Research Article
BibTex RIS Cite

Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi

Year 2025, Volume: 15 Issue: 3, 1068 - 1079, 01.09.2025
https://doi.org/10.21597/jist.1575120

Abstract

Bu çalışma, akışkan olmayan petrol geri kazanım tekniklerindeki önemi nedeniyle yanma dalgalarını incelemektedir. Çalışmanın temel amacı, başlangıçta gözenekli bir ortamda bulunan sınırlı miktardaki katı yakıta hava pompalandığında ortaya çıkan ilerleyen dalgaların varlığını ve kararlılığını göstermektir. İncelenen yanma sistemi, sıcaklık, oksijen ve katı yakıt denge yasalarını veren üç farklı kısmi diferansiyel denklemle modellenmiş olup, bu denklemlerden birinde difüzyon terimi bulunurken diğerlerinde bulunmamaktadır. Literatürdeki mevcut çalışmalardan farklı olarak, bu araştırmada yanma sisteminin oksijen denklemine bir difüzyon terimi eklenmiş ve bu değişikliğin yanma dalgalarını etkilemediği gösterilmiştir. Daha sonra, sistemin spektrumu ve ağırlık fonksiyonu analiz edilmiştir. Son olarak, ters yönde hareket eden yanma dalgaları için lineer kararlılık analizi yapılmıştır. Bu analizler, oksijen ve sıcaklık hızlarının eşit olduğu ve ilerleyen dalga hızının negatif olduğu varsayımı altında gerçekleştirilmiştir.

References

  • Akkutlu, I., & Yortsos, Y. (2003). The dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 134, 229-247.
  • Aldushin, A., Rumanov, I., & Matkowsky, B. (1999). Maximal energy accumulation in a superadiabatic filtration combustion wave. Combustion and Flame, 118, 76-90.
  • Barlas, G. (2020). Gözenekli ortamda ters yönde ilerleyen yanma dalgalarının varlığı. (Master's thesis, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa).
  • Chapiro, G., & Senos, L. (2017). Riemann solutions for counterflow combustion in light porous foam. Computational and Applied Mathematics.
  • Chapiro, G., Marchesin, D., & Schecter, S. (2014). Combustion waves and Riemann solutions in light porous foam. Journal of Hyperbolic Differential Equations, 11, 295-328.
  • Chapiro, G., Mailybaev, A. A., Souza, A., Marchesin, D., & Bruining, J. (2012). Asymptotic approximation of long-time solution for low-temperature filtration combustion. Computational Geosciences, 16, 799-808.
  • Chapiro, G., & Souza, A. J. (2016). Asymptotic approximation for counterflow combustion in porous media. Applied Analysis, 95(1), 63-77.
  • Ghazaryan, A., Latushkin, Y., Schecter, S., & Souza, A. (2010). Stability of gasless combustion fronts in one-dimensional solids. Archive for Rational Mechanics and Analysis, 198(3), 981-1030.
  • Marchesin, D., & Schecter, S. (2003). Oxidation heat pulses in two-phase expansive flow in porous media. Zeitschrift für Angewandte Mathematik und Physik, 54(1), 48-83.
  • Ozbag, F. (2022). Numerical simulations of traveling waves in a counterflow filtration combustion model. Turkish Journal of Mathematics, 46(4), 1424-1435.
  • Ozbag, F., ve Kuru, B. C. (2021). İlerleyen yanma dalgalarının Evans fonksiyonu ile spektral kararlılığı. Karadeniz Fen Bilimleri Dergisi, 11(2), 663-679.
  • Ozbag, F., Schecter, S., & Chapiro, G. (2018). Traveling waves in a simplified gas-solid combustion model in porous media. Advances in Differential Equations, 23, 409-454.
  • Ozbag, F., & Schecter, S. (2018). Stability of combustion waves in a simplified gas–solid combustion model in porous media. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2117), 20170185.
  • Schult, D., Bayliss, A., & Matkowsky, B. (1998). Traveling waves in natural counterflow filtration combustion and their stability. SIAM Journal on Applied Mathematics, 58(3), 806-852.
  • Schult, D., Matkowsky, B., Volpert, V., & Fernand-Pello, A. (1996). Forced forward smolder combustion. Combustion and Flame, 104(1-2), 1-26.
  • Souza, A. J. (2008). Counterflow combustion in a porous medium. In Hyperbolic problems: theory, numerics, applications (pp. 1005-1012). New York: Springer.
  • Yurov, V. (2013). Stability estimates for semigroups and partly parabolic reaction diffusion equation. (Doctoral thesis, University of Missouri).
  • Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B., & Makhviladze, G. M. (1985). The mathematical theory of combustion and explosion. New York: Consultants Bureau.

Stability Analysis of Counterflow Traveling Waves in Reaction-Convection-Diffusion System

Year 2025, Volume: 15 Issue: 3, 1068 - 1079, 01.09.2025
https://doi.org/10.21597/jist.1575120

Abstract

This study examines combustion waves due to their importance in non-fluid oil recovery techniques. The primary objective is to demonstrate the existence and stability of traveling waves that emerge when air is injected into a porous medium initially containing a limited amount of solid fuel. The investigated combustion system is modeled using three different partial differential equations that govern the conservation of temperature, oxygen, and solid fuel. Among these equations, only one includes a diffusion term, while the others do not. Unlike previous studies in the literature, this research introduces a diffusion term into the oxygen equation of the combustion system and demonstrates that this modification does not affect the combustion waves. Subsequently, the spectrum and weight function of the system are analyzed. Finally, a linear stability analysis is conducted for combustion waves propagating in the reverse direction. These analyses are performed under the assumption that the velocities of oxygen and temperature are equal and that the traveling wave velocity is negative.

