Research Article
BibTex RIS Cite

Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi

Year 2025, Volume: 15 Issue: 2, 479 - 492, 01.06.2025

Abstract

Bu çalışmada, Pd atomlarının [100], [110] ve [111] kristalografik doğrultularına yerleştirilmesiyle oluşturulan nano tel model sistemlerine tek eksen doğrultusu boyunca uygulanan çekme-sıkıştırma deformasyonu sonucu oluşan Bauschringer Etkisi (BE) Moleküler Dinamik (MD) benzetim yöntemi kullanılarak incelendi. Atomlar arasındaki kuvvetlerin belirlenmesinde çok cisim etkileşmelerini içeren Gömülmüş Atom Metodu (GAM) potansiyel fonksiyonunun gradientinden yararlanıldı. Uygulanan çekme ve sıkıştırma deformasyon işlemi sonucu farklı kristalografik doğrultular boyunca elde edilen gerilim-gerinim eğrileri arasında bir asimetri olduğu tespit edildi. Model nano tel sistemlerine, akma gerilim değeri aşıldıktan sonra farklı ön-gerinim değerlerinde uygulanan yükleme (çekme), yükün kaldırılması ve ters yükleme (sıkıştırma) deformasyon işlemi sonucu oluşan Bauschinger Etkisi (BE) belirlendi. Bazı kristalografik doğrultularda ters BE etkisinin oluşumu tespit edildi. Bauschinger Stress Parametresi (BSP), BE’nin farklı kristalografik yönelimlere sahip Pd nano telleri üzerindeki etkisini tespit etmek için hesaplandı. Ayrıca nano telde deformasyon sonucu oluşan toplam ve Shockly dislokasyon yoğunlukları gerinimin farklı değerleri için hesaplandı. Yükleme esnasında dislokasyonların arttığı, yük kaldırılırken azaldığı ve ters yükleme işleminde yeniden bir artış sergilediği bütün kristalografik doğrultular için gözlendi.

