Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 2, 658 - 674, 01.06.2025
https://doi.org/10.21597/jist.1583596

Abstract

References

  • ANSYS Inc. (2013). Ansys Fluent Tutorial Guide. https://www.slideshare.net/slideshow/ansys-fluent-tutorial-guide-r-15/45961740 (Accessed: November 9, 2024)
  • Brent, A. D., Voller, V. R., & Reid, K. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. International Journal of Numerical Methods for Heat and Fluid Flow. https://doi.org/10.1080/10407788808913615
  • Buonomo, B., Celik, H., Ercole, D., Manca, O., & Mobedi, M. (2019). Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium. Applied Thermal Engineering, 159. https://doi.org/10.1016/j.applthermaleng.2019.113980
  • Cai, Y., Zhang, N., Yuan, Y., Zhong, W., & Yu, N. (2021). Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel. Solar Energy Materials and Solar Cells, 233, 111390. https://doi.org/10.1016/j.solmat.2021.111390
  • Cano, D., Funéz, C., Rodriguez, L., Valverde, J. L., & Sanchez-Silva, L. (2016). Experimental investigation of a thermal storage system using phase change materials. Applied Thermal Engineering, 107, 264–270. https://doi.org/10.1016/j.applthermaleng.2016.06.169
  • Chakraborty, A., Noh, J., Mach, R., Shamberger, P., & Yu, C. (2022). Thermal energy storage composites with preformed expanded graphite matrix and paraffin wax for long-term cycling stability and tailored thermal properties. Journal of Energy Storage, 52, 104856. https://doi.org/10.1016/j.est.2022.104856
  • Chinnasamy, V., Heo, J., Jung, S., Lee, H., & Cho, H. (2023). Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy, 262, 125463. https://doi.org/10.1016/j.energy.2022.125463
  • Dinçer, I., & Rosen, M. A (2002). Thermal Energy Storage Systems and applications. John Wiley & Sons, Inc.
  • Elakkiyadasan, R., Gavaskar, T., Murugapoopathi, S., Sathishkumar, N., Nagaraja, M., & Ganesh, K. (2022). Experimental investigation of PCM with added E-graphite and analysis of its thermal characteristics. Materials Today: Proceedings, 64, 1717–1720.https://doi.org/10.1016/j.matpr.2022.05.493
  • Feng, Z., Li, Y., He, F., Li, Y., Zhou, Y., Yang, Z., He, R., Zhang, K., & Yang, W. (2020). Experimental and numerical simulation of phase change process for paraffin in three-dimensional graphene aerogel. Applied Thermal Engineering, 167. https://doi.org/10.1016/j.applthermaleng.2019.114773
  • Fteiti, M., & Alaidrous, A. (2020). Latent heat storage during melting and solidification of a phase change material (PCM) embedded with a porous matrix of high thermal conductivity. International Journal of Energy Engineering, 2020, 1–9. https://doi.org/10.5923/j.ijee.20201001.01
  • Kang, S., Choi, J. Y., & Choi, S. (2019). Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2), 221. https://doi.org/10.3390/polym11020221
  • Khatibi, M., Nemati-Farouji, R., Taheri, A., Kazemian, A., Ma, T., & Niazmand, H. (2021). Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage, 33. https://doi.org/10.1016/j.est.2020.102055
  • Kumar, N., Shrivastava, A., & Chakraborty, P. R. (2024). Enhancing latent heat storage dynamics with expanded graphite foam: Myth vs. reality check through numerical and experimental investigations. Available at SSRN, http://dx.doi.org/10.2139/ssrn.4867508
  • Li, C., Li, Q., & Ge, R. (2022). Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials. Applied Thermal Engineering, 214. https://doi.org/10.1016/j.applthermaleng.2022.118701
  • Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., & Zhang, Z. (2015). Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management, 102, 202–208. https://doi.org/10.1016/j.enconman.2014.11.040
  • Liu, W., Bie, Y., Xu, T., Cichon, A., Królczyk, G., & Li, Z. (2022). Heat transfer enhancement of latent heat thermal energy storage in solar heating system: A state-of-the-art review. Journal of Energy Storage, 46. https://doi.org/10.1016/j.est.2021.103727
  • Mhiri, H., Jemni, A., & Sammouda, H. (2020). Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage. Journal of Energy Storage, 29, 101167. https://doi.org/10.1016/j.est.2019.101167
  • Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: a review. Energy Storage and Savings, 1, 166–216. https://doi.org/10.1016/j.enss.2022.07.002
  • Mitincik, S., & Yazici, M. Y. (2023). Numerical study on the thermal energy storage performance of graphite matrix composite with phase change in shell-in-tube: Effects of bulk density and wall temperature. Journal of Energy Storage, 72, 108304. https://doi.org/10.1016/j.est.2023.108304
  • Mitincik, S., & Yazici, M. Y. (2024). Numerical modelling and experimental validation on the discharging performance of paraffin/graphite matrix composite with various configurations of bulk density and wall temperature. Journal of Energy Storage, 89, 111704. https://doi.org/10.1016/j.est.2024.111704
  • Muraleedharan Nair, A., Wilson, C., Kamkari, B., Locke, J., Jun Huang, M., Griffiths, P., & Hewitt, N. J. (2024). Advancing thermal performance in PCM-Based energy Storage: A comparative study with Fins, expanded Graphite, and combined configurations. Energy Conversion and Management: X, 23(May), 100627. https://doi.org/10.1016/j.ecmx.2024.100627
  • Nair, A. M., Wilson, C., Huang, M. J., Griffiths, P., Hewitt, N., Singh, D., Buddhi, D., & Karthick, A. (2023). Phase change materials in building integrated space heating and domestic hot water applications: A review. Environmental Science and Pollution Research, 54(May), 44–77. https://doi.org/10.1016/j.est.2022.105227
  • Opolot, M., Zhao, C., Liu, M., Mancin, S., Bruno, F., & Hooman, K. (2020). Influence of cascaded graphite foams on thermal performance of high temperature phase change material storage systems. Applied Thermal Engineering, 180, 115618. https://doi.org/10.1016/j.applthermaleng.2020.115618
  • Pourakabar, A., & Rabienataj Darzi, A. A. (2019). Enhancement of phase change rate of PCM in cylindrical thermal energy storage. Applied Thermal Engineering, 150, 132–142. https://doi.org/10.1016/j.applthermaleng.2019.01.009
  • Singh, D., Buddhi, D., & Karthick, A. (2023). Productivity enhancement of solar still through heat transfer enhancement techniques in latent heat storage system: a review. Environmental Science and Pollution Research, 30(1), 44–77. https://doi.org/10.1007/s11356-022-23964
  • Song, Y., Zhang, N., Jing, Y., Cao, X., Yuan, Y., & Haghighat, F. (2019). Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage. Energy, 189.https://doi.org/10.1016/j.energy.2019.116175
  • Tong, X., Li, N., Zeng, M., & Wang, Q. (2019). Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renewable and Sustainable Energy Reviews, 108, 398–422. https://doi.org/10.1016/j.rser.2019.03.031
  • Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational Fluid Dynamics: A practical approach. Butterworth-Heinemann.
  • Versteeg, H. K., & Malalasekra, W. (2007). An introduction to computational fluid dynamics: The Finite Volume Method. Pearson.
  • Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30, 1709–1719. https://doi.org/10.1016/0017-9310(87)90317-6
  • Wu, S., Yan, T., Kuai, Z., & Pan, W. (2020). Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage. Solar Energy, 205, 474–486. https://doi.org/10.1016/j.solener.2020.05.052
  • Yazici, M. Y. (2022). The effect of a new design preheating unit integrated to graphite matrix composite with phase change battery thermal management in low-temperature environment: An experimental study. Thermal Science and Engineering Progress, 29, 101244. https://doi.org/10.1016/j.tsep.2022.101244
  • Yazici, M. Y., Saglam, M., Aydin, O., & Avci, M. (2021). Thermal energy storage performance of PCM/graphite matrix composite in a tube-in-shell geometry. Thermal Science and Engineering Progress, 23. https://doi.org/10.1016/j.tsep.2021.100915
  • Zhao, B., Li, C., Jin, Y., Yang, C., Leng, G., Cao, H., Li, Y., & Ding, Y. (2016). Heat transfer performance of thermal energy storage components containing composite phase change materials. IET Renewable Power Generation, 10, 1515–1522. https://doi.org/10.1049/iet-rpg.2016.0026
  • Zhao, C., Opolot, M., Liu, M., Bruno, F., Mancin, S., & Hooman, K. (2021). Phase change behaviour study of PCM tanks partially filled with graphite foam. Applied Thermal Engineering, 196, 117313. https://doi.org/10.1016/j.applthermaleng.2021.117313

Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable

Year 2025, Volume: 15 Issue: 2, 658 - 674, 01.06.2025
https://doi.org/10.21597/jist.1583596

Abstract

Thermal energy storage (TES) systems have a great potential on the providing balance of energy demand/supply, while also contributing to net-zero emissions, a reduced carbon footprint, and a greener environment. Paraffin phase change materials have emerged as a prominent material for TES applications due to its potentially high energy storage density. However, their application is significantly limited by its low thermal conductivity values. This study introduces a composite structure for thermal energy storage, utilizing paraffin as the latent heat storage material and a graphite matrix to enhance thermal conductivity for solar energy and waste heat applications. The effects of various numerical variables of mushy zone parameter, the pressure-velocity coupling, the pressure discretization scheme, and the boundary condition on the melting performance of a PCM-based thermal energy storage system were investigated within an annular storage medium, extending beyond the literature. Simulations were performed using ANSYS-Fluent, employing the enthalpy-porosity technique. The validation of the study was ensured based on the experimental setup. The primary aim of the study was to identify the numerical variables that yield the most realistic results. It was found that most closely representation of the experimental/real conditions is 105 mushy zone constant, a Coupled algorithm for the pressure-velocity coupling, and PRESTO! for the pressure discretization scheme. However, numerical variable effect was not significantly notable for the paraffin-impregnated graphite matrix storage medium. Results also indicated that graphite constrained the motion of paraffin, resulting in a uniform and homogeneous temperature distribution. It is observed that differences in numerical parameters lead to variations (0.42-16.57%) in energy storage rates, considering melting/charging times and the final temperatures of the TES system.

