Research Article
BibTex RIS Cite

Çanakkale İli Zeytin Karasu ve Pirina Atıklarının Endüstriyel Valorizasyon Potansiyelleri

Year 2025, Volume: 15 Issue: 4, 1206 - 1218
https://doi.org/10.21597/jist.1640390

Abstract

Zeytinyağı üretim sürecinde ortaya çıkan karasu ve pirina, çevresel açıdan önemli atıklar olmasının yanı sıra, biyoaktif bileşenler bakımından zengin bir içeriğe sahiptir. Bu çalışmada, Çanakkale ilindeki on farklı zeytinyağı üretim tesisinden temin edilen karasu ve pirina örneklerinin fizikokimyasal bazı parametreleri ile antioksidan aktivite kapasiteleri belirlenmiştir. Analizler sonucunda toplam fenolik bileşen oranlarının özellikle Z5>Z1>Z10>Z9 numaralı istasyonlarda diğer bölgelere kıyasla oldukça yüksek olduğu tespit edilmiştir. Ayrıca, hidroksitirozol içeriğinin Z1>Z9>Z8>Z10 istasyonlarında belirgin seviyede yüksek olduğu, tirazol oranlarının ise özellikle Z1>Z7 numaralı istasyonlarda dikkate değer düzeyde olduğu saptanmıştır. Antioksidan kapasitenin değerlendirilmesi kapsamında, DPPH ve %ABTS katyon radikali giderme aktivitelerinin en yüksek Z8 numaralı istasyonda gözlendiği belirlenmiştir. İndirgeme gücü aktivitesinin ise en yüksek Z1 numaralı istasyonda olduğu tespit edilmiştir. Elde edilen bulgular, zeytin işleme atıklarının yüksek antioksidan kapasitesinin, içerdiği zengin biyoaktif bileşenlerle güçlü bir korelasyon gösterdiğini ortaya koymaktadır. Sonuç olarak, zeytin atıklarının biyoaktif bileşenler açısından değerli bir kaynak olduğu ve bu bileşenlerin gıda, tarım ve sağlık gibi çeşitli endüstriyel alanlarda değerlendirilme potansiyeline sahip olduğu düşünülmektedir.