References

  • Abel, A., Muir, H. (1972). The Bauschinger effect and discontinuous yielding. Phil Mag., 26, 489–504.
  • Abel, A. (1987). Historical perspectives and some of the main features of the Bauschinger effect. Mater. Forum, 10(1), 11– 26.
  • Ashutosh, R., Surajit K. P. (2023). Influence of hard inclusion on Bauschinger effect and cyclic deformation behavior: an atomistic simulation on single-crystal and polycrystal aluminum, Materials Today Communications 34, 105126.
  • Branicio, P. S., Rino, J. P. (2000). Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study. Physical Review B, 62, 16950–16955.
  • Brown, L.M. (1977). Orowan’s explanation of the Bauschinger effect. Scr Metall, 11, 127–131.
  • Zhu, D., Zhang, H., Li, D.Y. (2013). Influence of Nanotwin Boundary on the Bauschinger’s Effect in Cu: A Molecular Dynamics Simulation Study. Metallurgical and Materials Transactions A, 44A, 4207-4217.
  • Caceres, C.H., Griffiths, J.R., Reiner, P. (1996). Influence of microstructure on the Bauschinger effect in an Al Si–Mg alloy. Acta Metall., 44, 15–23.
  • Chun, B.K., Kim, H.Y., Lee, J.K. (2002). Modeling the Bauschinger effect for sheet metals, part II: applications. Int. J. Plast., 18, 597–616.
  • Chun, B.K., Jinn, J.T., Lee, J.K. (2002) Modeling the Bauschinger effect for sheet metals, part I: theory, Int. J. Plast., 18, 571–595.
  • da Silva, E. Z., da Silva, A. J. R. and Fazzio, A. (2001). How Do Gold Nanowires Break?. Physical Review Letters, 87, 256102.
  • De, P.S., Kundu, A., Chakraborti, P.C. (2013). Effect of prestrain on tensile properties and ratcheting behavior of Ti-stabilised interstitial free steel. Mat Des., 87–97.
  • Diao, J., Gall, K., Dunn, M.L. (2004). Yield strength asymmetry in metal nanowires, Nano Lett, 4, 1863-1867.
  • Finbow, G. M., Lynden-Bell, R. M., Mcdonald, I. R. (1997). Atomistic simulation of the stretching of nanoscale metal wires. Molecular Physics, 92, 705–714.
  • Gui, H.L., Li, Q., Huang, Q.X. (2015). The influence of Bauschinger effect in straightening process. Math. Probl. Eng, 2015, 1-5.
  • Han, K., Van, T.C.J., Levy, B.S. (2005). Effect of strain and strain rate on the bauschinger effect response of three different steels. Metall Mater Trans A, 36, 2379-2384.
  • Han, S.Y., Sohn, S.S., Shin, S.Y., Bae, J.H., Kim, H.S., Lee, S. (2012) Effect of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels. Mat Sci Engg A, 551, 192–199.
  • Hasmy, A. and Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88, 096103.
  • Horstemeyer, M.F. (1998). Damage influence on Bauschinger effect of a CAST A356 alluminum alloy. Scripta Mater., 39, 1491–1495.
  • Jang, J., Hyun, B. G., Ji, S., Cho, E., An, B. W., Cheong, W. H. and Park, J. U. (2017). Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 9 (9), e432.
  • Ji, S., Jang, J., Cho, E., Kim, S. H., Kang, E. S., Kim, J., Kim, H. K., Konh, H., Kim, S. K., Kim, J. Y., Park, J. U. (2017). High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials, 29, 1700538.
  • Jordon, J.B., Horstemeyer, M.F., Solanki, K., Xue, Y. (2007). Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mechanics of Materials, 39, 920–931.
  • Kazanc, S., Ozgen, S., Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica Bi 334, 375-381.
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Canbay, C. A. (2024). Molecular Dynamics Simulation of Bauschinger Effect in Cu Nanowire with Different Crystallographic Orientation. Turkish Journal of Science & Technology, 19(1), 203-211.
  • Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G. (2004). Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diode, Nano Lett., 4, 911-914.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Mahato, J.K., De, P.S., Sarkar, A., Kundu, A., Chakraborti, P.C. (2016). Effect of deformation mode and grain size on Bauschinger behavior of annealed copper. International Journal of Fatigue, 83, 42-52.
  • Nakamura, A., Brandbyge, M., Hansen, L. B., Jacobsen, K. W. (1999). Density functional simulation of a breaking nanowire. Physical Review Letters, 82, 1538–1541.
  • Novak, V., Sittner, P. (1990). Stability of dislocation structure. Acta Universities Caroline-Math et Phys., 22, 89–94.
  • Paul, J.D.H., Hoppe, R., Appel, F. (2016). On the Bauschinger effect in TiAl alloys. Acta Materialia, 104, 101-108.
  • Pedersen, O.B., Brown, L.M., Stobbs, W.M. (1981) The bauschinger effect in copper. Acta Metall, 29, 1843-1850.
  • Prinz, F., Argon, A.S. (1980). Dislocation cell formation during plastic deformation of copper single crystals. Phys. Status Solidi A, 57, 741-753.
  • Rzychoñ, T., Rodak, K. (2007). Microstructure characterization of deformed copper by XRD line broadening. Arch. Mater. Sci. Eng., 28, 605-608.
  • Sainath, G., Choudhary, B. (2015). Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters A, 379(34), 1902–1905.
  • Sainath, G., Choudhary, B.K. (2016). Orientation dependent deformation behaviour of bcc iron nanowires. Computational Materials Science, 111, 406-415.
  • Setoodeh, A.R., Attariani, H., Khosrownejad., M. (2008). Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Computational Materials Science, 44, 378-384.
  • Setoodeh, A.R., Attariani, H. (2008). Nanoscale simulations of Bauschinger effects on a nickel nanowire. Materials Letters, 62, 4266–4268.
  • Sofiah, A. G. N., Samykano, M., Kadirgama, K., Mohan, R. V., Lah, N. A. C. (2018). Metallic nanowires: Mechanical properties-Theory and experiment. Applied Materials Today, 11, 320–337.
  • Sohn, S.S., Han, S.Y., Shin, S.Y., Bae, J.H., Lee, S. (2013). Effect of microstructure and pre-strain on Bauschinger effect in API X70 and X80 line pipe steel. Met Mater Int., 19, 423–431.
  • Stoltz, R.E., Pelloux, R.M. (1976). The Bauschinger effect in precipitation strengthened aluminum alloys. Metall Trans A, 7, 1295-1306.
  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • Waheed, S., Hao, R., Bhowmik, A., Balint, D.S., Giuliani, F. (2017). A unifying scaling for the Bauschinger effect in highly confined thin films: a discrete dislocation plasticity study. Model Simulat Mater Sci Eng., 25, 54003.
  • Walsh, P., Li, W., Kalia, R. K., Nakano, A., Vashishta, P., Saini, S. (2001). Structural Transformation, Amorphization, and Fracture in Nanowires: A Multi-million Atom Molecular Dynamics Study. Applied Physics Letters, 78, 3328–3330.
  • Wang, P., Chou, W., Nie, A., Huang, Y., Yao, H., Wang, H. (2011). Molecular dynamics simulation on deformation mechanisms in bodycentered-cubic molybdenum nanowires. J Appl Phys, 093521.
  • Weinberger, C. R., Cai, W. (2012). Plasticity of metal nano wires. J. Mater. Chem. 22, 3277–3292.
  • Wen, Y.H., Zhang, Y., Wang, Q., Zheng J.C., Zhu, Z.Z. (2010). Orientation-dependent mechanical properties of Au nanowires, Computational Materials Science, 48, 513-519.
  • Wu, B., Heidelberg, A. and Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529.
  • Wu, H.A., (2006). Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., Carney, T. J., Hu, L., Fan, S. and Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 8 (6), 421-425.
  • Xia, S., Liu, L., Kong, Y., Wang, M. (2016). Uniaxial strain effects on the optoelectronic properties of GaN nanowires, Superlattices and Microstructures, 97, 327–334.
  • Zhan, H., Gu, Y., Yan, C., & Yarlagadda, P. K. (2014). Bending properties of Ag nanowires with pre-existing surface defects. Computational Materials Science, 81, 45–51.
  • Zhang, L., Lu, C., Tieu, A.K.(2018). Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227, 236–239
  • Zhou, J., Shen, J., Essa, F.A., Yu, J. (2022). Twins and grain boundaries-dominated the reverse Bauschinger effect and tension-compression asymmetry. Journal of materials research and technology, 18, 15 -28.

