Research Article
BibTex RIS Cite

Batman Kozluk'tan Çıkarılan Doğal Tuzun Beta Radyasyonuna Maruz Bırakılması Sonrası Termolüminesans Özellikleri ve Kinetik Parametrelerinin Araştırılması

Year 2025, Volume: 15 Issue: 3, 928 - 945, 01.09.2025
https://doi.org/10.21597/jist.1653500

Abstract

Bu mevcut araştırmada, buharlaştırma yöntemiyle elde edilen Kozluk doğal tuzunun termolüminesans özellikleri ve kinetik parametreleri araştırılmıştır. Bu amaçla, termolüminesans yöntemi kullanılmıştır. Kozluk doğal tuzu örneklerinin ışınlanması, Lexyg Smart TL/OSL okuyucu cihazında 90Sr/90Y β- kaynağı kullanılarak gerçekleştirilmiştir. Bu kaynak, örneğe saniyede 0.097 Gy doz hızı sağlar. 0.1 ila 10 Gy doz aralığında elde edilen TL ışıma eğrileri, 92 ve 205 °C civarında iki belirgin ana pik göstermektedir. Ayrıca, Tm-Tstop deneyinde yaklaşık 278 °C civarında başka bir belirgin pik gözlemlenmiştir. Malzemenin yeniden kullanılabilirliği, aynı koşullar altında 10 kez ışınlanarak gözlemlenmiş ve standart sapma %5'lik dozimetri limitleri içinde kalmıştır; bu da yüksek doğruluk ve güvenilirlik sağladığını göstermektedir. TL kinetik parametreleri, başlangıç artış (IR), farklı ısıtma hızları (VHR), Tm-Tstop ve bilgisayarla ışıma eğrisi ayrıştırma (CGCD) yöntemleri kullanılarak hesaplanmıştır. CGCD analizi ile tüm TL ışıma eğrisinin en az dokuz enerji basamağından oluştuğu öngörülmüştür. CGCD analizinden elde edilen Merit Katsayısı (FOM) %0.61 olarak bulunmuş olup, bu da deneysel ve teorik veriler arasında iyi bir uyum olduğunu göstermektedir.

Thanks

Yazar, tüm laboratuvar olanakları konusunda verdiği değerli desteklerden dolayı Prof. Dr. Mustafa TOPAKSU'ya (Çukurova Üniversitesi, Fizik Bölümü) büyük teşekkürlerini sunmak ister.

