Research Article
BibTex RIS Cite

RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes

Year 2025, Volume: 15 Issue: 3, 1019 - 1031, 01.09.2025
https://doi.org/10.21597/jist.1647816

Abstract

A novel ruthenium ditelluride (RuTe2) catalyst supported by graphitized carbon nanofibers (GNF) has been synthesized developing a straightforward, environmentally friendly, and cost-effective method. Characterization studies indicated that the formation of crystalline RuTe2 nanoparticles uniformly immobilized at the step edges within the internal cavity of GNF support, with an average nanoparticle size of ~4 nm, as well as the external surface of GNF. The electrocatalytic performance of RuTe2/@GNF in the hydrogen evolution reaction was investigated in both acidic and alkaline mediums. The results were compared with those of commercial platinum nanoparticles on activated carbon (Pt/C), as well as with hollow GNF and GNF-supported metallic ruthenium nanoparticles. The results indicated that GNF-supported RuTe2 exhibited a comparable HER performance to state-of-the-art Pt/C catalyst and suppressed the HER activity of other control materials. Increased HER activity was attributed to the confined space of step edges enabled the robust and active catalytic sites and facilitated the HER in a nanoscale environment. Additionally, the highly conductive GNF support functioned as an effective electrical bridge between the nanoparticles and the macroscopic electrode. This configuration not only facilitated efficient charge transfer between the electrolyte and the catalyst but also enhanced overall performance. As a result, RuTe2/@GNF served as a bifunctional catalyst in both mediums, facilitating enhanced proton adsorption/desorption process and effectively overcoming water dissociation barriers. This study paves the way for developing novel sustainable ruthenium chalcogenide-based catalysts that are alternatives to traditional platinum catalysts, highlighting their potential use for efficient hydrogen generation.

References

  • Aygün, M., Stoppiello, C. T., Lebedeva, M. A., Smith, E. F., Gimenez-Lopez, M. del C., Khlobystov, A. N., Chamberlain, T. W. (2017). Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. Journal of Material Chemistry A, 5(40), 21467–21477.
  • Aygün, M., Guillen-Soler, M., Vila-Fungueiriño, J. M., Kurtoglu, A., Chamberlain, T., Khlobystov, A., Gimenez Lopez, M. del C. (2021). Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem. 14 (22), 4846-5074.
  • Bard, A. J. and Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications, Jonh Wiley, New York.
  • Cheng, Y., Lu, S., Liao, F., Liu, L., Li, Y., Shao, M. (2017) Rh-MoS2 Nanocomposite Catalysts with Pt-Like Activity for Hydrogen Evolution Reaction. Advance Functional Materials. 27, 1700359, 1–6.
  • Gu, X., Yang, X., Feng, L. (2020). An Efficient RuTe2/Graphene Catalyst for Electrochemical Hydrogen Evolution Reaction in Acid Electrolyte. Chemistry – An Asian Journal. 15, 2886-2891.
  • He, Q., Zhou, Y., Shou, H., Wang, X., Zhang, P., Xu, W., Qiao, S., Wu, C., Liu, H., Liu, D., Chen, S., Long, R., Qi, Z., Wu, X., Song, L. (2022). Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Advance Materials,34, 2110604.
  • He, C., Wei, Y., Xu, J., Wei, Y., Wang, T., Liu, R., Ji, L., Liu, Z., Wang, S. (2024). Chalcogen-dependent catalytic properties of RuX2 (X = S/Se/Te) nanoparticles decorated carbon nanofibers for hydrogen evolution in acidic and alkaline media. Nano Research, 17, 2528–2537.
  • Hu, C., Zhang, L., Gong, J., 2019. Recent Progress of Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting, Energy Environmental Science,12, 2620-2645.
  • Hu, S.L.; Li, W.X. (2021). Sabatier principle of metal-support interaction for design of ultrastable metal nano-catalysts. Science, 374,1360–1365.
  • Hu, Q., Gao, K., Wang, X., Zheng, H., Cao, J., Mi, L., Huo, Q., Yang, H., Liu, J., He, C. (2022). Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nature Communications, 13,3958.
  • Kuang, Y.B.; Yang, F.L.; Feng, L.G. Advancements in ruthenium (Ru)-based heterostructure catalysts: Overcoming bottlenecks in catalysis for hydrogen evolution reaction. Adv. Energy Mater. 2024, 14, 2402043.
  • Li, L., Tian, F., Qiu, L., Wu, F., Yang, W., Yu, Y. (2023) Recent progress on ruthenium-based electrocatalysts towards the hydrogen evolution reaction. Catalysts, 13, 1497.
  • Li, J., Miró, R., Wrzesi´nska-Lashkova, A., Yu, J., Arbiol, J., Vaynzof, Y., Shavel, A., Lesnyak, V. (2024). Aqueous room-temperature synthesis of transition metal dichalcogenide nanoparticles: A sustainable route to efficient hydrogen evolution. Advance Functional Materials, 2404565
  • Lin, B.-L, Chen, X., Niu, B.-T., Lin, Y.-T., Chen, Y.-X., Lin, X.-M. (2024). The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis. Catalysts, 14, 671.
  • Luo W, Gan J, Huang Z, Chen W, Qian G, Zhou X, Duan X. (2019). HER performance of Pt-based catalysts immobilized on functionalized vulcan carbon by atomic layer deposition. Frontier Materials, 6:251.
  • Luo, W.J., Wang, Y.J., Cheng, C.W. (2020). Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Material Today Physic, 15, 100274.
  • Medford, A. J., Vojvodic, A., Hummelshøj, J. S., Voss, J., Abild-Pedersen, F., Studt, F., Bligaard, T., Nilsson A., Nørskov, J. K., 2015. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, Catalysis, 328, 36–42.
  • Mondal, A., Vomiero, A. (2022). 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Advance Functional Materials, 32, 2208994.
  • Paleo, A.J., Krause, B., Mendes, A.R., Tavares, C.J., Cerqueira, M.F., Muñoz, E., Pötschke, P. (2023). Comparative Thermoelectric Properties of Polypropylene Composites Melt-Processed Using Pyrograf® III Carbon Nanofibers. Journal of Composites Science.7, 173.
  • Yang, Y., Yu, Y., Li, J., Chen, Q., Du, Y., Rao, P., Li, R., Jia, C., Kang, Z., Deng, P., Shen, Y., Tian, X. (2021). Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Nano-Micro Letters,13, 160.
  • Yu, J., He, Q., Yang, G., Zhou, W., Shao, Z., Ni., Meng. (2019). Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 9(11), 9973–10011.
  • Zhang, Z., Jiang, C., Li, P., Yao, K., Zhao, Z., Fan, J., Li, H., Wang, H. (2021). Ruthenium Dichalcogenides: Benchmarking Phases of Ruthenium Dichalcogenides for Electrocatalysis of Hydrogen Evolution: Theoretical and Experimental Insights. Small, 17(13), 2170056.
  • Zheng, Y., Jiao, Y., Zhu, Y., Li, L. H., Han, Y., Chen, Y., Jaroniec, M., Qiao, S.-Z. (2016). High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 138(49), 16174–16181.
  • Wei, C., Rao, R. R., Peng, J., Huang, B., Stephens, I. E. L., Risch, M., Xu, Z.J., Shao-Horn, Y. (2019). Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials, 1806296.
  • Wu, H., Huang, Q., Shi, Y., Chang, J., Lu, S. (2023). Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Research, 16, 9142–9157.