Investigation of the Crystallographic Orientation Dependence of the Bauschinger Effect in Pd Nanowire by Molecular Dynamics Simulation

Year 2025, Volume: 15 Issue: 2, 479 - 492, 01.06.2025

Abstract

In this study, the Bauschringer Effect (BE), which occurs as a result of tensile-compression deformation applied along a single axis direction to nanowire model systems formed by placing Pd atoms in the [100], [110] and [111] crystallographic directions was investigated using the Molecular Dynamics (MD) simulation method. The gradient of the Embedded Atom Method (EAM) potential function, which includes many-body interactions, was used to determine the forces between atoms. It was determined that there was an asymmetry between the stress-strain curves obtained along different crystallographic directions as a result of the applied tensile and compressive deformation process. The Bauschinger Effect (BE) that occurs as a result of loading (tensile), unloading and reverse loading (compression) deformation processes applied to model nanowire systems at different pre-strain values after the yield stress value is exceeded was determined. The occurrence of reverse BE effect was detected in some crystallographic directions. Bauschinger Stress Parameter (BSP) was calculated to detect the effect of BE on Pd nanowires with different crystallographic orientations. Additionally, the total and Shockly dislocation densities resulting from deformation in the nanowire were calculated for different values of strain. It was observed for all crystallographic directions that dislocations increased during loading, decreased when the load was removed, and increased again upon reverse loading.

