Research Article
BibTex RIS Cite

Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi

Year 2025, Volume: 15 Issue: 3, 1032 - 1039, 01.09.2025
https://doi.org/10.21597/jist.1640466

Abstract

Hızlandırıcı Sürücülü Sistemler, geleneksel reaktörlerden farklı olarak kritik-altı çalışma prensibine sahip olup, hızlandırıcı kapatıldığında zincirleme reaksiyonun durması sayesinde daha güvenli bir teknoloji sunar. Bu sistemler, termal reaktörlerden elde edilen minör aktinitlerin dönüştürülmesi, yeni radyoizotop üretimi ve güvenli enerji sağlanması gibi alanlarda önemli bir rol oynamaktadır. Ayrıca, toryum kaynaklı yakıt döngüsüyle çalışabilme özelliği sayesinde daha temiz ve bol bulunan bir enerji kaynağı olarak öne çıkmaktadır. Bu çalışmada, nükleer atıkların dönüştürülmesi, toryumun enerji üretiminde değerlendirilmesi ve enerji kazancının incelenmesi temel odak noktalarıdır. Araştırmada, termal reaktörlerden elde edilen karışık oksit yakıtı (MOX) türleri (MOX11, MOX21, MOX12 ve MOX22) kullanılmıştır. Bu bağlamda, tasarlanan sistemin yakıt bölgesine, MOX yakıtında belirli oranlarda doğal olarak bulunan minör aktinit dioksitin yanı sıra toryum dioksit eklenerek hızlandırıcı sürücülü sistemin enerji kazancı analiz edilmiştir. Çalışma sonucunda, en yüksek enerji kazancının, %90 minör aktinit dioksit ve %10 toryum dioksit içeren yakıt karışımı ile elde edildiği belirlenmiştir. Nötronik hesaplamalar, MCNPX 2.7 nükleer kodu kullanılarak gerçekleştirilmiştir.

References

  • Adam, J. (2007). Transmutation of I-129, Np-237, Pu-238, Pu-239, and Am-241 using neutrons produced in target-blanket system 'energy plus transmutation' by relativistic protons. Pramana - Journal of Physics, 68(2), 201-212.
  • Cho, C. H., Song, T. Y., & Tak, N. I. (2004). Numerical design of a 20 MW lead–bismuth spallation target for an accelerator-driven system. Nuclear Engineering and Design, 229(2-3), 317-327.
  • Chen, Z., Wu, Y., Yuan, B., & Pan, D. (2015). Nuclear waste transmutation performance assessment of an accelerator-driven subcritical reactor for waste transmutation (ADS-NWT). Annals of Nuclear Energy, 75, 723-727..
  • Ding, H., Gan, Q., Hao, L., Song, J., & Wu, Y. (2019). Verification and application of SuperMC3. 3 to lead-bismuth-cooled fast reactor. Nuclear Technology and Radiation Protection, 34(2), 122-128..
  • Gohar, Y., Cao, Y., & Kraus, A. R. (2021). ADS design concept for disposing of the U.S. spent nuclear fuel inventory. Annals of Nuclear Energy, 160, 108385.
  • Gohar, Y., Cao, Y., & Kraus, A. R. (2018). Accelerator-Driven Subcritical System for Disposing of the US Spent Nuclear Fuel Inventory (No. ANL-18/07). Argonne National Lab.(ANL), Argonne, IL (United States).
  • Lv, Z., Zhao, Z., Chen, Z., Pan, D., & Wu, J. (2024). The influence of source locations of different multi-beam concept on the power density distribution and nuclear waste transmutation performance for ADS–NWT. Nuclear Engineering and Design, 422, 113139.
  • NEA, 2000. Calculations of Different Transmutation Concepts an International Benchmark Exercise. Nuclear Science Committee.).
  • Pelowitz, D. B. (2011). MCNPX user’s manual (Version 2.7.0, LA-CP-11-00438). Los Alamos Scientific Laboratory.
  • Rubbia, C., Rubio, J. A., Buono, S., Carminati, F., Fiétier, N., Galvez, J., Gelés, C., Kadi, Y., Klapisch, R., Mandrillon, P., Revol, J. P., & Roche, C. (1995). Conceptual design of a fast neutron operated high power energy amplifier (CERN/AT/95-44). European Organization for Nuclear Research.
  • Şarer, B., Şahin, S., Çelik, Y., & Günay, M. (2013). Evaluation of integral quantities in an accelerator driven system using different nuclear models implemented in the MCNPX Monte Carlo transport code. Annals of Nuclear Energy, 62, 382–389.
  • The European Technical Working Group on ADS System. (2001, April). A European roadmap for developing accelerator driven systems (ADS system) for nuclear waste incineration.
  • Tsujimoto, K., Sasa, T., Nishihara, K., Takano, H., & Oigawa, H. (2004). Neutronics design for lead–bismuth cooled accelerator-driven system for transmutation of minor actinide. Journal of Nuclear Science and Technology, 41(1), 21–36.
  • Takeda, T., & Yokoyama, K. (1997). Study on neutron spectrum for effective transmutation of minor actinides in thermal reactors. Annals of Nuclear Energy, 24(9), 705-719.
  • Yapıcı, H. (2003). Study on transmutation of minor actinides discharged from high burn-up PWR-MOX spent fuel in the force-free helical reactor. Annals of Nuclear Energy, 30(4), 413-436.
  • Zhang, X., Pu, N., Cai, H., Jia, H., & He, Y. (2023). Strategies of eliminating nuclear waste using accelerator-driven system in the transition stage for sustainable and clean nuclear energy in China. Annals of Nuclear Energy, 185, 109713.
  • Zhivkov, P., Stoyanov, C., & Furman, W. (2018). Accelerator driven system for transmutation and energy production. EPJ Web of Conferences, 194(4), 1-4.

