & Denizli, A. (2019). Biomedical applications of polymeric cryogels. Applied Sciences, 9(3), 553.
  • Bani, N., Inanan, T., Acet, Ö., & Odabaşı, M. (2024). IMAC application of extracellular polymeric substances doped composite membranes for α-amylase immobilization and kinetic studies. Molecular Catalysis, 562, 114198.
  • Bayramoğlu, G. and Arıca, M. Y. (2009). Immobilization of laccase onto poly (glycidylmethacrylate) brush grafted poly (hydroxyethylmethacrylate) films: Enzymatic oxidation of phenolic compounds. Materials Science and Engineering: C, 29(6), 1990-1997.
  • Bayramoğlu, G., Yilmaz, M., & Arica, M. Y. (2010). Reversible immobilization of laccase to poly (4-vinylpyridine) grafted and Cu (II) chelated magnetic beads: biodegradation of reactive dyes. Bioresource Technology, 101(17), 6615-6621.
  • Buchner E. (1897) Alkoholische gährung ohne hefezellen. Berichte der deutschen chemischen Gesellschaft, 30(1):117-124.
  • Chen, Z., Oh, W. D., & Yap, P. S. (2022). Recent advances in the utilization of immobilized laccase for the degradation of phenolic compounds in aqueous solutions: A review. Chemosphere, 307, 135824.
  • Celikbicak, O., Bayramoglu, G., Yılmaz, M., Ersoy, G., Bicak, N., Salih, B., & Arica, M. Y. (2014). Immobilization of laccase on hairy polymer grafted zeolite particles: Degradation of a model dye and product analysis with MALDI–ToF-MS. Microporous and Mesoporous Materials, 199, 57-65.
  • Daâssi, D., Zouari-Mechichi, H., Prieto, A., Martínez, M. J., Nasri, M., & Mechichi, T. (2013). Purification and biochemical characterization of a new alkali-stable laccase from Trametes sp. isolated in Tunisia: role of the enzyme in olive mill waste water treatment. World Journal of Microbiology and Biotechnology, 29, 2145-2155.
  • Doğan, T., Bayram, E., Uzun, L., Şenel, S., & Denizli, A. (2015). Trametes versicolor laccase immobilized poly (glycidyl methacrylate) based cryogels for phenol degradation from aqueous media. Journal of Applied Polymer Science, 132(20).
  • Eigel, D., Werner, C. and Newland, B. (2021). Cryogel biomaterials for neuroscience applications. Neurochemistry International, 147, 105012.
  • Ertürk, G. and Mattiasson, B. (2014). Cryogels-versatile tools in bioseparation. Journal of Chromatography A, 1357, 24-35.
  • Fernandez-Fernandez, M., Sanromán, M. Á. and Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology advances, 31(8), 1808-1825.
  • Girelli, A. M., Quattrocchi, L. and Scuto, F. R. (2021). Design of bioreactor based on immobilized laccase on silica-chitosan support for phenol removal in continuous mode. Journal of Biotechnology, 337, 8-17.
  • Hamimed, S., Landoulsi, A. and Chatti, A. (2021). The bright side of olive mill wastewater: valuables bioproducts after bioremediation. International Journal of Environmental Science and Technology, 1-22.
  • Hou, X., Ramakrishnan, S., Audonnet, F., Štrancar, A., Christophe, G., Traikia, M., ... & Pierre, G. (2024). Development of an immobilized laccases-CDI CIMmultus® monolithic reactor for ecofriendly producing gallic acid-dextran conjugate. Process Biochemistry, 144, 256-265.
  • Kashefi, S., Borghei, S. M., & Mahmoodi, N. M. (2019). Covalently immobilized laccase onto graphene oxide nanosheets: preparation, characterization, and biodegradation of azo dyes in colored wastewater. Journal of Molecular Liquids, 276, 153-162.
  • Khdair, A. and Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671.
  • Kuru, C. İ., Türkcan, C., Uygun, M., Okutucu, B., & Akgöl, S. (2016). Preparation and characterization of silanized poly (HEMA) nanoparticles for recognition of sugars. Artificial Cells, Nanomedicine, and Biotechnology, 44(3), 835-841.
  • Leonowicz, A. and Grzywnowicz, K. (1981). Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme and Microbial Technology, 3(1), 55-58.
  • Lin, J., Lai, Q., Liu, Y., Chen, S., Le, X., & Zhou, X. (2017). Laccase–methacrylyol functionalized magnetic particles: highly immobilized, reusable, and efficacious for methyl red decolourization. International Journal of Biological Macromolecules, 102, 144-152.
  • Linke, D. and Berger, R. G. (2011). Foaming of proteins: new prospects for enzyme purification processes. Journal of Biotechnology, 152(4), 125-131.
  • Liu, S., Bilal, M., Rizwan, K., Gul, I., Rasheed, T., & Iqbal, H. M. (2021). Smart chemistry of enzyme immobilization using various support matrices–a review. International Journal of Biological Macromolecules, 190, 396-408.
  • Madhavi, V. and Lele, S. S. (2009). Laccase: properties and applications. BioResources, 4(4).
  • Makas, Y. G., Kalkan, N. A., Aksoy, S., Altinok, H., & Hasirci, N. (2010). Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks. Journal of Biotechnology, 148(4), 216-220.
  • Mate, D. M. and Alcalde, M. (2017). Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Microbial Biotechnology, 10(6), 1457-1467.
  • Morozova, O. V., Shumakovich, G. P., Gorbacheva, M. A., Shleev, S. V., & Yaropolov, A. I. (2007). “Blue” laccases. Biochemistry Moscow, 72, 1136-1150.
  • Murakami Y, Kikuchi JI, Hisaeda Y, Hayashida O. (1996).Artificial enzymes. Chemical Reviews, 96(2), 721-758.
  • Othman, A. M., Sanromán, Á. and Moldes, D. (2023). Laccase multi-point covalent immobilization: characterization, kinetics, and its hydrophobicity applications. Applied Microbiology and Biotechnology, 107(2), 719-733.
  • Qiu, X., Wang, Y., Xue, Y., Li, W., & Hu, Y. (2020). Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chemical Engineering Journal, 391, 123564.
  • Rodrigues, S. C., Salgado, C. L., Sahu, A., Garcia, M. P., Fernandes, M. H., & Monteiro, F. J. (2013). Preparation and characterization of collagen‐nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. Journal of Biomedical Materials Research Part A, 101(4), 1080-1094.
  • Sahiner, N. (2013). Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Progress in Polymer Science, 38(9), 1329-1356.
  • Sahiner, N., Demirci, S., Sahiner, M., Yilmaz, S., & Al-Lohedan, H. (2015). The use of superporous p (3-acrylamidopropyl) trimethyl ammonium chloride cryogels for removal of toxic arsenate anions. Journal of Environmental Management, 152, 66-74.
  • Shabir, S., Ilyas, N., Saeed, M., Bibi, F., Sayyed, R. Z., & Almalki, W. H. (2023). Treatment technologies for olive mill wastewater with impacts on plants. Environmental Research, 216, 114399.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (pp. 152-178). Academic press.
  • Sutaoney, P., Pandya, S., Gajarlwar, D., Joshi, V., & Ghosh, P. (2022). Feasibility and potential of laccase-based enzyme in wastewater treatment through sustainable approach: A review. Environmental Science and Pollution Research, 29(57), 86499-86527.
  • Tripathi, A. and Melo, J. S. (2019). Cryostructurization of polymeric systems for developing macroporous cryogel as a foundational framework in bioengineering applications. Journal of Chemical Sciences, 131, 1-11.
  • Wang, Z., Ren, D., Yu, H., Zhang, S., Zhang, X., & Chen, W. (2022). Preparation optimization and stability comparison study of alkali-modified biochar immobilized laccase under multi-immobilization methods. Biochemical Engineering Journal, 181, 108401.
  • Yadav, A., Yadav, P., Singh, A. K., Sonawane, V. C., Bharagava, R. N., & Raj, A. (2021). Decolourisation of textile dye by laccase: Process evaluation and assessment of its degradation bioproducts. Bioresource Technology, 340, 125591.
  • Zayed, M. E., Obaid, A. Y., Almulaiky, Y. Q., & El-Shishtawy, R. M. (2024). Enhancing the sustainable immobilization of laccase by amino-functionalized PMMA-reinforced graphene nanomaterial. Journal of Environmental Management, 351, 119503.
  • Zerva, A., Pentari, C., & Topakas, E. (2020). Crosslinked enzyme aggregates (CLEAs) of laccases from Pleurotus citrinopileatus induced in olive oil mill wastewater (OOMW). Molecules, 25(9), 2221.
  • Zhang, K., Yang, W., Liu, Y., Zhang, K., Chen, Y., & Yin, X. (2020). Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. Journal of Molecular Structure, 1220, 128769.
  • Zhang, W., Jiang, Y., Wen, Q., Zhao, Y., Wu, B., & Huang, W. (2024). Inhibit or promote? Trade-off effect of dissolved organic matter on the laccase-mediator system. Journal of Hazardous Materials, 473, 134595.
  • Zofair, S. F. F., Ahmad, S., Hashmi, M. A., Khan, S. H., Khan, M. A., & Younus, H. (2022). Catalytic roles, immobilization and management of recalcitrant environmental pollutants by laccases: Significance in sustainable green chemistry. Journal of Environmental Management, 309, 114676.
There are 49 citations in total.