References

  • ANSYS Inc. (2013). Ansys Fluent Tutorial Guide. https://www.slideshare.net/slideshow/ansys-fluent-tutorial-guide-r-15/45961740 (Accessed: November 9, 2024)
  • Brent, A. D., Voller, V. R., & Reid, K. J. (1988). Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal. International Journal of Numerical Methods for Heat and Fluid Flow. https://doi.org/10.1080/10407788808913615
  • Buonomo, B., Celik, H., Ercole, D., Manca, O., & Mobedi, M. (2019). Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium. Applied Thermal Engineering, 159. https://doi.org/10.1016/j.applthermaleng.2019.113980
  • Cai, Y., Zhang, N., Yuan, Y., Zhong, W., & Yu, N. (2021). Multi-energy driven form-stable phase change materials based on SEBS and reduced graphene oxide aerogel. Solar Energy Materials and Solar Cells, 233, 111390. https://doi.org/10.1016/j.solmat.2021.111390
  • Cano, D., Funéz, C., Rodriguez, L., Valverde, J. L., & Sanchez-Silva, L. (2016). Experimental investigation of a thermal storage system using phase change materials. Applied Thermal Engineering, 107, 264–270. https://doi.org/10.1016/j.applthermaleng.2016.06.169
  • Chakraborty, A., Noh, J., Mach, R., Shamberger, P., & Yu, C. (2022). Thermal energy storage composites with preformed expanded graphite matrix and paraffin wax for long-term cycling stability and tailored thermal properties. Journal of Energy Storage, 52, 104856. https://doi.org/10.1016/j.est.2022.104856
  • Chinnasamy, V., Heo, J., Jung, S., Lee, H., & Cho, H. (2023). Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review. Energy, 262, 125463. https://doi.org/10.1016/j.energy.2022.125463
  • Dinçer, I., & Rosen, M. A (2002). Thermal Energy Storage Systems and applications. John Wiley & Sons, Inc.
  • Elakkiyadasan, R., Gavaskar, T., Murugapoopathi, S., Sathishkumar, N., Nagaraja, M., & Ganesh, K. (2022). Experimental investigation of PCM with added E-graphite and analysis of its thermal characteristics. Materials Today: Proceedings, 64, 1717–1720.https://doi.org/10.1016/j.matpr.2022.05.493
  • Feng, Z., Li, Y., He, F., Li, Y., Zhou, Y., Yang, Z., He, R., Zhang, K., & Yang, W. (2020). Experimental and numerical simulation of phase change process for paraffin in three-dimensional graphene aerogel. Applied Thermal Engineering, 167. https://doi.org/10.1016/j.applthermaleng.2019.114773
  • Fteiti, M., & Alaidrous, A. (2020). Latent heat storage during melting and solidification of a phase change material (PCM) embedded with a porous matrix of high thermal conductivity. International Journal of Energy Engineering, 2020, 1–9. https://doi.org/10.5923/j.ijee.20201001.01
  • Kang, S., Choi, J. Y., & Choi, S. (2019). Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2), 221. https://doi.org/10.3390/polym11020221
  • Khatibi, M., Nemati-Farouji, R., Taheri, A., Kazemian, A., Ma, T., & Niazmand, H. (2021). Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. Journal of Energy Storage, 33. https://doi.org/10.1016/j.est.2020.102055
  • Kumar, N., Shrivastava, A., & Chakraborty, P. R. (2024). Enhancing latent heat storage dynamics with expanded graphite foam: Myth vs. reality check through numerical and experimental investigations. Available at SSRN, http://dx.doi.org/10.2139/ssrn.4867508
  • Li, C., Li, Q., & Ge, R. (2022). Enhancement of melting performance in a shell and tube thermal energy storage device under different structures and materials. Applied Thermal Engineering, 214. https://doi.org/10.1016/j.applthermaleng.2022.118701
  • Ling, Z., Chen, J., Xu, T., Fang, X., Gao, X., & Zhang, Z. (2015). Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. Energy Conversion and Management, 102, 202–208. https://doi.org/10.1016/j.enconman.2014.11.040
  • Liu, W., Bie, Y., Xu, T., Cichon, A., Królczyk, G., & Li, Z. (2022). Heat transfer enhancement of latent heat thermal energy storage in solar heating system: A state-of-the-art review. Journal of Energy Storage, 46. https://doi.org/10.1016/j.est.2021.103727
  • Mhiri, H., Jemni, A., & Sammouda, H. (2020). Numerical and experimental investigations of melting process of composite material (nanoPCM/carbon foam) used for thermal energy storage. Journal of Energy Storage, 29, 101167. https://doi.org/10.1016/j.est.2019.101167
  • Mitali, J., Dhinakaran, S., & Mohamad, A. A. (2022). Energy storage systems: a review. Energy Storage and Savings, 1, 166–216. https://doi.org/10.1016/j.enss.2022.07.002