References

  • Ademola, J. A. (2017). Luminescence properties of common salt (NaCl) available in Nigeria for use as accident dosimeter in radiological emergency situation. Journal of Radiation Research and Applied Sciences, 10(2), 117-121.
  • Ahmad, K., Kakakhel, M. B., Hayat, S., Wazir‐ud‐Din, M., Mahmood, M. M., ur‐Rehman, S., ... & Mirza, S. M. (2022). Dosimetric properties of thermoluminescent NaCl pellets from Khewra salt mines, Pakistan. Luminescence, 37(10), 1701-1709.
  • Anjum, M. I., ur Rehman, S., Kakakhel, M. B., Siddique, M. T., Mahmood, M. M., Hayat, S., & Ahmad, K. (2022). Thermoluminescence study of Pink Himalayan salt from Khewra mines, Pakistan. Journal of Luminescence, 252, 119329.
  • Avci, H., Oglakci, M., Bulcar, K., & Alma, M. H. (2024). An investigation on thermoluminescence properties and kinetic parameters of Çankırı rock salt. Radiation Physics and Chemistry, 225, 112151.
  • Azim, M. M., Sani, S. A., Daar, E., Khandaker, M. U., Almugren, K. S., Alkallas, F. H., & Bradley, D. A. (2020). Luminescence properties of natural dead sea salt pellet dosimetry upon thermal stimulation. Radiation Physics and Chemistry, 176, 108964.
  • Bailey, R. M., Adamiec, G., & Rhodes, E. J. (2000). OSL properties of NaCl relative to dating and dosimetry. Radiation Measurements, 32(5-6), 717-723.
  • Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389-395.
  • Bohun, A. (1954). Thermoemission und photoemission von natriumchlorid. Cechoslovackij fiziceskij zurnal, 4(1), 91-93.
  • Booth, A. H. (1954). Calculation of electron trap depths from thermoluminescence maxima. Canadian Journal of Chemistry, 32(2), 214-215.
  • Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1-2), 3-28.
  • Bulcar, K., Oglakci, M., Hakami, J., Topaksu, M. U. S. T. A. F. A., Can, N., & Alma, M. H. (2022). Kinetic parameters and anomalies in heating rate effects of the thermoluminescence from rock salt from Tuzluca in Turkey. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 523, 8-15.
  • Chen, R., & Kirsh, Y. (1981). The analysis of thermally stimulated processes. Oxford: Pergamon Press.
  • Chen, R., & Pagonis, V. (2017). A model explaining the anomalous heating-rate effect in thermoluminescence as an inverse thermal quenching based on simultaneous thermal release of electrons and holes. Radiation Measurements, 106, 20-25.
  • Chen, R., & Winer, S. A. A. (1970). Effects of various heating rates on glow curves. Journal of applied physics, 41(13), 5227-5232.
  • Christiansson, M., Bernhardsson, C., Geber-Bergstrand, T., Mattsson, S., & Rääf, C. L. (2014). Household salt for retrospective dose assessments using OSL: signal integrity and its dependence on containment, sample collection, and signal readout. Radiation and environmental biophysics, 53, 559-569.
  • De Galan, L., Erkelens, C., Jongeriu. C, Maertens, W., & Mooring, C. I. (1973). Determination of Traces of Impurities In High-Purity Sodium-Chloride by Differential Pulse Polarography and Flame Spectrometry. Fresenius Zeitschrift Fur Analytische Chemie, 264(2), 173-176.
  • Ekendahl, D., & Judas, L. (2011). NaCl as a retrospective and accident dosemeter. Radiation Protection Dosimetry, 145(1), 36-44.
  • Elashmawy, M. (2018). Study of constraints in using household NaCl salt for retrospective dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 423, 49-61.
  • Furetta, C. (2003). Handbook of thermoluminescence. World Scientific.
  • Garlick, G.F.J., Gibson, A.F., (1948). The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proceedings of the Physical Society, 60, 574–590. https://doi.org/ 10.1088/0959-5309/60/6/308.
  • Gartia, R. K., Sharma, B. A., & Ranita, U. (2004). Thermoluminescence response of some common brands of iodised salt. Indian Journal of Engineering Materials Science, 11, 137-142.
  • Geertman, R. M. (2000). Sodium chloride: crystallization. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 4127-4134.
  • Gonzales-Lorenzo, C. D., Callo-Escobar, D. J., Ccollque-Quispe, A. A., Rao, T. G., Aragón, F. F. H., Aquino, J. C. R., ... & Cano, N. F. (2022). Effect of annealing temperature on the structural, thermoluminescent, and optical properties of naturally present salt from Lluta region of Peru. Optical Materials, 126, 112215.
  • Hoogenstraaten, W. (1958). Electron traps in zinc sulphide phosphors. Philips Research Report, 13, 515-693.
  • Hunter, P. G., Spooner, N. A., Smith, B. W., & Creighton, D. F. (2012). Investigation of emission spectra, dose response and stability of luminescence from NaCl. Radiation measurements, 47(9), 820-824.
  • Khamis, F., & Arafah, D. E. (2021). Dead Seasalt as a thermoluminescent phosphor for beta irradiation dosimetry. Applied Physics A, 127(7), 539.
  • Kitis, G., & Tuyn, J. W. N. (1998). A simple method to correct for the temperature lag in TL glow-curve measurements. Journal of Physics D: Applied Physics, 31(16), 2065.
  • Kitis, G., Furetta, C., Prokic, M., & Prokic, V. (2000). Kinetic parameters of some tissue equivalent thermoluminescencematerials. Journal of Physics D: Applied Physics, 33(11), 1252.
  • M. Gómez Ros, J., & Kitis, G. (2002). Computerised glow curve deconvolution using general and mixed order kinetics. Radiation protection dosimetry, 101(1-4), 47-52.
  • Mandowski, A. (2004). Semi-localized transitions model for thermoluminescence. Journal of Physics D: Applied Physics, 38(1), 17.
  • Mandowski, A., & Bos, A. J. J. (2011). Explanation of anomalous heating rate dependence of thermoluminescence in YPO4: Ce3+, Sm3+ based on the semi-localized transition (SLT) model. Radiation measurements, 46(12), 1376-1379.
  • McKeever, S. W. (1980). On the analysis of complex thermoluminescence. Glow‐curves: Resolution into individual peaks. Physica status solidi (a), 62(1), 331-340.
  • McKeever, S. W. (1985). Thermoluminescence of solids (Vol. 3). Cambridge university press.
  • Mesterházy, D., Osvay, M., Kovács, A., & Kelemen, A. (2012). Accidental and retrospective dosimetry using TL method. Radiation Physics and Chemistry, 81(9), 1525-1527.
  • Misra, S. K., & Eddy, N. W. (1979). IFOM, a formula for universal assessment of goodness-of-fit of gamma ray spectra. Nuclear Instruments and Methods, 166(3), 537-540.
  • Murthy, K. V. R., Pallavi, S. P., Rahul, G., Patel, Y. S., Sai Prasad, A. S., & Elangovan, D. (2006). Thermoluminescence dosimetric characteristics of beta irradiated salt. Radiation protection dosimetry, 119(1-4), 350-352.
  • Ogundare, F. O., & Mashaba, M. (2025). Thermal enhancement and optical bleaching of thermoluminescence emissions from halite. Physica B: Condensed Matter, 699, 416832.
  • Pagonis, V., Blohm, L., Brengle, M., Mayonado, G., & Woglam, P. (2013). Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model. Radiation measurements, 51, 40-47.
  • Pagonis, V., Kitis, G., & Furetta, C. (2006). Numerical and practical exercises in thermoluminescence. Springer Science & Business Media.
  • Parfianovitch, I. A. (1954). The determination of the depth of electron traps in crystal phosphors. J. Exp. Theor. Phys. SSR, 26, 696.
  • Peng, J., Dong, Z., & Han, F. (2016). tgcd: An R package for analyzing thermoluminescence glow curves. SoftwareX, 5, 112-120.
  • Polymeris, G. S., Kitis, G., Kiyak, N. G., Sfamba, I., Subedi, B., & Pagonis, V. (2011). Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry. Applied Radiation and Isotopes, 69(9), 1255-1262.
  • Poole, R. T., Jenkin, J. G., Liesegang, J., & Leckey, R. C. G. (1975). Electronic band structure of the alkali halides. I. Experimental parameters. Physical Review B, 11(12), 5179.
  • Richter, D., Richter, A., & Dornich, K. (2015). Lexsyg smart-a luminescence detection system for dosimetry, material research and dating application. Geochronometria, 42(1), 202-209.
  • Rodriguez-Lazcano, Y., Correcher, V., & Garcia-Guinea, J. (2012). Luminescence emission of natural NaCl. Radiation Physics and Chemistry, 81(2), 126-130.
  • Singh, A. K., Menon, S. N., Kadam, S. Y., Koul, D. K., & Datta, D. (2018). OSL properties of three commonly available salt brands in India for its use in accident dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 419, 38-43.
  • Spooner, N. A., Smith, B. W., Creighton, D. F., Questiaux, D., & Hunter, P. G. (2012). Luminescence from NaCl for application to retrospective dosimetry. Radiation Measurements, 47(9), 883-889.
  • Spooner, N. A., Smith, B. W., Williams, O. M., Creighton, D. F., McCulloch, I., Hunter, P. G., ... & Prescott, J. R. (2011). Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry. Radiation Measurements, 46(12), 1856-1861.
  • Ullah, B., Kakakhel, M. B., Rehman, S. U., Siddique, M. T., Ahmad, K., Mahmood, M. M., & Anjum, I. (2024). Thermoluminescence dosimetric characteristics and glow curve analysis of Eocene rock salt, the gray halite, mined from Bahadur Khel site, Pakistan. Journal of Luminescence, 271, 120622.
  • Wahib, N. B., Abdul Sani, S. F., Ramli, A., Ismail, S. S., Abdul Jabar, M. H., Khandaker, M. U., ... & Bradley, D. A. (2020). Natural dead sea salt and retrospective dosimetry. Radiation and environmental biophysics, 59, 523-537.
  • Yüce, Ü. R., & Engin, B. (2017). Effect of particle size on the thermoluminescence dosimetric properties of household salt. Radiation Measurements, 102, 1-9.

Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation

Year 2025, Volume: 15 Issue: 3, 928 - 945, 01.09.2025
https://doi.org/10.21597/jist.1653500

Abstract

In the present research, thermoluminescence properties and kinetic parameters of Kozluk natural salt obtained by the evaporation method were investigated. The irradiation of the Kozluk natural salt samples was carried out using a 90Sr/90Y β source in the Lexyg Smart TL/OSL reader device. This source provides a dose rate of 0.097 Gy per second to the sample. The TL glow curves obtained in the dose interval of 0.1 to 10 Gy show two distinct main peaks around 92 and 205°C. The dose-response relationship of the material exhibited super-linear characteristics in the 0.1–10 Gy range, as indicated by a slope of 1.1921. The reusability of the material was observed by irradiating 10 times under the same conditions, with the standard deviation remaining within the 5% dosimetric limit; this indicates that it provides high accuracy and reliability. The TL kinetic parameters were determined using the initial rise (IR), various heating rates (VHR), Tm-Tstop, and computerized glow curve deconvolution (CGCD) methods. It has been predicted that the entire TL glow curve consists of at least nine energy levels according to the CGCD analysis. The Figure of Merit (F.O.M), derived from the CGCD analysis, was 0.61%, demonstrating a good agreement between the experimental and theoretical data.

Thanks

The author would like to express great appreciation to Prof. Dr. Mustafa TOPAKSU (Çukurova University, Department of Physics) for his valuable support regarding all laboratory facilities.