Assessment of Performance in an Accelerator-Driven System Using Minor Actinides and Thorium

Year 2025, Volume: 15 Issue: 3, 1032 - 1039, 01.09.2025
https://doi.org/10.21597/jist.1640466

Abstract

Accelerator-Driven Systems (ADS) operate on a subcritical principle, distinguishing them from conventional reactors by ensuring that the chain reaction ceases when the accelerator is turned off, thereby providing a safer technology. These systems play a crucial role in the transmutation of minor actinides derived from thermal reactors, the production of new radioisotopes, and the generation of secure energy. Additionally, their ability to operate with a thorium-based fuel cycle makes them a cleaner and more abundant energy source. This study focuses on the transmutation of nuclear waste, the utilization of thorium in energy production, and the assessment of energy gain. In the research, various types of mixed oxide (MOX) fuels (MOX11, MOX21, MOX12, and MOX22) obtained from thermal reactors were used. In this context, the energy gain of the accelerator-driven system was analyzed by adding thorium dioxide to the fuel region of the designed system, alongside the minor actinide dioxide that is naturally present in MOX fuel at certain proportions. The study found that the highest energy gain was achieved with a fuel mixture containing 90% minor actinide dioxide and 10% thorium dioxide. Neutronic calculations were performed using the MCNPX 2.7 nuclear code.