Details

Primary Language English
Subjects Proteins and Peptides, Medicinal and Biomolecular Chemistry (Other)
Journal Section Kimya / Chemistry
Authors

Rukiye Yavaşer Boncooğlu 0000-0003-2295-4617

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date July 11, 2024
Acceptance Date January 17, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Yavaşer Boncooğlu, R. (2025). Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater. Journal of the Institute of Science and Technology, 15(2), 593-605. https://doi.org/10.21597/jist.1514822
AMA Yavaşer Boncooğlu R. Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater. J. Inst. Sci. and Tech. June 2025;15(2):593-605. doi:10.21597/jist.1514822
Chicago Yavaşer Boncooğlu, Rukiye. “Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 593-605. https://doi.org/10.21597/jist.1514822.
EndNote Yavaşer Boncooğlu R (June 1, 2025) Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater. Journal of the Institute of Science and Technology 15 2 593–605.
IEEE R. Yavaşer Boncooğlu, “Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 593–605, 2025, doi: 10.21597/jist.1514822.
ISNAD Yavaşer Boncooğlu, Rukiye. “Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater”. Journal of the Institute of Science and Technology 15/2 (June 2025), 593-605. https://doi.org/10.21597/jist.1514822.
JAMA Yavaşer Boncooğlu R. Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater. J. Inst. Sci. and Tech. 2025;15:593–605.
MLA Yavaşer Boncooğlu, Rukiye. “Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 593-05, doi:10.21597/jist.1514822.
Vancouver Yavaşer Boncooğlu R. Laccase Immobilized In-Situ Magnetic Cryogel for Dephenolization of Olive Mill Wastewater. J. Inst. Sci. and Tech. 2025;15(2):593-605.