References

  • Ademola, J. A. (2017). Luminescence properties of common salt (NaCl) available in Nigeria for use as accident dosimeter in radiological emergency situation. Journal of Radiation Research and Applied Sciences, 10(2), 117-121.
  • Ahmad, K., Kakakhel, M. B., Hayat, S., Wazir‐ud‐Din, M., Mahmood, M. M., ur‐Rehman, S., ... & Mirza, S. M. (2022). Dosimetric properties of thermoluminescent NaCl pellets from Khewra salt mines, Pakistan. Luminescence, 37(10), 1701-1709.
  • Anjum, M. I., ur Rehman, S., Kakakhel, M. B., Siddique, M. T., Mahmood, M. M., Hayat, S., & Ahmad, K. (2022). Thermoluminescence study of Pink Himalayan salt from Khewra mines, Pakistan. Journal of Luminescence, 252, 119329.
  • Avci, H., Oglakci, M., Bulcar, K., & Alma, M. H. (2024). An investigation on thermoluminescence properties and kinetic parameters of Çankırı rock salt. Radiation Physics and Chemistry, 225, 112151.
  • Azim, M. M., Sani, S. A., Daar, E., Khandaker, M. U., Almugren, K. S., Alkallas, F. H., & Bradley, D. A. (2020). Luminescence properties of natural dead sea salt pellet dosimetry upon thermal stimulation. Radiation Physics and Chemistry, 176, 108964.
  • Bailey, R. M., Adamiec, G., & Rhodes, E. J. (2000). OSL properties of NaCl relative to dating and dosimetry. Radiation Measurements, 32(5-6), 717-723.
  • Balian, H. G., & Eddy, N. W. (1977). Figure-of-merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness-of-fit of gamma-ray spectral peaks. Nuclear Instruments and Methods, 145(2), 389-395.
  • Bohun, A. (1954). Thermoemission und photoemission von natriumchlorid. Cechoslovackij fiziceskij zurnal, 4(1), 91-93.
  • Booth, A. H. (1954). Calculation of electron trap depths from thermoluminescence maxima. Canadian Journal of Chemistry, 32(2), 214-215.
  • Bos, A. J. J. (2001). High sensitivity thermoluminescence dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1-2), 3-28.
  • Bulcar, K., Oglakci, M., Hakami, J., Topaksu, M. U. S. T. A. F. A., Can, N., & Alma, M. H. (2022). Kinetic parameters and anomalies in heating rate effects of the thermoluminescence from rock salt from Tuzluca in Turkey. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 523, 8-15.
  • Chen, R., & Kirsh, Y. (1981). The analysis of thermally stimulated processes. Oxford: Pergamon Press.
  • Chen, R., & Pagonis, V. (2017). A model explaining the anomalous heating-rate effect in thermoluminescence as an inverse thermal quenching based on simultaneous thermal release of electrons and holes. Radiation Measurements, 106, 20-25.
  • Chen, R., & Winer, S. A. A. (1970). Effects of various heating rates on glow curves. Journal of applied physics, 41(13), 5227-5232.
  • Christiansson, M., Bernhardsson, C., Geber-Bergstrand, T., Mattsson, S., & Rääf, C. L. (2014). Household salt for retrospective dose assessments using OSL: signal integrity and its dependence on containment, sample collection, and signal readout. Radiation and environmental biophysics, 53, 559-569.
  • De Galan, L., Erkelens, C., Jongeriu. C, Maertens, W., & Mooring, C. I. (1973). Determination of Traces of Impurities In High-Purity Sodium-Chloride by Differential Pulse Polarography and Flame Spectrometry. Fresenius Zeitschrift Fur Analytische Chemie, 264(2), 173-176.
  • Ekendahl, D., & Judas, L. (2011). NaCl as a retrospective and accident dosemeter. Radiation Protection Dosimetry, 145(1), 36-44.
  • Elashmawy, M. (2018). Study of constraints in using household NaCl salt for retrospective dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 423, 49-61.
  • Furetta, C. (2003). Handbook of thermoluminescence. World Scientific.
  • Garlick, G.F.J., Gibson, A.F., (1948). The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proceedings of the Physical Society, 60, 574–590. https://doi.org/ 10.1088/0959-5309/60/6/308.
  • Gartia, R. K., Sharma, B. A., & Ranita, U. (2004). Thermoluminescence response of some common brands of iodised salt. Indian Journal of Engineering Materials Science, 11, 137-142.
  • Geertman, R. M. (2000). Sodium chloride: crystallization. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 4127-4134.
  • Gonzales-Lorenzo, C. D., Callo-Escobar, D. J., Ccollque-Quispe, A. A., Rao, T. G., Aragón, F. F. H., Aquino, J. C. R., ... & Cano, N. F. (2022). Effect of annealing temperature on the structural, thermoluminescent, and optical properties of naturally present salt from Lluta region of Peru. Optical Materials, 126, 112215.
  • Hoogenstraaten, W. (1958). Electron traps in zinc sulphide phosphors. Philips Research Report, 13, 515-693.
  • Hunter, P. G., Spooner, N. A., Smith, B. W., & Creighton, D. F. (2012). Investigation of emission spectra, dose response and stability of luminescence from NaCl. Radiation measurements, 47(9), 820-824.
  • Khamis, F., & Arafah, D. E. (2021). Dead Seasalt as a thermoluminescent phosphor for beta irradiation dosimetry. Applied Physics A, 127(7), 539.