Project Number

FBA-2024-4701

References

  • Acharya, K. (2017). Simplified methods for microtiter based analysis of in vitro antioxidant activity. Asian Journal of Pharmaceutics, AJP 11(02).
  • Andreadou, I., Sigala, F., Iliodromitis, E.K., Papaefthimiou, M., Sigalas, C., Aligiannis, N., ... & Kremastinos, D.T. (2007). Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of molecular and cellular cardiology, 42(3), 549-558.
  • Aruoma, O.I., Deiana, M., Jenner, A., Halliwell, B., Kaur, H., Banni, S., ... & Aeschbach, R. (1998). Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. Journal of Agricultural and Food Chemistry, 46(12), 5181-5187.
  • Babadostu, A. (2014). Investigation of some properties of olive mill water extract, a waste of olive oil industry, and investigation of its economic usability (Master’s thesis). Accessed from the National Thesis Center Database of the Council of Higher Education (364131).
  • Benaddi, R., Osmane, A., Zidan, K., El Harfi, K., & Ouazzani, N. (2023). A review on processes for olive mill waste water treatment. Ecological Engineering & Environmental Technology, 24.
  • Bernini, R., Carastro, I., Palmini, G., Tanini, A., Zonefrati, R., Pinelli, P., ... & Romani, A. (2017). Lipophilization of hydroxytyrosol-enriched fractions from Olea europaea L. by products and evaluation of the in vitro effects on a model of colorectal cancer cells. Journal of Agricultural and Food Chemistry, 65(31), 6506-6512.
  • Bertelli, M., Kiani, A.K., Paolacci, S., Manara, E., Kurti, D., Dhuli, K., ... & Michelini, S. (2020). Hydroxytyrosol: A natural compound with promising pharmacological activities. Journal of Biotechnology, 309, 29-33.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a free free radical. Nature, (181), 1199- 1200.
  • Bogani, P., Galli, C., Villa, M., & Visioli, F. (2007). Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis, 190(1), 181-186.
  • Bu, Y., Rho, S., Kim, J., Kim, M.Y., Lee, D.H., Kim, S.Y., ... & Kim, H. (2007). Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neuroscience letters, 414(3), 218-221.
  • Chandramohan, R., & Pari, L. (2016). Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats. Journal of Functional Foods, 27, 17-28.
  • Çelik, G., Seven, Ü., & Güçer, Ş. (2008). Evaluation of olive mill wastewater. 1st National Olive Student Congress. 17-18 May/ Edremit-Balıkesir, 162-167.
  • De Leonardis, A., Macciola, V., Lembo, G., Aretini, A., & Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100(3), 998-1004.
  • Delgado, A., Chammem, N., Issaoui, M., & Ammar, E. (2022). Bioactive phytochemicals from olive (Olea europaea) processing by-products. In Bioactive phytochemicals from vegetable oil and oilseed processing by-products (pp. 1-37). Cham: Springer International Publishing.
  • Domitrović, R., Jakovac, H., Marchesi, V.V., Šain, I., Romić, Ž., & Rahelić, D. (2012). Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacological research, 65(4), 451-464.
  • Food and Agriculture Organization of the United Nations (FAO). (2023). Olive oil production statistics. http://www.fao.org, [Accessed: 14 March 2025].
  • Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., ... & Masella, R. (1999). Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. The Journal of nutrition, 129(7), 1269-1277.
  • Hamden, K., Allouche, N., Damak, M., & Elfeki, A. (2009). Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chemico-biological interactions, 180(3), 421-432.
  • Han, J., Talorete, T.P., Yamada, P., & Isoda, H. (2009). Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 59, 45-53.
  • Hocaoğlu, S.M., Baştürk, İ., Aydöner, C., & Haksevenler, B.H.G. (2018). GIS supported analysis of the adequacy of olive oil facilities in the transition from 3-phase to 2-phase production in olive oil enterprises in Turkey. Journal of the Faculty of Agriculture, 32(1), 43-58.
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671.
  • Lee, H., Im, S.W., Jung, C.H., Jang, Y.J., Ha, T.Y., & Ahn, J. (2016). Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling. Biochemical and biophysical research communications, 469(3), 748-752.
  • Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities. Advances in Pharmacological and Pharmaceutical Sciences, 2015(1), 714138.
  • Mancebo-Campos, V., Salvador, M.D., & Fregapane, G. (2014). Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 400C) as compared to accelerated and antiradical assays. Food chemistry, 150, 374-381.
  • Martínez, N., Herrera, M., Frías, L., Provencio, M., Pérez-Carrión, R., Díaz, V., ... & Crespo, M.C. (2019). A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clinical and Translational Oncology, 21, 489-498.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(9), 1475-1485.
  • Rietjens, S.J., Bast, A., de Vente, J., & Haenen, G.R.M.M. (2007). The olive oil antioxidant hydroxytyrosol efficiently protects against the oxidative stress-induced impairment of the NO• response of isolated rat aorta. American Journal of Physiology-Heart and Circulatory Physiology, 292(4), H1931-H1936.
  • Rodríguez-López, P., Lozano-Sanchez, J., Borrás-Linares, I., Emanuelli, T., Menéndez, J.A., & Segura-Carretero, A. (2020). Structure–biological activity relationships of extra-virgin olive oil phenolic compounds: Health properties and bioavailability. Antioxidants, 9(8), 685.
  • Samuel, S.M., Thirunavukkarasu, M., Penumathsa, S.V., Paul, D., & Maulik, N. (2008). Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. Journal of agricultural and food chemistry, 56(20), 9692-9698.
  • Sar, T., & Akbas, M.Y. (2023). Antimicrobial activities of olive oil mill wastewater extracts against selected microorganisms. Sustainability, 15(10), 8179.
  • Silvan, J.M., Pinto-Bustillos, M.A., Vásquez-Ponce, P., Prodanov, M., & Martinez-Rodriguez, A.J. (2019). Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. Innovative Food Science & Emerging Technologies, 51, 177-185.
  • Tunalıoğlu, R., & Armağan, G. (2008). Evaluation of by-products obtained from olive oil enterprises in Aydın province in terms of agriculture-ındustry and environment relations. Proceedings Book of the 8th Turkish Agricultural Economics Congress. Volume 2. Bursa.
  • Tunalıoğlu, R., & Bektaş, T. (2010). The olive mill wastewater problem in Turkish olive growing and some solution proposals. Olive Science Journal ZAE-Olive Science Journal, 1(2).
  • TÜİK, (2024). Plant Production Statistics, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2024-53447.
  • Visioli, F. (2012). Olive oil phenolics: Where do we stand? Where should we go?. Journal of the Science of Food and Agriculture, 92(10), 2017-2019.

Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province

Year 2025, Volume: 15 Issue: 4, 1206 - 1218
https://doi.org/10.21597/jist.1640390

Abstract

The olive mill wastewater (OMW) and olive pomace, which are significant environmental wastes generated during the olive oil production process, are also rich in bioactive compounds. In this study, the physicochemical parameters and antioxidant activity capacities of OMW and olive pomace samples obtained from ten different olive oil production facilities in Çanakkale province were determined. The analyses revealed that the total phenolic compound content was particularly high in stations Z5>Z1>Z10>Z9 compared to other regions. Moreover, hydroxytyrosol content was found to be significantly high in stations Z1>Z9>Z8>Z10, while tyrosol levels were notably high in stations Z1>Z7. In the evaluation of antioxidant capacity, the highest DPPH and %ABTS cation radical scavenging activities were observed in station Z8. Additionally, the highest reducing power activity was detected in station Z1. The findings indicate a strong correlation between the high antioxidant capacity of olive processing waste and its rich bioactive compound content. In conclusion, olive by-products are considered a valuable source of bioactive compounds, with potential applications in various industrial fields such as food, agriculture, and healthcare.

Ethical Statement

No ethics committee approval required

Supporting Institution

Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit (Project No: FBA-2024-4701).

Project Number

FBA-2024-4701

Thanks

This study was funded by Çanakkale Onsekiz Mart University Scientific Research Projects Coordination Unit (Project No: FBA-2024-4701).

