Research Article
BibTex RIS Cite

Model Order Reduction of a Human Body Vibration Model

Year 2025, Volume: 15 Issue: 2, 675 - 681, 01.06.2025
https://doi.org/10.21597/jist.1608350

Abstract

Biomechanical models of the human body are generally complex, and models of its behavior require writing and solving many differential equations. Instead of this time-consuming process, it is considered a more practical process to install smaller models that preserve the main behaviors of the system. In this study, instead of the human body model proposed by ISO 7962, a smaller model with an analytical solution has been proposed. While performing the desired model reduction, genetic algorithms were used and the parameters of the new system that replicated the behavior of the original system were created. Then, the behaviors of both the original system and the reduced-order system were compared graphically. Comparisons have shown that this small model can also be used in calculations and that very good results can be achieved on points such as low-frequency resonances.

References

  • Al-Ashmori, M. and Wang, X. A. (2020). Systematic Literature Review of Various Control Techniques for Active Seat Suspension Systems, Applied Sciences, 10, 1148.
  • Arbel, A. and Tse, E. (1979). Reduced order models’ canonical forms and observer, Int. J. Control, 30, 513-531.
  • Bernstein, D.S. and Haddad, W.M. (1987). Optimal projection equations for discrete-time fixed order dynamic compensation of linear systems with multiplicate white noise, Int. J. Control, 46, 65-73.
  • Chinesta, F., Huerta, A., Rozza, G., and Willcox, K. (2004). Model Order Reduction, Encyclopedia of Computational Mechanics (Eds. Erwin Stein, Ren´ e de Borst and Thomas J.R. Hughes), John Wiley & Sons.
  • Fai, TC., Delbressine, F., Rauterberg, M. (2007). Vehicle seat design: State of the art and recent development, In: AS. Mokhtar, EJ. Abdullah, NM Adam, AR. Abu Talib, NA. Abdul Jalil, R. Zahari, WMI. Hassan & ZA. Zulkefli (Eds.) Proceedings World Engineering Congress (pp. 51-61), Penang Malaysia.
  • Goldberg, DE. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Massachusetts, Addison-Wesley.
  • Gündoğdu, Ö. (2007). Optimal seat and suspension design for a quarter car with driver model using genetic algorithms, International Journal of Industrial Ergonomics, 37, 327–332.
  • Hyland, D.C. and Bernstein, D.S. (1985). The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, I.E.E.E. Trans. Auto. Control AC-30, 1201-1211.
  • ISO 5982. (2001). Mechanical vibration and shock — Range of idealized values to characterize seated body biodynamic response under vertical vibration.
  • ISO 7962, (1987). Mechanical Vibration and Shock – Mechanical Transmissibility of the Human Body in z Direction.
  • Kumar, R., and Sikander, A. (2024). Review and analysis of model order reduction techniques for high-dimensional complex systems, Microsystem Technologies, 30, 1177–1190.
  • Kwong, C. P. (1982). Optimal chained aggregation for reduced order modeling, Int. J. Control, 35, 965-982.
  • Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Berlin, Springer-Verlag.
  • Ogata, K. (2002). Modern Control Engineering, 4th Edition, New Jersey, Prentice Hall.
  • Papaioannou, G. and Koulocheris, D. (2018). An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems, Journal of Sound and Vibration, 435, 149-169.
  • Scarciotti, G., and Astolfi, A., (2024). Interconnection-based model order reduction - a survey, European Journal of Control, 75, 100929.
  • Shamash, Y., (1975). Model reduction using Routh stability criterion and Pade approximations techniques, Int. J. Control, 21, 475-484.
  • Usanmaz, B., Gündoğdu, Ö., Tezgel, S. and Yanıkören, M. (2020). Effect of Vehicle Vibrations on the Driver Confort: Half Car and Driver Model, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 796-803.
  • Wilson, D. A. (1974). Model reduction for multivariable systems, Int. J. Control, 20, 57-64.
  • Wilson, D. A. (1970). Optimal solution of model reduction problem, I.E.E., 117, 1161-1165, 1970.
  • Yanıkören, M., Hocaoğlu, M.M., Usanmaz, B., Gündoğdu, Ö. (2023). The Effect of Bumper Dimensions and Car Speed on Neck and Lower Back Forces, International Journal of Mechanical Engineering and Applications, 11(4), 74-80.
  • Zhao, Y., Bi, F., Khayet, M., Symonds, T. and Wang, X. (2023). Study of seat-to-head vertical vibration transmissibility of commercial vehicle seat system through response surface method modeling and Genetic Algorithm, Applied Acoustics, 203, 109216.

