Research Article
BibTex RIS Cite

Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri

Year 2025, Volume: 15 Issue: 2, 509 - 519, 01.06.2025

Abstract

2p uyarılmış durumunda, hidrostatik basınç ve sıcaklığın GaAs/Ga1-xAlxAs küresel kuantum noktasındaki yabancı atom self- polarizasyonu ve bağlanma enerjisi üzerindeki etkileri, etkin kütle yaklaşımı altında varyasyonel yöntem ile hesaplanmıştır. Bağlanma enerjisi ve yabancı atom self-polarizasyonu, sıcaklık, hidrostatik basınç, yabancı atomun konumu ve nokta yarıçapının bir fonksiyonu olarak incelenmiştir. Sonuçlar, yabancı atom self-polarizasyonunun ve bağlanma enerjisinin hidrostatik basınca ve sıcaklığa bağlı olduğunu göstermektedir. Ayrıca, bağlanma enerjisi hidrostatik basınçla artarken sıcaklık ile azalmakta, yabancı atom self-polarizasyonu ise hidrostatik basınçla azalırken sıcaklık ile artmaktadır. Bununla birlikte, sıcaklık ve hidrostatik basıncın etkisi altında yabancı atom self-polarizasyonunun hesaplanması, yabancı atomun sistemdeki konumu hakkında önemli bilgiler vermektedir.

References

  • Akankan, O., Erdogan, I., & Akbas, H. (2006). Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E: Low-dimensional Systems and Nanostructures, 35(1), 217-221.
  • Akbas H, Sucu S, Minez S, Dane C, Akankan O and Erdogan I, (2016). Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure, Superlattices and Microstructures, 94, 131-137.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Bastard G, (1981). Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Başer, P., Altuntas, I., & Elagoz, S. (2016). The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices and Microstructures, 92, 210-216.
  • Bella RSD, Navaneethakrishnan K, (2004). Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brandi, H. S., Latgé, A., & Oliveira, L. E. (2002). Magnetic-field and laser effects on the electronic and donor states in semiconducting quantum dots. Journal of applied physics, 92(8), 4209-4212.
  • Branis, S. V., Li, G., & Bajaj, K. K., (1993). Hydrogenic impurities in quantum wires in the presence of a magnetic field. Physical Review B, 47(3), 1316.
  • Brown JW, Spector HN, (1986). Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, (2014). Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299 303.
  • Erdogan I, Akankan O, Akbas H, (2006a). Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, (2006b). Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Erdogan, I., Akankan, O., & Akbas, H. (2009). Effects of hydrostatic pressure on the self-polarization in GaAs/Ga1− x Alx As quantum wells under the electric field. Physica E: Low-dimensional Systems and Nanostructures, 42(2), 136-140.
  • Fraizzoli S, Bassani F, Buczko R, (1990). Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Greene RL, Bajaj KK, (1985). Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Hassanabadi, H., & Rajabi, A. A. (2009). Energy levels of a spherical quantum dot in a confining potential. Physics Letters A, 373(6), 679-681.
  • Johnson NF, (1995). Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Kirak, M., Altinok, Y., & Yilmaz, S. A. İ. T. (2013). The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. Journal of Luminescence, 136, 415-421.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, (2017). The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mese, A. I. (2021). Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology, 11(1), 212-220.
  • Mese A. I. (2018). The Effect Of Pressure On Excıted State Bındıng Energy, Expectatıon Value Of The Electron-Impurıty And Impurıty Self-Polarızatıon In A Gaas-Ga1-Xalxas Spherıcal Quantum Dot, Internatıonal Scıentıfıc Conference 16-17 November 2018, Gabrovo, Bulgaria
  • Mikhail IFI, Ismail IMM, (2010). Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400.
  • Montenegro NP, Merchancano STP, (1992). Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, (2004). Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, (2009). Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rajashabala, S., & Navaneethakrishnan, K. (2006). Effective masses for donor binding energies in quantum well systems. Modern Physics Letters B, 20(24), 1529-1541.
  • Restrepo, R. L., Miranda, G. L., Duque, C. A., & Mora-Ramos, M. E. (2011). Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga1− xAlxAs multiple quantum wells. Journal of luminescence, 131(5), 1016-1021.
  • Rezaei, G., & Kish, S. S. (2012). Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 45, 56-60.
  • Rezaei, G., Mousavi, S., & Sadeghi, E. (2012). External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B: Condensed Matter, 407(13), 2637-2641.
  • Rezaei, G., Taghizadeh, S. F., & Enshaeian, A. A. (2012). External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1562-1566.
  • Sadeghi E, (2009). Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Safwan S.A., Nagwa El Meshad, Assma Saleh, Hekmat M. Hassanein, (2020). Stark shift of hydrogenic and non-hydrogenic donor impurity excited states in parabolic quantum dot: Under the effect of electric field and temperature, Physica E: Low-dimensional Systems and Nanostructures, 118, 113882.
  • Safwan, S. A., Saleh, A., Hassanein, H. M., & El Meshed, N. (2018). Hydrostatic pressure and magnetic field effect on the excited states in inverse parabolic quantum dot. Current Applied Physics, 18(1), 34-39.
  • Sivakami A, Gayathri V, (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sucu S, Mese AI, Okan SE, (2008). The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Sucu, S., Minez, S. & Erdogan, I, (2021). Self-polarization of a donor impurity for the first excited state in an Ga1-xAlxAs/GaAs quantum well. Indian J Phys 95 1691–1695.
  • Ulas, M., Erdogan, I., Cicek, E., & Dalgıc, S. S. (2005). Self polarization in GaAs–(Ga, Al) As quantum well wires: electric field and geometrical effects. Physica E: Low-dimensional Systems and Nanostructures, 25(4), 515-520.
  • Zhu JL, Xiong JJ, Gu BL, (1990). Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.
  • Zhu, J. L., & Chen, X. (1994). Spectrum and binding of an off-center donor in a spherical quantum dot. Physical Review B, 50(7), 4497.