  • Kitis, G., & Tuyn, J. W. N. (1998). A simple method to correct for the temperature lag in TL glow-curve measurements. Journal of Physics D: Applied Physics, 31(16), 2065.
  • Kitis, G., Furetta, C., Prokic, M., & Prokic, V. (2000). Kinetic parameters of some tissue equivalent thermoluminescencematerials. Journal of Physics D: Applied Physics, 33(11), 1252.
  • M. Gómez Ros, J., & Kitis, G. (2002). Computerised glow curve deconvolution using general and mixed order kinetics. Radiation protection dosimetry, 101(1-4), 47-52.
  • Mandowski, A. (2004). Semi-localized transitions model for thermoluminescence. Journal of Physics D: Applied Physics, 38(1), 17.
  • Mandowski, A., & Bos, A. J. J. (2011). Explanation of anomalous heating rate dependence of thermoluminescence in YPO4: Ce3+, Sm3+ based on the semi-localized transition (SLT) model. Radiation measurements, 46(12), 1376-1379.
  • McKeever, S. W. (1980). On the analysis of complex thermoluminescence. Glow‐curves: Resolution into individual peaks. Physica status solidi (a), 62(1), 331-340.
  • McKeever, S. W. (1985). Thermoluminescence of solids (Vol. 3). Cambridge university press.
  • Mesterházy, D., Osvay, M., Kovács, A., & Kelemen, A. (2012). Accidental and retrospective dosimetry using TL method. Radiation Physics and Chemistry, 81(9), 1525-1527.
  • Misra, S. K., & Eddy, N. W. (1979). IFOM, a formula for universal assessment of goodness-of-fit of gamma ray spectra. Nuclear Instruments and Methods, 166(3), 537-540.
  • Murthy, K. V. R., Pallavi, S. P., Rahul, G., Patel, Y. S., Sai Prasad, A. S., & Elangovan, D. (2006). Thermoluminescence dosimetric characteristics of beta irradiated salt. Radiation protection dosimetry, 119(1-4), 350-352.
  • Ogundare, F. O., & Mashaba, M. (2025). Thermal enhancement and optical bleaching of thermoluminescence emissions from halite. Physica B: Condensed Matter, 699, 416832.
  • Pagonis, V., Blohm, L., Brengle, M., Mayonado, G., & Woglam, P. (2013). Anomalous heating rate effect in thermoluminescence intensity using a simplified semi-localized transition (SLT) model. Radiation measurements, 51, 40-47.
  • Pagonis, V., Kitis, G., & Furetta, C. (2006). Numerical and practical exercises in thermoluminescence. Springer Science & Business Media.
  • Parfianovitch, I. A. (1954). The determination of the depth of electron traps in crystal phosphors. J. Exp. Theor. Phys. SSR, 26, 696.
  • Peng, J., Dong, Z., & Han, F. (2016). tgcd: An R package for analyzing thermoluminescence glow curves. SoftwareX, 5, 112-120.
  • Polymeris, G. S., Kitis, G., Kiyak, N. G., Sfamba, I., Subedi, B., & Pagonis, V. (2011). Dissolution and subsequent re-crystallization as zeroing mechanism, thermal properties and component resolved dose response of salt (NaCl) for retrospective dosimetry. Applied Radiation and Isotopes, 69(9), 1255-1262.
  • Poole, R. T., Jenkin, J. G., Liesegang, J., & Leckey, R. C. G. (1975). Electronic band structure of the alkali halides. I. Experimental parameters. Physical Review B, 11(12), 5179.
  • Richter, D., Richter, A., & Dornich, K. (2015). Lexsyg smart-a luminescence detection system for dosimetry, material research and dating application. Geochronometria, 42(1), 202-209.
  • Rodriguez-Lazcano, Y., Correcher, V., & Garcia-Guinea, J. (2012). Luminescence emission of natural NaCl. Radiation Physics and Chemistry, 81(2), 126-130.
  • Singh, A. K., Menon, S. N., Kadam, S. Y., Koul, D. K., & Datta, D. (2018). OSL properties of three commonly available salt brands in India for its use in accident dosimetry. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 419, 38-43.
  • Spooner, N. A., Smith, B. W., Creighton, D. F., Questiaux, D., & Hunter, P. G. (2012). Luminescence from NaCl for application to retrospective dosimetry. Radiation Measurements, 47(9), 883-889.
  • Spooner, N. A., Smith, B. W., Williams, O. M., Creighton, D. F., McCulloch, I., Hunter, P. G., ... & Prescott, J. R. (2011). Analysis of luminescence from common salt (NaCl) for application to retrospective dosimetry. Radiation Measurements, 46(12), 1856-1861.
  • Ullah, B., Kakakhel, M. B., Rehman, S. U., Siddique, M. T., Ahmad, K., Mahmood, M. M., & Anjum, I. (2024). Thermoluminescence dosimetric characteristics and glow curve analysis of Eocene rock salt, the gray halite, mined from Bahadur Khel site, Pakistan. Journal of Luminescence, 271, 120622.
  • Wahib, N. B., Abdul Sani, S. F., Ramli, A., Ismail, S. S., Abdul Jabar, M. H., Khandaker, M. U., ... & Bradley, D. A. (2020). Natural dead sea salt and retrospective dosimetry. Radiation and environmental biophysics, 59, 523-537.
  • Yüce, Ü. R., & Engin, B. (2017). Effect of particle size on the thermoluminescence dosimetric properties of household salt. Radiation Measurements, 102, 1-9.
There are 51 citations in total.