İnsan Vücut Titreşim Modelinin Model İndirgenmesi

Year 2025, Volume: 15 Issue: 2, 675 - 681, 01.06.2025
https://doi.org/10.21597/jist.1608350

Abstract

İnsan vücudunun biyomekanik modelleri genellikle karmaşıktır ve davranışının modelleri birçok diferansiyel denklemin yazılmasını ve çözülmesini gerektirir. Zaman alan bu süreç yerine sistemin ana davranışlarını koruyan daha küçük modellerin kurulumu daha pratik bir süreç olarak değerlendirilmektedir. Bu çalışmada ISO 7962'nin önerdiği insan vücudu modeli yerine analitik çözümü olan daha küçük bir model önerilmiştir. İstenilen model indirgemesi yapılırken genetik algoritmalar kullanılmış ve orijinal sistemin davranışını kopyalayan yeni sistemin parametreleri oluşturulmuştur. Daha sonra hem orijinal sistemin hem de indirgenmiş sistemin davranışları grafiksel olarak karşılaştırılmıştır. Karşılaştırmalar indirgenen modelin hesaplamalarda da kullanılabileceğini ve düşük frekans rezonansları gibi noktalarda çok iyi sonuçlar alınabileceğini gösterdi.

References

  • Al-Ashmori, M. and Wang, X. A. (2020). Systematic Literature Review of Various Control Techniques for Active Seat Suspension Systems, Applied Sciences, 10, 1148.
  • Arbel, A. and Tse, E. (1979). Reduced order models’ canonical forms and observer, Int. J. Control, 30, 513-531.
  • Bernstein, D.S. and Haddad, W.M. (1987). Optimal projection equations for discrete-time fixed order dynamic compensation of linear systems with multiplicate white noise, Int. J. Control, 46, 65-73.
  • Chinesta, F., Huerta, A., Rozza, G., and Willcox, K. (2004). Model Order Reduction, Encyclopedia of Computational Mechanics (Eds. Erwin Stein, Ren´ e de Borst and Thomas J.R. Hughes), John Wiley & Sons.
  • Fai, TC., Delbressine, F., Rauterberg, M. (2007). Vehicle seat design: State of the art and recent development, In: AS. Mokhtar, EJ. Abdullah, NM Adam, AR. Abu Talib, NA. Abdul Jalil, R. Zahari, WMI. Hassan & ZA. Zulkefli (Eds.) Proceedings World Engineering Congress (pp. 51-61), Penang Malaysia.
  • Goldberg, DE. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Massachusetts, Addison-Wesley.
  • Gündoğdu, Ö. (2007). Optimal seat and suspension design for a quarter car with driver model using genetic algorithms, International Journal of Industrial Ergonomics, 37, 327–332.
  • Hyland, D.C. and Bernstein, D.S. (1985). The optimal projection equations for model reduction and the relationships among the methods of Wilson, Skelton and Moore, I.E.E.E. Trans. Auto. Control AC-30, 1201-1211.
  • ISO 5982. (2001). Mechanical vibration and shock — Range of idealized values to characterize seated body biodynamic response under vertical vibration.
  • ISO 7962, (1987). Mechanical Vibration and Shock – Mechanical Transmissibility of the Human Body in z Direction.
  • Kumar, R., and Sikander, A. (2024). Review and analysis of model order reduction techniques for high-dimensional complex systems, Microsystem Technologies, 30, 1177–1190.
  • Kwong, C. P. (1982). Optimal chained aggregation for reduced order modeling, Int. J. Control, 35, 965-982.
  • Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, Berlin, Springer-Verlag.
  • Ogata, K. (2002). Modern Control Engineering, 4th Edition, New Jersey, Prentice Hall.
  • Papaioannou, G. and Koulocheris, D. (2018). An approach for minimizing the number of objective functions in the optimization of vehicle suspension systems, Journal of Sound and Vibration, 435, 149-169.
  • Scarciotti, G., and Astolfi, A., (2024). Interconnection-based model order reduction - a survey, European Journal of Control, 75, 100929.
  • Shamash, Y., (1975). Model reduction using Routh stability criterion and Pade approximations techniques, Int. J. Control, 21, 475-484.
  • Usanmaz, B., Gündoğdu, Ö., Tezgel, S. and Yanıkören, M. (2020). Effect of Vehicle Vibrations on the Driver Confort: Half Car and Driver Model, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 796-803.
  • Wilson, D. A. (1974). Model reduction for multivariable systems, Int. J. Control, 20, 57-64.
  • Wilson, D. A. (1970). Optimal solution of model reduction problem, I.E.E., 117, 1161-1165, 1970.
  • Yanıkören, M., Hocaoğlu, M.M., Usanmaz, B., Gündoğdu, Ö. (2023). The Effect of Bumper Dimensions and Car Speed on Neck and Lower Back Forces, International Journal of Mechanical Engineering and Applications, 11(4), 74-80.
  • Zhao, Y., Bi, F., Khayet, M., Symonds, T. and Wang, X. (2023). Study of seat-to-head vertical vibration transmissibility of commercial vehicle seat system through response surface method modeling and Genetic Algorithm, Applied Acoustics, 203, 109216.
There are 22 citations in total.

