Research Article
BibTex RIS Cite

Geopolymer Synthesis from Volcanic Ash Activated via Alkali-Fusion

Year 2025, Volume: 15 Issue: 3, 975 - 985, 01.09.2025
https://doi.org/10.21597/jist.1719251

Abstract

In this study, the usability and effectiveness of alkali-fused volcanic ashes as powder binders in geopolymer production were investigated. For this purpose, volcanic ash was mixed with powdered NaOH at predetermined ratios and subjected to high-temperature alkali fusion. The weight ratios of NaOH to volcanic ash were set at 0.6, 0.8, and 1.0. For each ratio, calcination was carried out separately at 550 °C and 700 °C, resulting in six different alkali-fused volcanic ashes. Geopolymer mortars were then produced using these materials. The alkali fusion process significantly disrupted the crystalline structures in volcanic ash and led to the formation of amorphous phases. Although the reactivity of volcanic ash increased through alkali fusion, the compressive strength of the resulting geopolymers did not improve.

Project Number

223M326

References

  • Chen, C., Sasaki K., Tian Q., Zhang H. (2023). Effect of alkali fusion methods on the preparation of one-part geopolymer from coal gasification slag. ACS omega, 8: 39366-75.
  • Demir, F., Derun E. M. (2019). Response surface methodology application to fly ash based geopolymer synthesized by alkali fusion method. Journal of Non-Crystalline Solids, 524: 119649.
  • Demirel, M., Karaaslan C. (2024). Effect of Calcination Temperature and Duration on the Compressive Strength and Water Resistance of Volcanic Ash-Based Geopolymer Mortars. 4. International Eurasia Congress of Building Materials, Architecture and Engineering Sciences. Adana: IKSAD Publications.
  • Djobo, J N Y., Elimbi A., Tchakouté H K., Kumar S. (2017). Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environmental Science and Pollution Research, 24: 4433-46.
  • Djobo, J N Y., Stephan D., Elimbi A. (2020). Setting and hardening behavior of volcanic ash phosphate cement. Journal of Building Engineering, 31: 101427.
  • Djobo, J N Y., Tome S. (2024). Insights into alkali and acid-activated volcanic ash-based materials: A review. Cement Concrete Composites: 105660.
  • Feng, D., Provis J L., van Deventer J S. (2012). Thermal activation of albite for the synthesis of one‐part mix geopolymers. Journal of the American Ceramic Society, 95: 565-72.
  • Karaaslan, C. (2025). Unary, binary and ternary use of slag, nano-CaCO3, and cement to enhance freeze-thaw durability in fly ash-based geopolymer concretes. Journal of Building Engineering, 99: 111631.
  • Karaaslan, C., Yener E., Bağatur T., Polat R. (2022a). Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. Journal of Building Engineering, 59: 105110.
  • Karaaslan, C., Yener E., Bağatur T., Polat R., Gül R., Alma M H. (2022b). Synergic effect of fly ash and calcium aluminate cement on the properties of pumice-based geopolymer mortar. Construction and building materials, 345: 128397.
  • Ke, X., Bernal S A., Ye N., Provis J L., Yang J. (2015). One‐part geopolymers based on thermally treated red mud/NaOH blends. Journal of the American Ceramic Society, 98: 5-11.
  • Missota Priso Dickson, B., Dika Manga J., Pougnong T E., Baenla J., Ndongo Ebongue L., Elimbi A. (2022). Effects of kinetic parameters on initial setting time, microstructure and mechanical strength of volcanic ash-based phosphate inorganic polymers. Silicon: 1-13.
  • Moukannaa, S., Nazari A., Bagheri A., Loutou M., Sanjayan J., Hakkou R. (2019). Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. Journal of Non-Crystalline Solids, 511: 76-85.
  • Ndjock, B D L., Robayo-Salazar R., de Gutiérrez R M., Baenla J., Mbey J., Cyr M., Elimbi A. (2021). Phosphoric acid activation of volcanic ashes: Influence of the molar ratio R=(MgO+ CaO)/P2O5 on reactivity of volcanic ash and strength of obtained cementitious material. Journal of Building Engineering, 33: 101879.
  • Ojha, K., Pradhan N C., Samanta A N. (2004). Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science, 27: 555-64.
  • Pougnong, T E., Belibi P D B., Baenla J., Thamer A., Tiffo E., Elimbi A. (2022). Effects of chemical composition of amorphous phase on the reactivity of phosphoric acid activation of volcanic ashes. Journal of Non-Crystalline Solids, 575: 121213.
  • Tchadjié, L., Djobo J., Ranjbar N., Tchakouté H., Kenne B D., Elimbi A., Njopwouo D. (2016). Potential of using granite waste as raw material for geopolymer synthesis. Ceramics international, 42: 3046-55.
  • Tchakoute, H K., Elimbi A., Kenne B D., Mbey J., Njopwouo D. (2013). Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceramics international, 39: 269-76.
  • Tchakouté, H K., Kong S., Djobo J N Y., Tchadjié L N., Njopwouo D. (2015). A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceramics international, 41: 12568-77.
  • TS-EN-196-1. 2016. "Çimento deney metotları - Bölüm 1: Dayanım tayini (Methods of testing cement - Part 1: Determination of strength)." In. Ankara-Turkey: TSE.
  • Xu, H., Li Q., Shen L., Zhang M., Zhai J. (2010). Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Management, 30: 57-62.

Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi

Year 2025, Volume: 15 Issue: 3, 975 - 985, 01.09.2025
https://doi.org/10.21597/jist.1719251

Abstract

Bu çalışmada, alkali-füzyon işlemine tabi tutulan volkanik küllerin geopolimer üretiminde toz bağlayıcı olarak kullanılabilirliği ve bu yöntemin etkinliği araştırılmıştır. Bu kapsamda, volkanik kül ile toz haline getirilmiş NaOH belirli oranlarda karıştırılarak yüksek sıcaklıkta alkali-füzyon işlemi uygulanmıştır. NaOH’nin volkanik küle ağırlıkça oranı 0.6, 0.8 ve 1.0 olarak belirlenmiştir. Her oran için kalsinasyon işlemi 550 °C ve 700 °C sıcaklıklarda ayrı ayrı gerçekleştirilmiştir. Böylece toplam altı farklı alkali-füzyona uğramış volkanik kül elde edilmiştir. Elde edilen bu volkanik küller kullanılarak geopolimer harçlar üretilmiştir. Alkali-füzyon ile volkanik küldeki kristal yapılar önemli oranlarda kırılmakta ve amorf fazlar oluşmaktadır. Alkali-füzyon ile volkanik küllerin reaktivitesi artmasına karşın bu malzemeler ile üretilen geopolimerlerin basınç dayanımı, iyileşmemektedir.

Project Number

223M326

Thanks

Bu çalışma, 223M326 numaralı TÜBİTAK Projesi tarafından desteklenmiştir.