Details

Primary Language English
Subjects Classical Physics (Other)
Journal Section Fizik / Physics
Authors

Kenan Bulcar 0000-0002-6298-4223

Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date March 7, 2025
Acceptance Date June 5, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Bulcar, K. (2025). Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation. Journal of the Institute of Science and Technology, 15(3), 928-945. https://doi.org/10.21597/jist.1653500
AMA Bulcar K. Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation. J. Inst. Sci. and Tech. September 2025;15(3):928-945. doi:10.21597/jist.1653500
Chicago Bulcar, Kenan. “Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman After Exposure to Beta Radiation”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 928-45. https://doi.org/10.21597/jist.1653500.
EndNote Bulcar K (September 1, 2025) Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation. Journal of the Institute of Science and Technology 15 3 928–945.
IEEE K. Bulcar, “Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 928–945, 2025, doi: 10.21597/jist.1653500.
ISNAD Bulcar, Kenan. “Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman After Exposure to Beta Radiation”. Journal of the Institute of Science and Technology 15/3 (September2025), 928-945. https://doi.org/10.21597/jist.1653500.
JAMA Bulcar K. Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation. J. Inst. Sci. and Tech. 2025;15:928–945.
MLA Bulcar, Kenan. “Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman After Exposure to Beta Radiation”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 928-45, doi:10.21597/jist.1653500.
Vancouver Bulcar K. Investigation of the Thermoluminescence Properties and Kinetic Parameters of Natural Salt Extracted from Kozluk, Batman after Exposure to Beta Radiation. J. Inst. Sci. and Tech. 2025;15(3):928-45.