Effects of Hydrostatic Pressure and Temperature on İmpurity Self-Polarization and Binding Energy in GaAs/Ga1-xAlxAs Spherical Quantum Dot

Year 2025, Volume: 15 Issue: 2, 509 - 519, 01.06.2025

Abstract

The effects of hydrostatic pressure and temperature on impurity self-polarization and binding energy in GaAs/Ga1-xAlxAs spherical quantum dot in 2p excited state were calculated by variational method under effective mass approach. Binding energy and impurity self-polarization were investigated as a function of temperature, hydrostatic pressure, impurity position and dot radius. The results show that impurity self-polarization and binding energy depend on hydrostatic pressure and temperature. In addition, binding energy increases with hydrostatic pressure and decreases with temperature, while impurity self-polarization decreases with hydrostatic pressure and increases with temperature. However, calculation of impurity self-polarization under the effect of temperature and hydrostatic pressure provides important information about the position of impurity in the system.

References

  • Akankan, O., Erdogan, I., & Akbas, H. (2006). Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E: Low-dimensional Systems and Nanostructures, 35(1), 217-221.
  • Akbas H, Sucu S, Minez S, Dane C, Akankan O and Erdogan I, (2016). Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure, Superlattices and Microstructures, 94, 131-137.
  • Al EB, Kasapoglu E, Sakiroglu S, Sari H, Sökmen I, Duque CA, (2020). Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field. Physica E 119: 114011.
  • Bastard G, (1981). Hydrogenic impurity states in a quantum well: A simple model. Physical Review B, 24(8): 4714-4722.
  • Başer, P., Altuntas, I., & Elagoz, S. (2016). The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices and Microstructures, 92, 210-216.
  • Bella RSD, Navaneethakrishnan K, (2004). Donor binding energies and spin–orbit coupling in a spherical quantum dot. Solid State Communications, 130 (11): 773-776.
  • Brandi, H. S., Latgé, A., & Oliveira, L. E. (2002). Magnetic-field and laser effects on the electronic and donor states in semiconducting quantum dots. Journal of applied physics, 92(8), 4209-4212.
  • Branis, S. V., Li, G., & Bajaj, K. K., (1993). Hydrogenic impurities in quantum wires in the presence of a magnetic field. Physical Review B, 47(3), 1316.
  • Brown JW, Spector HN, (1986). Hydrogen impurities in quantum well wires. Journal of Applied Physics, 59 (4): 1179-1186.
  • Bulut P, Erdogan I, Akbas H, (2014). Binding energy of 2p-bound state of a hydrogenic donor impurity in a GaAs/Ga1_xAlxAs spherical quantum dot under hydrostatic pressure. Physica E, 63: 299 303.
  • Erdogan I, Akankan O, Akbas H, (2006a). Electric and magnetic field effects on the self-polarization in GaAs/AlAs cylindrical quantum well-wires. Physica E, 33 (1): 83–87.
  • Erdogan I, Akankan O, Akbas H, (2006b). Binding energy and self-polarization as function of energy density in GaAs/AlAs quantum well wires. Physica E, 35 (1): 27-32.
  • Erdogan I, Akankan O, Akbas H, (2013). Simultaneous effects of temperature, hydrostatic pressure and electric field on the self-polarization and electric field polarization in a GaAs/Ga0.7Al0.3As spherical quantum dot with a donor impurity. Superlattices and Microstructures, 59: 13-20.
  • Erdogan, I., Akankan, O., & Akbas, H. (2009). Effects of hydrostatic pressure on the self-polarization in GaAs/Ga1− x Alx As quantum wells under the electric field. Physica E: Low-dimensional Systems and Nanostructures, 42(2), 136-140.
  • Fraizzoli S, Bassani F, Buczko R, (1990). Shallow donor impurities in GaAs-Ga1-x Alx As quantum-well structures: Role of the dielectric-constant mismatch. Physical Review B, 41 (8): 5096-5103.
  • Greene RL, Bajaj KK, (1985). Binding energy of the 2p0-like level of a hydrogenic donor in GaAs-Ga1-x Alx As quantum-well structures. Physical Review B, 31 (6): 4006-4008.
  • Hassanabadi, H., & Rajabi, A. A. (2009). Energy levels of a spherical quantum dot in a confining potential. Physics Letters A, 373(6), 679-681.
  • Johnson NF, (1995). Quantum dots: few-body, low-dimensional systems. Journal of Physics: Condensed Matter, 7 (1): 965-989.
  • Kirak, M., Altinok, Y., & Yilmaz, S. A. İ. T. (2013). The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. Journal of Luminescence, 136, 415-421.