Details

Primary Language English
Subjects Biomechanic, Dynamics, Vibration and Vibration Control
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Murat Balcı 0000-0002-3658-3223

Ömer Gündoğdu 0000-0003-2656-4181

Early Pub Date May 24, 2025
Publication Date June 1, 2025
Submission Date December 27, 2024
Acceptance Date January 9, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Balcı, M., & Gündoğdu, Ö. (2025). Model Order Reduction of a Human Body Vibration Model. Journal of the Institute of Science and Technology, 15(2), 675-681. https://doi.org/10.21597/jist.1608350
AMA Balcı M, Gündoğdu Ö. Model Order Reduction of a Human Body Vibration Model. J. Inst. Sci. and Tech. June 2025;15(2):675-681. doi:10.21597/jist.1608350
Chicago Balcı, Murat, and Ömer Gündoğdu. “Model Order Reduction of a Human Body Vibration Model”. Journal of the Institute of Science and Technology 15, no. 2 (June 2025): 675-81. https://doi.org/10.21597/jist.1608350.
EndNote Balcı M, Gündoğdu Ö (June 1, 2025) Model Order Reduction of a Human Body Vibration Model. Journal of the Institute of Science and Technology 15 2 675–681.
IEEE M. Balcı and Ö. Gündoğdu, “Model Order Reduction of a Human Body Vibration Model”, J. Inst. Sci. and Tech., vol. 15, no. 2, pp. 675–681, 2025, doi: 10.21597/jist.1608350.
ISNAD Balcı, Murat - Gündoğdu, Ömer. “Model Order Reduction of a Human Body Vibration Model”. Journal of the Institute of Science and Technology 15/2 (June 2025), 675-681. https://doi.org/10.21597/jist.1608350.
JAMA Balcı M, Gündoğdu Ö. Model Order Reduction of a Human Body Vibration Model. J. Inst. Sci. and Tech. 2025;15:675–681.
MLA Balcı, Murat and Ömer Gündoğdu. “Model Order Reduction of a Human Body Vibration Model”. Journal of the Institute of Science and Technology, vol. 15, no. 2, 2025, pp. 675-81, doi:10.21597/jist.1608350.
Vancouver Balcı M, Gündoğdu Ö. Model Order Reduction of a Human Body Vibration Model. J. Inst. Sci. and Tech. 2025;15(2):675-81.