References

  • Abel, A., Muir, H. (1972). The Bauschinger effect and discontinuous yielding. Phil Mag., 26, 489–504.
  • Abel, A. (1987). Historical perspectives and some of the main features of the Bauschinger effect. Mater. Forum, 10(1), 11– 26.
  • Ashutosh, R., Surajit K. P. (2023). Influence of hard inclusion on Bauschinger effect and cyclic deformation behavior: an atomistic simulation on single-crystal and polycrystal aluminum, Materials Today Communications 34, 105126.
  • Branicio, P. S., Rino, J. P. (2000). Large Deformation and Amorphization of Ni Nanowires under Uniaxial Strain: A Molecular Dynamics Study. Physical Review B, 62, 16950–16955.
  • Brown, L.M. (1977). Orowan’s explanation of the Bauschinger effect. Scr Metall, 11, 127–131.
  • Zhu, D., Zhang, H., Li, D.Y. (2013). Influence of Nanotwin Boundary on the Bauschinger’s Effect in Cu: A Molecular Dynamics Simulation Study. Metallurgical and Materials Transactions A, 44A, 4207-4217.
  • Caceres, C.H., Griffiths, J.R., Reiner, P. (1996). Influence of microstructure on the Bauschinger effect in an Al Si–Mg alloy. Acta Metall., 44, 15–23.
  • Chun, B.K., Kim, H.Y., Lee, J.K. (2002). Modeling the Bauschinger effect for sheet metals, part II: applications. Int. J. Plast., 18, 597–616.
  • Chun, B.K., Jinn, J.T., Lee, J.K. (2002) Modeling the Bauschinger effect for sheet metals, part I: theory, Int. J. Plast., 18, 571–595.
  • da Silva, E. Z., da Silva, A. J. R. and Fazzio, A. (2001). How Do Gold Nanowires Break?. Physical Review Letters, 87, 256102.
  • De, P.S., Kundu, A., Chakraborti, P.C. (2013). Effect of prestrain on tensile properties and ratcheting behavior of Ti-stabilised interstitial free steel. Mat Des., 87–97.
  • Diao, J., Gall, K., Dunn, M.L. (2004). Yield strength asymmetry in metal nanowires, Nano Lett, 4, 1863-1867.
  • Finbow, G. M., Lynden-Bell, R. M., Mcdonald, I. R. (1997). Atomistic simulation of the stretching of nanoscale metal wires. Molecular Physics, 92, 705–714.
  • Gui, H.L., Li, Q., Huang, Q.X. (2015). The influence of Bauschinger effect in straightening process. Math. Probl. Eng, 2015, 1-5.
  • Han, K., Van, T.C.J., Levy, B.S. (2005). Effect of strain and strain rate on the bauschinger effect response of three different steels. Metall Mater Trans A, 36, 2379-2384.
  • Han, S.Y., Sohn, S.S., Shin, S.Y., Bae, J.H., Kim, H.S., Lee, S. (2012) Effect of microstructure and yield ratio on strain hardening and Bauschinger effect in two API X80 linepipe steels. Mat Sci Engg A, 551, 192–199.
  • Hasmy, A. and Medina, E. (2002). Thickness Induced Structural Transition in Suspended fcc Metal Nanofilms. Physical Review Letters, 88, 096103.
  • Horstemeyer, M.F. (1998). Damage influence on Bauschinger effect of a CAST A356 alluminum alloy. Scripta Mater., 39, 1491–1495.
  • Jang, J., Hyun, B. G., Ji, S., Cho, E., An, B. W., Cheong, W. H. and Park, J. U. (2017). Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 9 (9), e432.
  • Ji, S., Jang, J., Cho, E., Kim, S. H., Kang, E. S., Kim, J., Kim, H. K., Konh, H., Kim, S. K., Kim, J. Y., Park, J. U. (2017). High dielectric performances of flexible and transparent cellulose hybrid films controlled by multidimensional metal nanostructures. Advanced Materials, 29, 1700538.
  • Jordon, J.B., Horstemeyer, M.F., Solanki, K., Xue, Y. (2007). Damage and stress state influence on the Bauschinger effect in aluminum alloys. Mechanics of Materials, 39, 920–931.
  • Kazanc, S., Ozgen, S., Adiguzel, O. (2003). Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica Bi 334, 375-381.
  • Kazanc, S. (2013). The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics, 91, 833-838.
  • Kazanc, S., Canbay, C. A. (2024). Molecular Dynamics Simulation of Bauschinger Effect in Cu Nanowire with Different Crystallographic Orientation. Turkish Journal of Science & Technology, 19(1), 203-211.
  • Lee, K., Wu, Z., Chen, Z., Ren, F., Pearton, S. J., Rinzler, A. G. (2004). Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diode, Nano Lett., 4, 911-914.
  • http://lammps.sandia.gov/.LAMMPS Molecular Dynamics Simulator (Erişim Tarihi:02.04.2021).
  • Mahato, J.K., De, P.S., Sarkar, A., Kundu, A., Chakraborti, P.C. (2016). Effect of deformation mode and grain size on Bauschinger behavior of annealed copper. International Journal of Fatigue, 83, 42-52.
  • Nakamura, A., Brandbyge, M., Hansen, L. B., Jacobsen, K. W. (1999). Density functional simulation of a breaking nanowire. Physical Review Letters, 82, 1538–1541.
  • Novak, V., Sittner, P. (1990). Stability of dislocation structure. Acta Universities Caroline-Math et Phys., 22, 89–94.
  • Paul, J.D.H., Hoppe, R., Appel, F. (2016). On the Bauschinger effect in TiAl alloys. Acta Materialia, 104, 101-108.
  • Pedersen, O.B., Brown, L.M., Stobbs, W.M. (1981) The bauschinger effect in copper. Acta Metall, 29, 1843-1850.
  • Prinz, F., Argon, A.S. (1980). Dislocation cell formation during plastic deformation of copper single crystals. Phys. Status Solidi A, 57, 741-753.
