Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 3, 872 - 888, 01.09.2025
https://doi.org/10.21597/jist.1592544

Abstract

References

  • Adukwu, O., Dehunsi, O. A., & Adeyeri, K. (2023). Modelling of Direct Current (DC) Motor for Performance Improvement using Model Parameter Estimation. Journal Of Engineering Research Innovation And Scientific Development, 1(2), 36–41. https://doi.org/10.61448/JERISD12235
  • Akbari-Hasanjani, R., Javadi, S., & Sabbaghi-Nadooshan, R. (2014). DC motor speed control by self-tuning fuzzy PID algorithm. Http://Dx.Doi.Org/10.1177/0142331214535619, 37(2), 164–176. https://doi.org/10.1177/0142331214535619
  • Al-Bargothi, S. N., Qaryouti, G. M., & Jaber, Q. M. (2019). Speed control of DC motor using conventional and adaptive PID controllers. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1221–1228. https://doi.org/10.11591/ijeecs.v16.i3.pp1221-1228
  • Asadi, F. (2018). Comparison Of Different DC Motor Modeling Techniques. Journal of Electronic Research and Application, 2(2). https://doi.org/10.26689/JERA.V2I2.333
  • Frances, A., Asensi, R., & Uceda, J. (2019). Blackbox Polytopic Model with Dynamic Weighting Functions for DC-DC Converters. IEEE Access, 7, 160263–160273. https://doi.org/10.1109/ACCESS.2019.2950983
  • Gebremariam, S. F., & Alemu, B. S. (2023). A Review on DC Motor Drive Controlling Schemes, Optimization Techniques and Future Trends. International Journal of Research Publication and Reviews, 4(12), 3507–3514. https://doi.org/10.55248/GENGPI.4.1223.0127
  • Gu, D., Zhang, J., & Gu, J. (2015). Brushless DC motor speed control based on predictive functional control. Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, 3456–3458. https://doi.org/10.1109/CCDC.2015.7162520
  • Hidayati, Q., & Prasetyo, M. E. (2016). Pengaturan Kecepatan Motor DC dengan Menggunakan Mikrokontroler Berbasis Fuzzy-PID. JTT (Jurnal Teknologi Terpadu), 4(1). https://doi.org/10.32487/JTT.V4I1.123
  • Kizir, S., Kelekci, E., & Yaren, T. (2019). Matlab Simulink Destekli Gerçek Zamanlı Kontrol Teori ve Mühendislik Uygulamaları.
  • Kroičs, K., & Būmanis, A. (2024). BLDC Motor Speed Control with Digital Adaptive PID-Fuzzy Controller and Reduced Harmonic Content. Energies, 17(6), 1311. https://doi.org/10.3390/en17061311
  • Liu, S., Zhang, H., & Pang, H. (2025). Finite-time adaptive fuzzy constrained control of uncertain switched nonlinear systems with zero dynamics. Journal of the Franklin Institute, 362(3), 107513. https://doi.org/10.1016/J.JFRANKLIN.2025.107513
  • Ma’arif, A., & Çakan, A. (2021). Simulation and Arduino Hardware Implementation of DC Motor Control Using Sliding Mode Controller. Journal of Robotics and Control (JRC), 2(6), 582–587. https://doi.org/10.18196/JRC.26140
  • Moaveni, B., Masoumi, Z., & Rahmani, P. (2023). Introducing Improved Iterated Extended Kalman Filter (IIEKF) to Estimate the Rotor Rotational Speed, Rotor and Stator Resistances of Induction Motors. IEEE Access, 11, 17584–17593. https://doi.org/10.1109/ACCESS.2023.3244830
  • Naziris, A., Frances, A., Asensi, R., & Uceda, J. (2020). Black-box small-signal structure for single-phase and three-phase electric vehicle battery chargers. IEEE Access, 8, 170496–170506. https://doi.org/10.1109/ACCESS.2020.3024534
  • Ortatepe, Z. (2023). Genetic Algorithm based PID Tuning Software Design and Implementation for a DC Motor Control System. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 286–300. https://doi.org/10.54287/GUJSA.1342905
  • Prasad, L. B., Tyagi, B., & Gupta, H. O. (2014). Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance input. International Journal of Automation and Computing, 11(6), 661–670. https://doi.org/10.1007/S11633-014-0818-1/TABLES/4
  • Raza, W., Adzikya, D., Mehmood, S., Wasti, S. R., Hussain, M. J., Ahmad, A., … Raza, S. (2024). Fuzzy Logic Speed Regulator for D.C. Motor Tuning. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(1), 36–49. https://doi.org/10.31764/jtam.v8i1.16919
  • Sadi, S. (2020). DC Motor Speed Control Using Mamdani Fuzzy Logic Based on Microcontroller. Jurnal Teknik, 9(2). https://doi.org/10.31000/JT.V9I2.3676
  • Saleem, O., & Omer, U. (2017). EKF-based self-regulation of an adaptive nonlinear PI speed controller for a DC motor. Turkish Journal of Electrical Engineering and Computer Sciences, 25(5), 4131–4141. https://doi.org/10.3906/elk-1611-311
  • Sami, S. S., Obaid, Z. A., Muhssin, M. T., & Hussain, A. N. (2021). Detailed modelling and simulation of different DC motor types for research and educational purposes. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(2), 703–714. https://doi.org/10.11591/IJPEDS.V12.I2.PP703-714
  • Shah, J., Okasha, M., & Faris, W. (2018). Gain scheduled integral linear quadratic control for quadcopter. International Journal of Engineering & Technology, 7(4.13), 81–85. https://doi.org/10.14419/IJET.V7I4.13.21334
  • Valenzuela, F. A., Ramírez, R., Martínez, F., Morfín, O. A., & Castañeda, C. E. (2020). Super-Twisting Algorithm Applied to Velocity Control of DC Motor without Mechanical Sensors Dependence. Energies 2020, Vol. 13, Page 6041, 13(22), 6041. https://doi.org/10.3390/EN13226041
  • Xue, C., Zhu, H., & Yu, B. (2012). Modeling and Simulation of Parameter Self-Tuning Fuzzy PID Controller for DC Motor Speed Control System. Applied Mechanics and Materials, 195–196, 1003–1007. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.195-196.1003

Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control

Year 2025, Volume: 15 Issue: 3, 872 - 888, 01.09.2025
https://doi.org/10.21597/jist.1592544

Abstract

Direct Current (DC) motors are fundamental components in various industrial and automation systems, valued for their precision and controllability. Traditional control methods, such as Proportional-Integral-Derivative (PID) controllers, often require robust mathematical models and are susceptible to performance degradation under non-ideal conditions. This study investigates the implementation of Fuzzy Logic Controllers (FLC) for real-time DC motor position control, with a focus on analyzing the impact of different derivative approaches. To construct a comprehensive mathematical model of the DC motor system, both white-box and black-box system identification approaches were employed. The white-box method utilized physical principles of the motor, while the black-box method relied on empirical input-output data. The Transfer Function-Based Derivative (TFD) and Second-Order Filtered Derivative (SOFD) techniques are evaluated for their maintaining system responsiveness. A test setup utilizing an STM32F4 discovery kit was developed, and the performance of both derivative approaches was compared using a repeating stair sequence as the reference input. The experimental results showed that both techniques performed successfully, but the SOFD method demonstrated a more effective error reduction. The findings offer insights into derivative filtering techniques, highlighting the benefits of incorporating advanced filtering strategies in FLC-based control systems.

References

  • Adukwu, O., Dehunsi, O. A., & Adeyeri, K. (2023). Modelling of Direct Current (DC) Motor for Performance Improvement using Model Parameter Estimation. Journal Of Engineering Research Innovation And Scientific Development, 1(2), 36–41. https://doi.org/10.61448/JERISD12235
  • Akbari-Hasanjani, R., Javadi, S., & Sabbaghi-Nadooshan, R. (2014). DC motor speed control by self-tuning fuzzy PID algorithm. Http://Dx.Doi.Org/10.1177/0142331214535619, 37(2), 164–176. https://doi.org/10.1177/0142331214535619
  • Al-Bargothi, S. N., Qaryouti, G. M., & Jaber, Q. M. (2019). Speed control of DC motor using conventional and adaptive PID controllers. Indonesian Journal of Electrical Engineering and Computer Science, 16(3), 1221–1228. https://doi.org/10.11591/ijeecs.v16.i3.pp1221-1228
  • Asadi, F. (2018). Comparison Of Different DC Motor Modeling Techniques. Journal of Electronic Research and Application, 2(2). https://doi.org/10.26689/JERA.V2I2.333
  • Frances, A., Asensi, R., & Uceda, J. (2019). Blackbox Polytopic Model with Dynamic Weighting Functions for DC-DC Converters. IEEE Access, 7, 160263–160273. https://doi.org/10.1109/ACCESS.2019.2950983
  • Gebremariam, S. F., & Alemu, B. S. (2023). A Review on DC Motor Drive Controlling Schemes, Optimization Techniques and Future Trends. International Journal of Research Publication and Reviews, 4(12), 3507–3514. https://doi.org/10.55248/GENGPI.4.1223.0127
  • Gu, D., Zhang, J., & Gu, J. (2015). Brushless DC motor speed control based on predictive functional control. Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, 3456–3458. https://doi.org/10.1109/CCDC.2015.7162520
  • Hidayati, Q., & Prasetyo, M. E. (2016). Pengaturan Kecepatan Motor DC dengan Menggunakan Mikrokontroler Berbasis Fuzzy-PID. JTT (Jurnal Teknologi Terpadu), 4(1). https://doi.org/10.32487/JTT.V4I1.123