  • Mitincik, S., & Yazici, M. Y. (2023). Numerical study on the thermal energy storage performance of graphite matrix composite with phase change in shell-in-tube: Effects of bulk density and wall temperature. Journal of Energy Storage, 72, 108304. https://doi.org/10.1016/j.est.2023.108304
  • Mitincik, S., & Yazici, M. Y. (2024). Numerical modelling and experimental validation on the discharging performance of paraffin/graphite matrix composite with various configurations of bulk density and wall temperature. Journal of Energy Storage, 89, 111704. https://doi.org/10.1016/j.est.2024.111704
  • Muraleedharan Nair, A., Wilson, C., Kamkari, B., Locke, J., Jun Huang, M., Griffiths, P., & Hewitt, N. J. (2024). Advancing thermal performance in PCM-Based energy Storage: A comparative study with Fins, expanded Graphite, and combined configurations. Energy Conversion and Management: X, 23(May), 100627. https://doi.org/10.1016/j.ecmx.2024.100627
  • Nair, A. M., Wilson, C., Huang, M. J., Griffiths, P., Hewitt, N., Singh, D., Buddhi, D., & Karthick, A. (2023). Phase change materials in building integrated space heating and domestic hot water applications: A review. Environmental Science and Pollution Research, 54(May), 44–77. https://doi.org/10.1016/j.est.2022.105227
  • Opolot, M., Zhao, C., Liu, M., Mancin, S., Bruno, F., & Hooman, K. (2020). Influence of cascaded graphite foams on thermal performance of high temperature phase change material storage systems. Applied Thermal Engineering, 180, 115618. https://doi.org/10.1016/j.applthermaleng.2020.115618
  • Pourakabar, A., & Rabienataj Darzi, A. A. (2019). Enhancement of phase change rate of PCM in cylindrical thermal energy storage. Applied Thermal Engineering, 150, 132–142. https://doi.org/10.1016/j.applthermaleng.2019.01.009
  • Singh, D., Buddhi, D., & Karthick, A. (2023). Productivity enhancement of solar still through heat transfer enhancement techniques in latent heat storage system: a review. Environmental Science and Pollution Research, 30(1), 44–77. https://doi.org/10.1007/s11356-022-23964
  • Song, Y., Zhang, N., Jing, Y., Cao, X., Yuan, Y., & Haghighat, F. (2019). Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage. Energy, 189.https://doi.org/10.1016/j.energy.2019.116175
  • Tong, X., Li, N., Zeng, M., & Wang, Q. (2019). Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges. Renewable and Sustainable Energy Reviews, 108, 398–422. https://doi.org/10.1016/j.rser.2019.03.031
  • Tu, J., Yeoh, G. H., & Liu, C. (2018). Computational Fluid Dynamics: A practical approach. Butterworth-Heinemann.
  • Versteeg, H. K., & Malalasekra, W. (2007). An introduction to computational fluid dynamics: The Finite Volume Method. Pearson.
  • Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International Journal of Heat and Mass Transfer, 30, 1709–1719. https://doi.org/10.1016/0017-9310(87)90317-6
  • Wu, S., Yan, T., Kuai, Z., & Pan, W. (2020). Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage. Solar Energy, 205, 474–486. https://doi.org/10.1016/j.solener.2020.05.052
  • Yazici, M. Y. (2022). The effect of a new design preheating unit integrated to graphite matrix composite with phase change battery thermal management in low-temperature environment: An experimental study. Thermal Science and Engineering Progress, 29, 101244. https://doi.org/10.1016/j.tsep.2022.101244
  • Yazici, M. Y., Saglam, M., Aydin, O., & Avci, M. (2021). Thermal energy storage performance of PCM/graphite matrix composite in a tube-in-shell geometry. Thermal Science and Engineering Progress, 23. https://doi.org/10.1016/j.tsep.2021.100915
  • Zhao, B., Li, C., Jin, Y., Yang, C., Leng, G., Cao, H., Li, Y., & Ding, Y. (2016). Heat transfer performance of thermal energy storage components containing composite phase change materials. IET Renewable Power Generation, 10, 1515–1522. https://doi.org/10.1049/iet-rpg.2016.0026
  • Zhao, C., Opolot, M., Liu, M., Bruno, F., Mancin, S., & Hooman, K. (2021). Phase change behaviour study of PCM tanks partially filled with graphite foam. Applied Thermal Engineering, 196, 117313. https://doi.org/10.1016/j.applthermaleng.2021.117313
There are 36 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Celal Mert Dikmetaş 0009-0009-7635-3498