References

  • Acharya, K. (2017). Simplified methods for microtiter based analysis of in vitro antioxidant activity. Asian Journal of Pharmaceutics, AJP 11(02).
  • Andreadou, I., Sigala, F., Iliodromitis, E.K., Papaefthimiou, M., Sigalas, C., Aligiannis, N., ... & Kremastinos, D.T. (2007). Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress. Journal of molecular and cellular cardiology, 42(3), 549-558.
  • Aruoma, O.I., Deiana, M., Jenner, A., Halliwell, B., Kaur, H., Banni, S., ... & Aeschbach, R. (1998). Effect of hydroxytyrosol found in extra virgin olive oil on oxidative DNA damage and on low-density lipoprotein oxidation. Journal of Agricultural and Food Chemistry, 46(12), 5181-5187.
  • Babadostu, A. (2014). Investigation of some properties of olive mill water extract, a waste of olive oil industry, and investigation of its economic usability (Master’s thesis). Accessed from the National Thesis Center Database of the Council of Higher Education (364131).
  • Benaddi, R., Osmane, A., Zidan, K., El Harfi, K., & Ouazzani, N. (2023). A review on processes for olive mill waste water treatment. Ecological Engineering & Environmental Technology, 24.
  • Bernini, R., Carastro, I., Palmini, G., Tanini, A., Zonefrati, R., Pinelli, P., ... & Romani, A. (2017). Lipophilization of hydroxytyrosol-enriched fractions from Olea europaea L. by products and evaluation of the in vitro effects on a model of colorectal cancer cells. Journal of Agricultural and Food Chemistry, 65(31), 6506-6512.
  • Bertelli, M., Kiani, A.K., Paolacci, S., Manara, E., Kurti, D., Dhuli, K., ... & Michelini, S. (2020). Hydroxytyrosol: A natural compound with promising pharmacological activities. Journal of Biotechnology, 309, 29-33.
  • Blois, M.S. (1958). Antioxidant determinations by the use of a free free radical. Nature, (181), 1199- 1200.
  • Bogani, P., Galli, C., Villa, M., & Visioli, F. (2007). Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis, 190(1), 181-186.
  • Bu, Y., Rho, S., Kim, J., Kim, M.Y., Lee, D.H., Kim, S.Y., ... & Kim, H. (2007). Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neuroscience letters, 414(3), 218-221.
  • Chandramohan, R., & Pari, L. (2016). Anti-inflammatory effects of tyrosol in streptozotocin-induced diabetic Wistar rats. Journal of Functional Foods, 27, 17-28.
  • Çelik, G., Seven, Ü., & Güçer, Ş. (2008). Evaluation of olive mill wastewater. 1st National Olive Student Congress. 17-18 May/ Edremit-Balıkesir, 162-167.
  • De Leonardis, A., Macciola, V., Lembo, G., Aretini, A., & Nag, A. (2007). Studies on oxidative stabilisation of lard by natural antioxidants recovered from olive-oil mill wastewater. Food Chemistry, 100(3), 998-1004.
  • Delgado, A., Chammem, N., Issaoui, M., & Ammar, E. (2022). Bioactive phytochemicals from olive (Olea europaea) processing by-products. In Bioactive phytochemicals from vegetable oil and oilseed processing by-products (pp. 1-37). Cham: Springer International Publishing.
  • Domitrović, R., Jakovac, H., Marchesi, V.V., Šain, I., Romić, Ž., & Rahelić, D. (2012). Preventive and therapeutic effects of oleuropein against carbon tetrachloride-induced liver damage in mice. Pharmacological research, 65(4), 451-464.
  • Food and Agriculture Organization of the United Nations (FAO). (2023). Olive oil production statistics. http://www.fao.org, [Accessed: 14 March 2025].
  • Giovannini, C., Straface, E., Modesti, D., Coni, E., Cantafora, A., De Vincenzi, M., ... & Masella, R. (1999). Tyrosol, the major olive oil biophenol, protects against oxidized-LDL-induced injury in Caco-2 cells. The Journal of nutrition, 129(7), 1269-1277.
  • Hamden, K., Allouche, N., Damak, M., & Elfeki, A. (2009). Hypoglycemic and antioxidant effects of phenolic extracts and purified hydroxytyrosol from olive mill waste in vitro and in rats. Chemico-biological interactions, 180(3), 421-432.
  • Han, J., Talorete, T.P., Yamada, P., & Isoda, H. (2009). Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 59, 45-53.
  • Hocaoğlu, S.M., Baştürk, İ., Aydöner, C., & Haksevenler, B.H.G. (2018). GIS supported analysis of the adequacy of olive oil facilities in the transition from 3-phase to 2-phase production in olive oil enterprises in Turkey. Journal of the Faculty of Agriculture, 32(1), 43-58.
  • Khdair, A., & Abu-Rumman, G. (2020). Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) region. Processes, 8(6), 671.
  • Lee, H., Im, S.W., Jung, C.H., Jang, Y.J., Ha, T.Y., & Ahn, J. (2016). Tyrosol, an olive oil polyphenol, inhibits ER stress-induced apoptosis in pancreatic β-cell through JNK signaling. Biochemical and biophysical research communications, 469(3), 748-752.
  • Leouifoudi, I., Harnafi, H., & Zyad, A. (2015). Olive mill waste extracts: Polyphenols content, antioxidant, and antimicrobial activities. Advances in Pharmacological and Pharmaceutical Sciences, 2015(1), 714138.
  • Mancebo-Campos, V., Salvador, M.D., & Fregapane, G. (2014). Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 400C) as compared to accelerated and antiradical assays. Food chemistry, 150, 374-381.
  • Martínez, N., Herrera, M., Frías, L., Provencio, M., Pérez-Carrión, R., Díaz, V., ... & Crespo, M.C. (2019). A combination of hydroxytyrosol, omega-3 fatty acids and curcumin improves pain and inflammation among early stage breast cancer patients receiving adjuvant hormonal therapy: Results of a pilot study. Clinical and Translational Oncology, 21, 489-498.
  • Oyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307-315.
  • Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(9), 1475-1485.
  • Rietjens, S.J., Bast, A., de Vente, J., & Haenen, G.R.M.M. (2007). The olive oil antioxidant hydroxytyrosol efficiently protects against the oxidative stress-induced impairment of the NO• response of isolated rat aorta. American Journal of Physiology-Heart and Circulatory Physiology, 292(4), H1931-H1936.
  • Rodríguez-López, P., Lozano-Sanchez, J., Borrás-Linares, I., Emanuelli, T., Menéndez, J.A., & Segura-Carretero, A. (2020). Structure–biological activity relationships of extra-virgin olive oil phenolic compounds: Health properties and bioavailability. Antioxidants, 9(8), 685.
  • Samuel, S.M., Thirunavukkarasu, M., Penumathsa, S.V., Paul, D., & Maulik, N. (2008). Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. Journal of agricultural and food chemistry, 56(20), 9692-9698.
  • Sar, T., & Akbas, M.Y. (2023). Antimicrobial activities of olive oil mill wastewater extracts against selected microorganisms. Sustainability, 15(10), 8179.
  • Silvan, J.M., Pinto-Bustillos, M.A., Vásquez-Ponce, P., Prodanov, M., & Martinez-Rodriguez, A.J. (2019). Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. Innovative Food Science & Emerging Technologies, 51, 177-185.
  • Tunalıoğlu, R., & Armağan, G. (2008). Evaluation of by-products obtained from olive oil enterprises in Aydın province in terms of agriculture-ındustry and environment relations. Proceedings Book of the 8th Turkish Agricultural Economics Congress. Volume 2. Bursa.
  • Tunalıoğlu, R., & Bektaş, T. (2010). The olive mill wastewater problem in Turkish olive growing and some solution proposals. Olive Science Journal ZAE-Olive Science Journal, 1(2).
  • TÜİK, (2024). Plant Production Statistics, https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2024-53447.
  • Visioli, F. (2012). Olive oil phenolics: Where do we stand? Where should we go?. Journal of the Science of Food and Agriculture, 92(10), 2017-2019.
There are 36 citations in total.