References

  • Adam, J. (2007). Transmutation of I-129, Np-237, Pu-238, Pu-239, and Am-241 using neutrons produced in target-blanket system 'energy plus transmutation' by relativistic protons. Pramana - Journal of Physics, 68(2), 201-212.
  • Cho, C. H., Song, T. Y., & Tak, N. I. (2004). Numerical design of a 20 MW lead–bismuth spallation target for an accelerator-driven system. Nuclear Engineering and Design, 229(2-3), 317-327.
  • Chen, Z., Wu, Y., Yuan, B., & Pan, D. (2015). Nuclear waste transmutation performance assessment of an accelerator-driven subcritical reactor for waste transmutation (ADS-NWT). Annals of Nuclear Energy, 75, 723-727..
  • Ding, H., Gan, Q., Hao, L., Song, J., & Wu, Y. (2019). Verification and application of SuperMC3. 3 to lead-bismuth-cooled fast reactor. Nuclear Technology and Radiation Protection, 34(2), 122-128..
  • Gohar, Y., Cao, Y., & Kraus, A. R. (2021). ADS design concept for disposing of the U.S. spent nuclear fuel inventory. Annals of Nuclear Energy, 160, 108385.
  • Gohar, Y., Cao, Y., & Kraus, A. R. (2018). Accelerator-Driven Subcritical System for Disposing of the US Spent Nuclear Fuel Inventory (No. ANL-18/07). Argonne National Lab.(ANL), Argonne, IL (United States).
  • Lv, Z., Zhao, Z., Chen, Z., Pan, D., & Wu, J. (2024). The influence of source locations of different multi-beam concept on the power density distribution and nuclear waste transmutation performance for ADS–NWT. Nuclear Engineering and Design, 422, 113139.
  • NEA, 2000. Calculations of Different Transmutation Concepts an International Benchmark Exercise. Nuclear Science Committee.).
  • Pelowitz, D. B. (2011). MCNPX user’s manual (Version 2.7.0, LA-CP-11-00438). Los Alamos Scientific Laboratory.
  • Rubbia, C., Rubio, J. A., Buono, S., Carminati, F., Fiétier, N., Galvez, J., Gelés, C., Kadi, Y., Klapisch, R., Mandrillon, P., Revol, J. P., & Roche, C. (1995). Conceptual design of a fast neutron operated high power energy amplifier (CERN/AT/95-44). European Organization for Nuclear Research.
  • Şarer, B., Şahin, S., Çelik, Y., & Günay, M. (2013). Evaluation of integral quantities in an accelerator driven system using different nuclear models implemented in the MCNPX Monte Carlo transport code. Annals of Nuclear Energy, 62, 382–389.
  • The European Technical Working Group on ADS System. (2001, April). A European roadmap for developing accelerator driven systems (ADS system) for nuclear waste incineration.
  • Tsujimoto, K., Sasa, T., Nishihara, K., Takano, H., & Oigawa, H. (2004). Neutronics design for lead–bismuth cooled accelerator-driven system for transmutation of minor actinide. Journal of Nuclear Science and Technology, 41(1), 21–36.
  • Takeda, T., & Yokoyama, K. (1997). Study on neutron spectrum for effective transmutation of minor actinides in thermal reactors. Annals of Nuclear Energy, 24(9), 705-719.
  • Yapıcı, H. (2003). Study on transmutation of minor actinides discharged from high burn-up PWR-MOX spent fuel in the force-free helical reactor. Annals of Nuclear Energy, 30(4), 413-436.
  • Zhang, X., Pu, N., Cai, H., Jia, H., & He, Y. (2023). Strategies of eliminating nuclear waste using accelerator-driven system in the transition stage for sustainable and clean nuclear energy in China. Annals of Nuclear Energy, 185, 109713.
  • Zhivkov, P., Stoyanov, C., & Furman, W. (2018). Accelerator driven system for transmutation and energy production. EPJ Web of Conferences, 194(4), 1-4.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Makina Mühendisliği / Mechanical Engineering
Authors

Alper Buğra Arslan 0000-0001-9964-2342

Büşra Durmaz 0000-0001-6659-1067

Hüseyin Yapıcı 0000-0003-2994-7786

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date February 15, 2025
Acceptance Date May 21, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Arslan, A. B., Durmaz, B., & Yapıcı, H. (2025). Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi. Journal of the Institute of Science and Technology, 15(3), 1032-1039. https://doi.org/10.21597/jist.1640466
AMA Arslan AB, Durmaz B, Yapıcı H. Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi. J. Inst. Sci. and Tech. September 2025;15(3):1032-1039. doi:10.21597/jist.1640466
Chicago Arslan, Alper Buğra, Büşra Durmaz, and Hüseyin Yapıcı. “Minör Aktinit Ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 1032-39. https://doi.org/10.21597/jist.1640466.
EndNote Arslan AB, Durmaz B, Yapıcı H (September 1, 2025) Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi. Journal of the Institute of Science and Technology 15 3 1032–1039.
IEEE A. B. Arslan, B. Durmaz, and H. Yapıcı, “Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 1032–1039, 2025, doi: 10.21597/jist.1640466.
ISNAD Arslan, Alper Buğra et al. “Minör Aktinit Ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi”. Journal of the Institute of Science and Technology 15/3 (September2025), 1032-1039. https://doi.org/10.21597/jist.1640466.
JAMA Arslan AB, Durmaz B, Yapıcı H. Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi. J. Inst. Sci. and Tech. 2025;15:1032–1039.
MLA Arslan, Alper Buğra et al. “Minör Aktinit Ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 1032-9, doi:10.21597/jist.1640466.
Vancouver Arslan AB, Durmaz B, Yapıcı H. Minör Aktinit ve Toryum Kullanılan Bir Hızlandırıcılı Sürücülü Sistemde Performansın Değerlendirilmesi. J. Inst. Sci. and Tech. 2025;15(3):1032-9.