Asidik ve Alkalin Elektrolitlerde Elektrokimyasal Hidrojen Üretimi için Sürdürülebilir bir Yöntemle RuTe2 Dekore Edilmiş Karbon Nanofiberlerin Sentezi

Year 2025, Volume: 15 Issue: 3, 1019 - 1031, 01.09.2025
https://doi.org/10.21597/jist.1647816

Abstract

Rutenyum ditellürid (RuTe2) katalizörü, grafitize olmuş karbon nanofiberler (GNF) üzerine dekore edilerek basit, çevre dostu ve düşük maliyetli özgün bir yöntem geliştirerek sentezlendi. Karakterizasyon çalışmaları, kristalin RuTe2 nanopartikül oluşumların hem GNF destek malzemesinin iç kısmındaki kıvrımlı karbon kenarlarında, ortalama ~4 nm nanopartikül boyutu ile, hem de GNF'nin dış yüzeyinde homojen bir şekilde dağılım gösterdi. RuTe2/@GNF'nin hidrojen evrim reaksiyonundaki elektrokimyasal performansı hem asidik hem de alkali ortamlarda araştırıldı. Sonuçlar, ticari aktif karbon üzerine dekore edilmiş platin nanopartiküllerinin (Pt/C), GNF ve metalik rutenyum nanopartiküllerinin GNF üzerine dekore edildiği malzemelerin HER sonuçlarıyla karşılaştırıldı. Sonuçlar, GNF destekli RuTe2'nin son teknoloji Pt/C katalizörüne benzer bir HER performansı sergilediğini ve diğer kontrol materyallerinin HER aktivitesini bastırdığını gösterdi. Artan HER aktivitesi, HER için nano ölçekli bir ortamda kararlı ve aktif katalitik bölgelerin oluşmasını sağlayan GNF iç kısmındaki kıvrımlı kenarlarının sınırlı alanına atfedildi. Dahası, yüksek iletkenliğe sahip GNF destek malzemesi, nanopartiküller ile makroskobik elektrot arasında etkili bir elektrik köprüsü işlevi gördü. Bu yapılandırma, yalnızca elektrolit ile katalizör arasında verimli yük transferini kolaylaştırmakla kalmadı, aynı zamanda genel performansı da artırdı. Sonuç olarak, RuTe2/@GNF her iki ortamda da çift işlevli bir katalizör görevi görerek gelişmiş proton adsorpsiyon/desorpsiyon sürecini kolaylaştırdı ve suyun elektrokimyasal ayrışma bariyerlerinin etkili bir şekilde aşılması sağlandı. Bu çalışma, geleneksel platin katalizörlerine alternatif olan yeni sürdürülebilir rutenyum kalkojenür bazlı katalizörlerin geliştirilmesinin önünü açmakta ve bunların verimli hidrojen üretimi için potansiyel kullanımlarını vurgulamaktadır.