  • Mese AI, Cicek E, Erdogan I, Akankan O, Akbas H, (2017). The effect of dielectric constant on binding energy and impurity self-polarization in a GaAs–Ga1-xAlxAs spherical quantum dot. Indian Journal of Physics, 91(3): 263-268.
  • Mese, A. I. (2021). Küresel Kuantum Noktasında Hidrostatik Basınç ve Dielektrik Sabitinin 2p Uyarılmış Durum Bağlanma Enerjisi ve Yabancı Atom Self-Polarizasyonuna Etkisi. Journal of the Institute of Science and Technology, 11(1), 212-220.
  • Mese A. I. (2018). The Effect Of Pressure On Excıted State Bındıng Energy, Expectatıon Value Of The Electron-Impurıty And Impurıty Self-Polarızatıon In A Gaas-Ga1-Xalxas Spherıcal Quantum Dot, Internatıonal Scıentıfıc Conference 16-17 November 2018, Gabrovo, Bulgaria
  • Mikhail IFI, Ismail IMM, (2010). Hydrogenic impurity in a quantum dot: Comparison between the variational and strong perturbation methods. Superlattices and Microstructures, 48: 388-400.
  • Montenegro NP, Merchancano STP, (1992). Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. Physical Review B, 46(15): 9780-9783.
  • Okan SE, Erdogan I, Akbas H, (2004). Anomalous polarization in an electric field and self-polarization in GaAs/AlAs quantum wells and quantum well wires. Physica E, 21 (1): 91-95.
  • Özmen A, Yakar Y, Çakır B, Atav Ü, (2009). Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot. Optics Communications, 282 (19): 3999-4004.
  • Rajashabala, S., & Navaneethakrishnan, K. (2006). Effective masses for donor binding energies in quantum well systems. Modern Physics Letters B, 20(24), 1529-1541.
  • Restrepo, R. L., Miranda, G. L., Duque, C. A., & Mora-Ramos, M. E. (2011). Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/Ga1− xAlxAs multiple quantum wells. Journal of luminescence, 131(5), 1016-1021.
  • Rezaei, G., & Kish, S. S. (2012). Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 45, 56-60.
  • Rezaei, G., Mousavi, S., & Sadeghi, E. (2012). External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Physica B: Condensed Matter, 407(13), 2637-2641.
  • Rezaei, G., Taghizadeh, S. F., & Enshaeian, A. A. (2012). External electric field, hydrostatic pressure and temperature effects on the binding energy of an off-center hydrogenic impurity confined in a spherical Gaussian quantum dot. Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1562-1566.
  • Sadeghi E, (2009). Impurity binding energy of excited states in spherical quantum dot. Physica E, 41 (7): 1319-.1322
  • Sadeghi E, Rezaie GH, (2010). Effect of magnetic field on the impurity binding energy of the excited states in spherical quantum dot. Pramana-Journal of Physics, 75: 749-755.
  • Safwan S.A., Nagwa El Meshad, Assma Saleh, Hekmat M. Hassanein, (2020). Stark shift of hydrogenic and non-hydrogenic donor impurity excited states in parabolic quantum dot: Under the effect of electric field and temperature, Physica E: Low-dimensional Systems and Nanostructures, 118, 113882.
  • Safwan, S. A., Saleh, A., Hassanein, H. M., & El Meshed, N. (2018). Hydrostatic pressure and magnetic field effect on the excited states in inverse parabolic quantum dot. Current Applied Physics, 18(1), 34-39.
  • Sivakami A, Gayathri V, (2013). Hydrostatic pressure and temperature dependence of dielectric mismatch effecton the impurity binding energy in a spherical quantum dot. Superlattices and Microstructures, 58: 218-227.
  • Sucu S, Mese AI, Okan SE, (2008). The role of confinement and shape on the binding energy of an electron in a quantum dot. Physica E, 40 (8): 2698-2702.
  • Sucu, S., Minez, S. & Erdogan, I, (2021). Self-polarization of a donor impurity for the first excited state in an Ga1-xAlxAs/GaAs quantum well. Indian J Phys 95 1691–1695.
  • Ulas, M., Erdogan, I., Cicek, E., & Dalgıc, S. S. (2005). Self polarization in GaAs–(Ga, Al) As quantum well wires: electric field and geometrical effects. Physica E: Low-dimensional Systems and Nanostructures, 25(4), 515-520.
  • Zhu JL, Xiong JJ, Gu BL, (1990). Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1-xAlxAs. Physical Review B, 41 (9): 6001-6007.
  • Zhu, J. L., & Chen, X. (1994). Spectrum and binding of an off-center donor in a spherical quantum dot. Physical Review B, 50(7), 4497.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Condensed Matter Physics (Other)
Journal Section Research Article
Authors