Sare Mıtıncık 0000-0003-0149-8990

Ahmet Aktürk 0000-0002-2985-2560

Mustafa Yusuf Yazıcı 0000-0002-1076-9265

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date November 12, 2024
Acceptance Date December 17, 2024
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Dikmetaş, C. M., Mıtıncık, S., Aktürk, A., Yazıcı, M. Y. (2025). Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable. Journal of the Institute of Science and Technology, 15(2), 658-674. https://doi.org/10.21597/jist.1583596
AMA Dikmetaş CM, Mıtıncık S, Aktürk A, Yazıcı MY. Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable. J. Inst. Sci. and Tech. June 2025;15(2):658-674. doi:10.21597/jist.1583596
Chicago Dikmetaş, Celal Mert, Sare Mıtıncık, Ahmet Aktürk, and Mustafa Yusuf Yazıcı. “Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 658-74. https://doi.org/10.21597/jist.1583596.
EndNote Dikmetaş CM, Mıtıncık S, Aktürk A, Yazıcı MY (June 1, 2025) Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable. Journal of the Institute of Science and Technology 15 2 658–674.
IEEE C. M. Dikmetaş, S. Mıtıncık, A. Aktürk, and M. Y. Yazıcı, “Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 658–674, 2025, doi: 10.21597/jist.1583596.
ISNAD Dikmetaş, Celal Mert et al. “Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable”. Journal of the Institute of Science and Technology 15/2 (June2025), 658-674. https://doi.org/10.21597/jist.1583596.
JAMA Dikmetaş CM, Mıtıncık S, Aktürk A, Yazıcı MY. Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable. J. Inst. Sci. and Tech. 2025;15:658–674.
MLA Dikmetaş, Celal Mert et al. “Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 658-74, doi:10.21597/jist.1583596.
Vancouver Dikmetaş CM, Mıtıncık S, Aktürk A, Yazıcı MY. Numerical Modelling of Graphite-Based Composite Thermal Energy Storage Unit: Effect of Numerical Variable. J. Inst. Sci. and Tech. 2025;15(2):658-74.