References

  • Aygün, M., Stoppiello, C. T., Lebedeva, M. A., Smith, E. F., Gimenez-Lopez, M. del C., Khlobystov, A. N., Chamberlain, T. W. (2017). Comparison of alkene hydrogenation in carbon nanoreactors of different diameters: probing the effects of nanoscale confinement on ruthenium nanoparticle catalysis. Journal of Material Chemistry A, 5(40), 21467–21477.
  • Aygün, M., Guillen-Soler, M., Vila-Fungueiriño, J. M., Kurtoglu, A., Chamberlain, T., Khlobystov, A., Gimenez Lopez, M. del C. (2021). Palladium Nanoparticles Hardwired in Carbon Nanoreactors Enable Continually Increasing Electrocatalytic Activity During the Hydrogen Evolution Reaction. ChemSusChem. 14 (22), 4846-5074.
  • Bard, A. J. and Faulkner, L. R. (2000). Electrochemical Methods: Fundamentals and Applications, Jonh Wiley, New York.
  • Cheng, Y., Lu, S., Liao, F., Liu, L., Li, Y., Shao, M. (2017) Rh-MoS2 Nanocomposite Catalysts with Pt-Like Activity for Hydrogen Evolution Reaction. Advance Functional Materials. 27, 1700359, 1–6.
  • Gu, X., Yang, X., Feng, L. (2020). An Efficient RuTe2/Graphene Catalyst for Electrochemical Hydrogen Evolution Reaction in Acid Electrolyte. Chemistry – An Asian Journal. 15, 2886-2891.
  • He, Q., Zhou, Y., Shou, H., Wang, X., Zhang, P., Xu, W., Qiao, S., Wu, C., Liu, H., Liu, D., Chen, S., Long, R., Qi, Z., Wu, X., Song, L. (2022). Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Advance Materials,34, 2110604.
  • He, C., Wei, Y., Xu, J., Wei, Y., Wang, T., Liu, R., Ji, L., Liu, Z., Wang, S. (2024). Chalcogen-dependent catalytic properties of RuX2 (X = S/Se/Te) nanoparticles decorated carbon nanofibers for hydrogen evolution in acidic and alkaline media. Nano Research, 17, 2528–2537.
  • Hu, C., Zhang, L., Gong, J., 2019. Recent Progress of Mechanism Comprehension and Design of Electrocatalysts for Alkaline Water Splitting, Energy Environmental Science,12, 2620-2645.
  • Hu, S.L.; Li, W.X. (2021). Sabatier principle of metal-support interaction for design of ultrastable metal nano-catalysts. Science, 374,1360–1365.
  • Hu, Q., Gao, K., Wang, X., Zheng, H., Cao, J., Mi, L., Huo, Q., Yang, H., Liu, J., He, C. (2022). Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nature Communications, 13,3958.
  • Kuang, Y.B.; Yang, F.L.; Feng, L.G. Advancements in ruthenium (Ru)-based heterostructure catalysts: Overcoming bottlenecks in catalysis for hydrogen evolution reaction. Adv. Energy Mater. 2024, 14, 2402043.
  • Li, L., Tian, F., Qiu, L., Wu, F., Yang, W., Yu, Y. (2023) Recent progress on ruthenium-based electrocatalysts towards the hydrogen evolution reaction. Catalysts, 13, 1497.
  • Li, J., Miró, R., Wrzesi´nska-Lashkova, A., Yu, J., Arbiol, J., Vaynzof, Y., Shavel, A., Lesnyak, V. (2024). Aqueous room-temperature synthesis of transition metal dichalcogenide nanoparticles: A sustainable route to efficient hydrogen evolution. Advance Functional Materials, 2404565
  • Lin, B.-L, Chen, X., Niu, B.-T., Lin, Y.-T., Chen, Y.-X., Lin, X.-M. (2024). The Research Progress of Ruthenium-Based Catalysts for the Alkaline Hydrogen Evolution Reaction in Water Electrolysis. Catalysts, 14, 671.
  • Luo W, Gan J, Huang Z, Chen W, Qian G, Zhou X, Duan X. (2019). HER performance of Pt-based catalysts immobilized on functionalized vulcan carbon by atomic layer deposition. Frontier Materials, 6:251.
  • Luo, W.J., Wang, Y.J., Cheng, C.W. (2020). Ru-based electrocatalysts for hydrogen evolution reaction: Recent research advances and perspectives. Material Today Physic, 15, 100274.
  • Medford, A. J., Vojvodic, A., Hummelshøj, J. S., Voss, J., Abild-Pedersen, F., Studt, F., Bligaard, T., Nilsson A., Nørskov, J. K., 2015. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis, Catalysis, 328, 36–42.
  • Mondal, A., Vomiero, A. (2022). 2D transition metal dichalcogenides-based electrocatalysts for hydrogen evolution reaction. Advance Functional Materials, 32, 2208994.
  • Paleo, A.J., Krause, B., Mendes, A.R., Tavares, C.J., Cerqueira, M.F., Muñoz, E., Pötschke, P. (2023). Comparative Thermoelectric Properties of Polypropylene Composites Melt-Processed Using Pyrograf® III Carbon Nanofibers. Journal of Composites Science.7, 173.
  • Yang, Y., Yu, Y., Li, J., Chen, Q., Du, Y., Rao, P., Li, R., Jia, C., Kang, Z., Deng, P., Shen, Y., Tian, X. (2021). Engineering Ruthenium-Based Electrocatalysts for Effective Hydrogen Evolution Reaction. Nano-Micro Letters,13, 160.
  • Yu, J., He, Q., Yang, G., Zhou, W., Shao, Z., Ni., Meng. (2019). Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catalysis, 9(11), 9973–10011.
  • Zhang, Z., Jiang, C., Li, P., Yao, K., Zhao, Z., Fan, J., Li, H., Wang, H. (2021). Ruthenium Dichalcogenides: Benchmarking Phases of Ruthenium Dichalcogenides for Electrocatalysis of Hydrogen Evolution: Theoretical and Experimental Insights. Small, 17(13), 2170056.
  • Zheng, Y., Jiao, Y., Zhu, Y., Li, L. H., Han, Y., Chen, Y., Jaroniec, M., Qiao, S.-Z. (2016). High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. Journal of the American Chemical Society, 138(49), 16174–16181.
  • Wei, C., Rao, R. R., Peng, J., Huang, B., Stephens, I. E. L., Risch, M., Xu, Z.J., Shao-Horn, Y. (2019). Recommended Practices and Benchmark Activity for Hydrogen and Oxygen Electrocatalysis in Water Splitting and Fuel Cells. Advanced Materials, 1806296.
  • Wu, H., Huang, Q., Shi, Y., Chang, J., Lu, S. (2023). Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Research, 16, 9142–9157.
There are 25 citations in total.