Details

Primary Language English
Subjects Industrial Microbiology
Journal Section Research Article
Authors

Nurcihan Hacıoğlu Doğru 0000-0002-5812-9398

Neslihan Demir 0000-0002-2347-8344

İlke Karakaş 0000-0001-6596-0879

Project Number FBA-2024-4701
Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date February 15, 2025
Acceptance Date May 5, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Hacıoğlu Doğru, N., Demir, N., & Karakaş, İ. (2025). Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province. Journal of the Institute of Science and Technology, 15(4), 1206-1218. https://doi.org/10.21597/jist.1640390
AMA Hacıoğlu Doğru N, Demir N, Karakaş İ. Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province. J. Inst. Sci. and Tech. November 2025;15(4):1206-1218. doi:10.21597/jist.1640390
Chicago Hacıoğlu Doğru, Nurcihan, Neslihan Demir, and İlke Karakaş. “Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1206-18. https://doi.org/10.21597/jist.1640390.
EndNote Hacıoğlu Doğru N, Demir N, Karakaş İ (November 1, 2025) Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province. Journal of the Institute of Science and Technology 15 4 1206–1218.
IEEE N. Hacıoğlu Doğru, N. Demir, and İ. Karakaş, “Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1206–1218, 2025, doi: 10.21597/jist.1640390.
ISNAD Hacıoğlu Doğru, Nurcihan et al. “Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province”. Journal of the Institute of Science and Technology 15/4 (November2025), 1206-1218. https://doi.org/10.21597/jist.1640390.
JAMA Hacıoğlu Doğru N, Demir N, Karakaş İ. Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province. J. Inst. Sci. and Tech. 2025;15:1206–1218.
MLA Hacıoğlu Doğru, Nurcihan et al. “Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1206-18, doi:10.21597/jist.1640390.
Vancouver Hacıoğlu Doğru N, Demir N, Karakaş İ. Industrial Valorization Potential of Olive Mill Wastewater and Olive Pomace Wastes in Çanakkale Province. J. Inst. Sci. and Tech. 2025;15(4):1206-18.