Ali İhsan Meşe 0000-0002-3901-590X

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date October 25, 2024
Acceptance Date November 21, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Meşe, A. İ. (2025). Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Journal of the Institute of Science and Technology, 15(2), 509-519.
AMA Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. J. Inst. Sci. and Tech. June 2025;15(2):509-519.
Chicago Meşe, Ali İhsan. “Hidrostatik Basınç Ve Sıcaklığın GaAs Ga1-XAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu Ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 509-19.
EndNote Meşe Aİ (June 1, 2025) Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. Journal of the Institute of Science and Technology 15 2 509–519.
IEEE A. İ. Meşe, “Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 509–519, 2025.
ISNAD Meşe, Ali İhsan. “Hidrostatik Basınç Ve Sıcaklığın GaAs Ga1-XAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu Ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology 15/2 (June2025), 509-519.
JAMA Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. J. Inst. Sci. and Tech. 2025;15:509–519.
MLA Meşe, Ali İhsan. “Hidrostatik Basınç Ve Sıcaklığın GaAs Ga1-XAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu Ve Bağlanma Enerjisi Üzerindeki Etkileri”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 509-1.
Vancouver Meşe Aİ. Hidrostatik Basınç ve Sıcaklığın GaAs/Ga1-xAlxAs Küresel Kuantum Noktasındaki Yabancı Atom Self-Polarizasyonu ve Bağlanma Enerjisi Üzerindeki Etkileri. J. Inst. Sci. and Tech. 2025;15(2):509-1.