Details

Primary Language English
Subjects Catalytic Activity, Composite and Hybrid Materials
Journal Section Kimya / Chemistry
Authors

Mehtap Aygün Çağlar 0000-0003-2860-0908

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date February 27, 2025
Acceptance Date April 10, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Aygün Çağlar, M. (2025). RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes. Journal of the Institute of Science and Technology, 15(3), 1019-1031. https://doi.org/10.21597/jist.1647816
AMA Aygün Çağlar M. RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes. J. Inst. Sci. and Tech. September 2025;15(3):1019-1031. doi:10.21597/jist.1647816
Chicago Aygün Çağlar, Mehtap. “RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 1019-31. https://doi.org/10.21597/jist.1647816.
EndNote Aygün Çağlar M (September 1, 2025) RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes. Journal of the Institute of Science and Technology 15 3 1019–1031.
IEEE M. Aygün Çağlar, “RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 1019–1031, 2025, doi: 10.21597/jist.1647816.
ISNAD Aygün Çağlar, Mehtap. “RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes”. Journal of the Institute of Science and Technology 15/3 (September2025), 1019-1031. https://doi.org/10.21597/jist.1647816.
JAMA Aygün Çağlar M. RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes. J. Inst. Sci. and Tech. 2025;15:1019–1031.
MLA Aygün Çağlar, Mehtap. “RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 1019-31, doi:10.21597/jist.1647816.
Vancouver Aygün Çağlar M. RuTe2 Decorated Carbon Nanofiber Electrocatalyst Synthesized via a Sustainable Method for Electrochemical Hydrogen Evolution in Acidic and Alkaline Electrolytes. J. Inst. Sci. and Tech. 2025;15(3):1019-31.