References

  • Chen, C., Sasaki K., Tian Q., Zhang H. (2023). Effect of alkali fusion methods on the preparation of one-part geopolymer from coal gasification slag. ACS omega, 8: 39366-75.
  • Demir, F., Derun E. M. (2019). Response surface methodology application to fly ash based geopolymer synthesized by alkali fusion method. Journal of Non-Crystalline Solids, 524: 119649.
  • Demirel, M., Karaaslan C. (2024). Effect of Calcination Temperature and Duration on the Compressive Strength and Water Resistance of Volcanic Ash-Based Geopolymer Mortars. 4. International Eurasia Congress of Building Materials, Architecture and Engineering Sciences. Adana: IKSAD Publications.
  • Djobo, J N Y., Elimbi A., Tchakouté H K., Kumar S. (2017). Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives. Environmental Science and Pollution Research, 24: 4433-46.
  • Djobo, J N Y., Stephan D., Elimbi A. (2020). Setting and hardening behavior of volcanic ash phosphate cement. Journal of Building Engineering, 31: 101427.
  • Djobo, J N Y., Tome S. (2024). Insights into alkali and acid-activated volcanic ash-based materials: A review. Cement Concrete Composites: 105660.
  • Feng, D., Provis J L., van Deventer J S. (2012). Thermal activation of albite for the synthesis of one‐part mix geopolymers. Journal of the American Ceramic Society, 95: 565-72.
  • Karaaslan, C. (2025). Unary, binary and ternary use of slag, nano-CaCO3, and cement to enhance freeze-thaw durability in fly ash-based geopolymer concretes. Journal of Building Engineering, 99: 111631.
  • Karaaslan, C., Yener E., Bağatur T., Polat R. (2022a). Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. Journal of Building Engineering, 59: 105110.
  • Karaaslan, C., Yener E., Bağatur T., Polat R., Gül R., Alma M H. (2022b). Synergic effect of fly ash and calcium aluminate cement on the properties of pumice-based geopolymer mortar. Construction and building materials, 345: 128397.
  • Ke, X., Bernal S A., Ye N., Provis J L., Yang J. (2015). One‐part geopolymers based on thermally treated red mud/NaOH blends. Journal of the American Ceramic Society, 98: 5-11.
  • Missota Priso Dickson, B., Dika Manga J., Pougnong T E., Baenla J., Ndongo Ebongue L., Elimbi A. (2022). Effects of kinetic parameters on initial setting time, microstructure and mechanical strength of volcanic ash-based phosphate inorganic polymers. Silicon: 1-13.
  • Moukannaa, S., Nazari A., Bagheri A., Loutou M., Sanjayan J., Hakkou R. (2019). Alkaline fused phosphate mine tailings for geopolymer mortar synthesis: Thermal stability, mechanical and microstructural properties. Journal of Non-Crystalline Solids, 511: 76-85.
  • Ndjock, B D L., Robayo-Salazar R., de Gutiérrez R M., Baenla J., Mbey J., Cyr M., Elimbi A. (2021). Phosphoric acid activation of volcanic ashes: Influence of the molar ratio R=(MgO+ CaO)/P2O5 on reactivity of volcanic ash and strength of obtained cementitious material. Journal of Building Engineering, 33: 101879.
  • Ojha, K., Pradhan N C., Samanta A N. (2004). Zeolite from fly ash: synthesis and characterization. Bulletin of Materials Science, 27: 555-64.
  • Pougnong, T E., Belibi P D B., Baenla J., Thamer A., Tiffo E., Elimbi A. (2022). Effects of chemical composition of amorphous phase on the reactivity of phosphoric acid activation of volcanic ashes. Journal of Non-Crystalline Solids, 575: 121213.
  • Tchadjié, L., Djobo J., Ranjbar N., Tchakouté H., Kenne B D., Elimbi A., Njopwouo D. (2016). Potential of using granite waste as raw material for geopolymer synthesis. Ceramics international, 42: 3046-55.
  • Tchakoute, H K., Elimbi A., Kenne B D., Mbey J., Njopwouo D. (2013). Synthesis of geopolymers from volcanic ash via the alkaline fusion method: Effect of Al2O3/Na2O molar ratio of soda–volcanic ash. Ceramics international, 39: 269-76.
  • Tchakouté, H K., Kong S., Djobo J N Y., Tchadjié L N., Njopwouo D. (2015). A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity. Ceramics international, 41: 12568-77.
  • TS-EN-196-1. 2016. "Çimento deney metotları - Bölüm 1: Dayanım tayini (Methods of testing cement - Part 1: Determination of strength)." In. Ankara-Turkey: TSE.
  • Xu, H., Li Q., Shen L., Zhang M., Zhai J. (2010). Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis. Waste Management, 30: 57-62.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Construction Materials
Journal Section İnşaat Mühendisliği / Civil Engineering
Authors

Merve Demirel 0009-0000-1207-2333

Cemal Karaaslan 0000-0002-8993-7566

Project Number 223M326
Early Pub Date August 31, 2025
Publication Date September 1, 2025
Submission Date June 13, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

APA Demirel, M., & Karaaslan, C. (2025). Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi. Journal of the Institute of Science and Technology, 15(3), 975-985. https://doi.org/10.21597/jist.1719251
AMA Demirel M, Karaaslan C. Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi. J. Inst. Sci. and Tech. September 2025;15(3):975-985. doi:10.21597/jist.1719251
Chicago Demirel, Merve, and Cemal Karaaslan. “Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller Ile Geopolimer Üretimi”. Journal of the Institute of Science and Technology 15, no. 3 (September 2025): 975-85. https://doi.org/10.21597/jist.1719251.
EndNote Demirel M, Karaaslan C (September 1, 2025) Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi. Journal of the Institute of Science and Technology 15 3 975–985.
IEEE M. Demirel and C. Karaaslan, “Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi”, J. Inst. Sci. and Tech., vol. 15, no. 3, pp. 975–985, 2025, doi: 10.21597/jist.1719251.
ISNAD Demirel, Merve - Karaaslan, Cemal. “Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller Ile Geopolimer Üretimi”. Journal of the Institute of Science and Technology 15/3 (September2025), 975-985. https://doi.org/10.21597/jist.1719251.
JAMA Demirel M, Karaaslan C. Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi. J. Inst. Sci. and Tech. 2025;15:975–985.
MLA Demirel, Merve and Cemal Karaaslan. “Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller Ile Geopolimer Üretimi”. Journal of the Institute of Science and Technology, vol. 15, no. 3, 2025, pp. 975-8, doi:10.21597/jist.1719251.
Vancouver Demirel M, Karaaslan C. Alkali-Füzyon Yöntemiyle Aktive Edilen Volkanik Küller ile Geopolimer Üretimi. J. Inst. Sci. and Tech. 2025;15(3):975-8.