  • Kizir, S., Kelekci, E., & Yaren, T. (2019). Matlab Simulink Destekli Gerçek Zamanlı Kontrol Teori ve Mühendislik Uygulamaları.
  • Kroičs, K., & Būmanis, A. (2024). BLDC Motor Speed Control with Digital Adaptive PID-Fuzzy Controller and Reduced Harmonic Content. Energies, 17(6), 1311. https://doi.org/10.3390/en17061311
  • Liu, S., Zhang, H., & Pang, H. (2025). Finite-time adaptive fuzzy constrained control of uncertain switched nonlinear systems with zero dynamics. Journal of the Franklin Institute, 362(3), 107513. https://doi.org/10.1016/J.JFRANKLIN.2025.107513
  • Ma’arif, A., & Çakan, A. (2021). Simulation and Arduino Hardware Implementation of DC Motor Control Using Sliding Mode Controller. Journal of Robotics and Control (JRC), 2(6), 582–587. https://doi.org/10.18196/JRC.26140
  • Moaveni, B., Masoumi, Z., & Rahmani, P. (2023). Introducing Improved Iterated Extended Kalman Filter (IIEKF) to Estimate the Rotor Rotational Speed, Rotor and Stator Resistances of Induction Motors. IEEE Access, 11, 17584–17593. https://doi.org/10.1109/ACCESS.2023.3244830
  • Naziris, A., Frances, A., Asensi, R., & Uceda, J. (2020). Black-box small-signal structure for single-phase and three-phase electric vehicle battery chargers. IEEE Access, 8, 170496–170506. https://doi.org/10.1109/ACCESS.2020.3024534
  • Ortatepe, Z. (2023). Genetic Algorithm based PID Tuning Software Design and Implementation for a DC Motor Control System. Gazi University Journal of Science Part A: Engineering and Innovation, 10(3), 286–300. https://doi.org/10.54287/GUJSA.1342905
  • Prasad, L. B., Tyagi, B., & Gupta, H. O. (2014). Optimal control of nonlinear inverted pendulum system using PID controller and LQR: Performance analysis without and with disturbance input. International Journal of Automation and Computing, 11(6), 661–670. https://doi.org/10.1007/S11633-014-0818-1/TABLES/4
  • Raza, W., Adzikya, D., Mehmood, S., Wasti, S. R., Hussain, M. J., Ahmad, A., … Raza, S. (2024). Fuzzy Logic Speed Regulator for D.C. Motor Tuning. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(1), 36–49. https://doi.org/10.31764/jtam.v8i1.16919
  • Sadi, S. (2020). DC Motor Speed Control Using Mamdani Fuzzy Logic Based on Microcontroller. Jurnal Teknik, 9(2). https://doi.org/10.31000/JT.V9I2.3676
  • Saleem, O., & Omer, U. (2017). EKF-based self-regulation of an adaptive nonlinear PI speed controller for a DC motor. Turkish Journal of Electrical Engineering and Computer Sciences, 25(5), 4131–4141. https://doi.org/10.3906/elk-1611-311
  • Sami, S. S., Obaid, Z. A., Muhssin, M. T., & Hussain, A. N. (2021). Detailed modelling and simulation of different DC motor types for research and educational purposes. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(2), 703–714. https://doi.org/10.11591/IJPEDS.V12.I2.PP703-714
  • Shah, J., Okasha, M., & Faris, W. (2018). Gain scheduled integral linear quadratic control for quadcopter. International Journal of Engineering & Technology, 7(4.13), 81–85. https://doi.org/10.14419/IJET.V7I4.13.21334
  • Valenzuela, F. A., Ramírez, R., Martínez, F., Morfín, O. A., & Castañeda, C. E. (2020). Super-Twisting Algorithm Applied to Velocity Control of DC Motor without Mechanical Sensors Dependence. Energies 2020, Vol. 13, Page 6041, 13(22), 6041. https://doi.org/10.3390/EN13226041
  • Xue, C., Zhu, H., & Yu, B. (2012). Modeling and Simulation of Parameter Self-Tuning Fuzzy PID Controller for DC Motor Speed Control System. Applied Mechanics and Materials, 195–196, 1003–1007. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.195-196.1003
There are 23 citations in total.