References

  • Akkutlu, I., & Yortsos, Y. (2003). The dynamics of in-situ combustion fronts in porous media. Combustion and Flame, 134, 229-247.
  • Aldushin, A., Rumanov, I., & Matkowsky, B. (1999). Maximal energy accumulation in a superadiabatic filtration combustion wave. Combustion and Flame, 118, 76-90.
  • Barlas, G. (2020). Gözenekli ortamda ters yönde ilerleyen yanma dalgalarının varlığı. (Master's thesis, Harran Üniversitesi, Fen Bilimleri Enstitüsü, Şanlıurfa).
  • Chapiro, G., & Senos, L. (2017). Riemann solutions for counterflow combustion in light porous foam. Computational and Applied Mathematics.
  • Chapiro, G., Marchesin, D., & Schecter, S. (2014). Combustion waves and Riemann solutions in light porous foam. Journal of Hyperbolic Differential Equations, 11, 295-328.
  • Chapiro, G., Mailybaev, A. A., Souza, A., Marchesin, D., & Bruining, J. (2012). Asymptotic approximation of long-time solution for low-temperature filtration combustion. Computational Geosciences, 16, 799-808.
  • Chapiro, G., & Souza, A. J. (2016). Asymptotic approximation for counterflow combustion in porous media. Applied Analysis, 95(1), 63-77.
  • Ghazaryan, A., Latushkin, Y., Schecter, S., & Souza, A. (2010). Stability of gasless combustion fronts in one-dimensional solids. Archive for Rational Mechanics and Analysis, 198(3), 981-1030.
  • Marchesin, D., & Schecter, S. (2003). Oxidation heat pulses in two-phase expansive flow in porous media. Zeitschrift für Angewandte Mathematik und Physik, 54(1), 48-83.
  • Ozbag, F. (2022). Numerical simulations of traveling waves in a counterflow filtration combustion model. Turkish Journal of Mathematics, 46(4), 1424-1435.
  • Ozbag, F., ve Kuru, B. C. (2021). İlerleyen yanma dalgalarının Evans fonksiyonu ile spektral kararlılığı. Karadeniz Fen Bilimleri Dergisi, 11(2), 663-679.
  • Ozbag, F., Schecter, S., & Chapiro, G. (2018). Traveling waves in a simplified gas-solid combustion model in porous media. Advances in Differential Equations, 23, 409-454.
  • Ozbag, F., & Schecter, S. (2018). Stability of combustion waves in a simplified gas–solid combustion model in porous media. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2117), 20170185.
  • Schult, D., Bayliss, A., & Matkowsky, B. (1998). Traveling waves in natural counterflow filtration combustion and their stability. SIAM Journal on Applied Mathematics, 58(3), 806-852.
  • Schult, D., Matkowsky, B., Volpert, V., & Fernand-Pello, A. (1996). Forced forward smolder combustion. Combustion and Flame, 104(1-2), 1-26.
  • Souza, A. J. (2008). Counterflow combustion in a porous medium. In Hyperbolic problems: theory, numerics, applications (pp. 1005-1012). New York: Springer.
  • Yurov, V. (2013). Stability estimates for semigroups and partly parabolic reaction diffusion equation. (Doctoral thesis, University of Missouri).
  • Zeldovich, Y. B., Barenblatt, G. I., Librovich, V. B., & Makhviladze, G. M. (1985). The mathematical theory of combustion and explosion. New York: Consultants Bureau.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Partial Differential Equations
Journal Section Matematik / Mathematics
Authors

Fatih Özbağ 0000-0002-5456-4261

Hacire Yokuş 0000-0002-7800-0903

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date October 28, 2024
Acceptance Date February 19, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Özbağ, F., & Yokuş, H. (2025). Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi. Journal of the Institute of Science and Technology, 15(3), 1068-1079. https://doi.org/10.21597/jist.1575120
AMA Özbağ F, Yokuş H. Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi. J. Inst. Sci. and Tech. September 2025;15(3):1068-1079. doi:10.21597/jist.1575120
Chicago Özbağ, Fatih, and Hacire Yokuş. “Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 1068-79. https://doi.org/10.21597/jist.1575120.
EndNote Özbağ F, Yokuş H (September 1, 2025) Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi. Journal of the Institute of Science and Technology 15 3 1068–1079.
IEEE F. Özbağ and H. Yokuş, “Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 1068–1079, 2025, doi: 10.21597/jist.1575120.
ISNAD Özbağ, Fatih - Yokuş, Hacire. “Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi”. Journal of the Institute of Science and Technology 15/3 (September2025), 1068-1079. https://doi.org/10.21597/jist.1575120.
JAMA Özbağ F, Yokuş H. Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi. J. Inst. Sci. and Tech. 2025;15:1068–1079.
MLA Özbağ, Fatih and Hacire Yokuş. “Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 1068-79, doi:10.21597/jist.1575120.
Vancouver Özbağ F, Yokuş H. Reaksiyon-Konveksiyon-Difüzyon Sisteminde Ters Yönde İlerleyen Dalgaların Kararlılık Analizi. J. Inst. Sci. and Tech. 2025;15(3):1068-79.