  • Rzychoñ, T., Rodak, K. (2007). Microstructure characterization of deformed copper by XRD line broadening. Arch. Mater. Sci. Eng., 28, 605-608.
  • Sainath, G., Choudhary, B. (2015). Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars. Physics Letters A, 379(34), 1902–1905.
  • Sainath, G., Choudhary, B.K. (2016). Orientation dependent deformation behaviour of bcc iron nanowires. Computational Materials Science, 111, 406-415.
  • Setoodeh, A.R., Attariani, H., Khosrownejad., M. (2008). Nickel nanowires under uniaxial loads: A molecular dynamics simulation study. Computational Materials Science, 44, 378-384.
  • Setoodeh, A.R., Attariani, H. (2008). Nanoscale simulations of Bauschinger effects on a nickel nanowire. Materials Letters, 62, 4266–4268.
  • Sofiah, A. G. N., Samykano, M., Kadirgama, K., Mohan, R. V., Lah, N. A. C. (2018). Metallic nanowires: Mechanical properties-Theory and experiment. Applied Materials Today, 11, 320–337.
  • Sohn, S.S., Han, S.Y., Shin, S.Y., Bae, J.H., Lee, S. (2013). Effect of microstructure and pre-strain on Bauschinger effect in API X70 and X80 line pipe steel. Met Mater Int., 19, 423–431.
  • Stoltz, R.E., Pelloux, R.M. (1976). The Bauschinger effect in precipitation strengthened aluminum alloys. Metall Trans A, 7, 1295-1306.
  • Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012.
  • Waheed, S., Hao, R., Bhowmik, A., Balint, D.S., Giuliani, F. (2017). A unifying scaling for the Bauschinger effect in highly confined thin films: a discrete dislocation plasticity study. Model Simulat Mater Sci Eng., 25, 54003.
  • Walsh, P., Li, W., Kalia, R. K., Nakano, A., Vashishta, P., Saini, S. (2001). Structural Transformation, Amorphization, and Fracture in Nanowires: A Multi-million Atom Molecular Dynamics Study. Applied Physics Letters, 78, 3328–3330.
  • Wang, P., Chou, W., Nie, A., Huang, Y., Yao, H., Wang, H. (2011). Molecular dynamics simulation on deformation mechanisms in bodycentered-cubic molybdenum nanowires. J Appl Phys, 093521.
  • Weinberger, C. R., Cai, W. (2012). Plasticity of metal nano wires. J. Mater. Chem. 22, 3277–3292.
  • Wen, Y.H., Zhang, Y., Wang, Q., Zheng J.C., Zhu, Z.Z. (2010). Orientation-dependent mechanical properties of Au nanowires, Computational Materials Science, 48, 513-519.
  • Wu, B., Heidelberg, A. and Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525-529.
  • Wu, H.A., (2006). Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids, 25, 370-377.
  • Wu, H., Kong, D., Ruan, Z., Hsu, P. C., Wang, S., Yu, Z., Carney, T. J., Hu, L., Fan, S. and Cui, Y. (2013). A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 8 (6), 421-425.
  • Xia, S., Liu, L., Kong, Y., Wang, M. (2016). Uniaxial strain effects on the optoelectronic properties of GaN nanowires, Superlattices and Microstructures, 97, 327–334.
  • Zhan, H., Gu, Y., Yan, C., & Yarlagadda, P. K. (2014). Bending properties of Ag nanowires with pre-existing surface defects. Computational Materials Science, 81, 45–51.
  • Zhang, L., Lu, C., Tieu, A.K.(2018). Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227, 236–239
  • Zhou, J., Shen, J., Essa, F.A., Yu, J. (2022). Twins and grain boundaries-dominated the reverse Bauschinger effect and tension-compression asymmetry. Journal of materials research and technology, 18, 15 -28.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Structural Properties of Condensed Matter
Journal Section Research Article
Authors

Sefa Kazanç 0000-0002-8896-8571

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date September 10, 2024
Acceptance Date November 26, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Kazanç, S. (2025). Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi. Journal of the Institute of Science and Technology, 15(2), 479-492.
AMA Kazanç S. Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi. J. Inst. Sci. and Tech. June 2025;15(2):479-492.
Chicago Kazanç, Sefa. “Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu Ile İncelenmesi”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 479-92.
EndNote Kazanç S (June 1, 2025) Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi. Journal of the Institute of Science and Technology 15 2 479–492.
IEEE S. Kazanç, “Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 479–492, 2025.
ISNAD Kazanç, Sefa. “Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu Ile İncelenmesi”. Journal of the Institute of Science and Technology 15/2 (June2025), 479-492.
JAMA Kazanç S. Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi. J. Inst. Sci. and Tech. 2025;15:479–492.
MLA Kazanç, Sefa. “Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu Ile İncelenmesi”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 479-92.
Vancouver Kazanç S. Pd Nano Teldeki Bauschinger Etkisinin Kristalografik Yönelime Bağlılığının Moleküler Dinamik Simülasyonu ile İncelenmesi. J. Inst. Sci. and Tech. 2025;15(2):479-92.