Details

Primary Language English
Subjects Control Theoryand Applications
Journal Section Elektrik Elektronik Mühendisliği / Electrical Electronic Engineering
Authors

Batın Demircan 0000-0002-0765-458X

Tuğçe Yaren 0000-0001-9937-3111

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date November 28, 2024
Acceptance Date March 3, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Demircan, B., & Yaren, T. (2025). Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control. Journal of the Institute of Science and Technology, 15(3), 872-888. https://doi.org/10.21597/jist.1592544
AMA Demircan B, Yaren T. Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control. J. Inst. Sci. and Tech. September 2025;15(3):872-888. doi:10.21597/jist.1592544
Chicago Demircan, Batın, and Tuğçe Yaren. “Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 872-88. https://doi.org/10.21597/jist.1592544.
EndNote Demircan B, Yaren T (September 1, 2025) Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control. Journal of the Institute of Science and Technology 15 3 872–888.
IEEE B. Demircan and T. Yaren, “Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 872–888, 2025, doi: 10.21597/jist.1592544.
ISNAD Demircan, Batın - Yaren, Tuğçe. “Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control”. Journal of the Institute of Science and Technology 15/3 (September2025), 872-888. https://doi.org/10.21597/jist.1592544.
JAMA Demircan B, Yaren T. Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control. J. Inst. Sci. and Tech. 2025;15:872–888.
MLA Demircan, Batın and Tuğçe Yaren. “Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 872-88, doi:10.21597/jist.1592544.
Vancouver Demircan B, Yaren T. Effect of Filtering Techniques on the Derivative Term in Fuzzy Logic Controller for DC Motor Position Control. J. Inst. Sci. and Tech. 2025;15(3):872-88.