Research Article
BibTex RIS Cite

Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı

Year 2025, Volume: 15 Issue: 4, 1193 - 1205
https://doi.org/10.21597/jist.1641204

Abstract

Az örnekle öğrenme, etiketlenmiş verilerin kısıtlı olduğu tarımsal sınıflandırma problemleri için önemli bir çözüm olarak ortaya çıkmıştır. Bu çalışma elma yapraklarındaki hastalıkları sınıflandırmak amacıyla Görüntü Dönüştürücü modeli ile Model-Bağımsız Meta-Öğrenme algoritmalarını (MAML ve MAML++) birlikte kullanmayı önermektedir. Bu yaklaşımların performansı, 2-way 5-shot ve 4-way 1-shot senaryolarında değerlendirilmiştir. MAML algoritması, 2-way 5-shot senaryosunda en iyi performansını (96,27% doğruluk, 0,1299 kayıp) elde ederken, 4-way 1-shot senaryosunda en kötü performansını (88,80% doğruluk, 0,2884 kayıp) sergilemiş ve bu da %7,47'lik bir doğruluk farkı yaratmıştır. Buna karşılık, MAML++ algoritması, en iyi (90,73% doğruluk, 0,3580 kayıp) ve en kötü (83,60% doğruluk, 0,5401 kayıp) performansları arasında %7,13'lük daha küçük bir doğruluk farkı ile daha iyi bir tutarlılık sergilemiştir. Bu bulgular, MAML'ın daha iyi sınıflandırma performansına rağmen MAML++'ın daha tutarlı ve daha dayanıklı olduğunu göstermektedir. Bu çalışma, Görüntü Dönüştürücü modellerinin özellik çıkarım yeteneklerini meta-öğrenme algoritmalarıyla birleştirerek gerçek dünya koşullarında doğru ve güvenilir hastalık sınıflandırması için yeni bir yaklaşım sunmaktadır. Sonuçlar, geliştirilen yaklaşımın tarımsal uygulamalarda, özellikle etiketlenmiş verilerin kısıtlı olduğu senaryolarda önemli bir potansiyele sahip olduğunu göstermektedir.

References

  • Akhtar, F., Partheeban, N., Daniel, A., Sriramulu, S., Mehra, S., & Gupta, N. (2021). Plant Disease Detection based on Deep Learning Approach. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, 74–77. https://doi.org/10.1109/ICACITE51222.2021.9404647
  • Andrew, J., Eunice, J., Popescu, D. E., Chowdary, M. K., & Hemanth, J. (2022). Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102395
  • Ball, J. (2021). Few-Shot Learning for Image Classification of Common Flora. http://arxiv.org/abs/2105.03056 Bracino, A. A., Concepcion, R. S., Bedruz, R. A. R., Dadios, E. P., & Vicerra, R. R. P. (2020). Development of a Hybrid Machine Learning Model for Apple (Malus domestica) Health Detection and Disease Classification. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1–6. https://doi.org/10.1109/HNICEM51456.2020.9400139
  • Chakraborty, S., Paul, S., & Rahat-Uz-Zaman, M. (2021). Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 147–151. https://doi.org/10.1109/ICREST51555.2021.9331132
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021 - 9th International Conference on Learning Representations. https://arxiv.org/abs/2010.11929v2
  • Figueroa-Flores, C., & San-Martin, P. (2023). Few-Shot Learning for Image Classification of Common Flora. ArXiv, abs/2105.03056. https://doi.org/10.3389/FPLS.2023.1211490 Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 34th International Conference on Machine Learning, ICML 2017, 3, 1856–1868. https://arxiv.org/abs/1703.03400v3 Hughes, David. P., & Salathe, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. https://arxiv.org/abs/1511.08060v2
  • Işık, G. (2023). Improving Plant Disease Recognition Through Gradient-Based Few-shot Learning with Attention Mechanisms. Journal of the Institute of Science and Technology, 13(3), 1482–1495. https://doi.org/10.21597/JIST.1283491
  • Işık, G., & Paçal, İ. (2024). Few-shot classification of ultrasound breast cancer images using meta-learning algorithms. Neural Computing and Applications, 36(20), 12047–12059. https://doi.org/10.1007/S00521-024-09767-Y/TABLES/7
  • Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1). https://doi.org/10.1186/S13007-021-00722-9
  • Nagaraju, M., & Chawla, P. (2020). Systematic review of deep learning techniques in plant disease detection. International Journal of System Assurance Engineering and Management, 11(3), 547–560. https://doi.org/10.1007/S13198-020-00972-1/FIGURES/9
  • Nagaraju, Y., Venkatesh, Swetha, S., & Stalin, S. (2020). Apple and Grape Leaf Diseases Classification using Transfer Learning via Fine-tuned Classifier. 2020 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), 1–6. https://doi.org/10.1109/ICMLANT50963.2020.9355991
  • Nurgazin, M., & Tu, N. A. (2023). A Comparative Study of Vision Transformer Encoders and Few-shot Learning for Medical Image Classification. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2505–2513. https://doi.org/10.1109/ICCVW60793.2023.00265
  • Pacal, I., & Işık, G. (2024). Utilizing convolutional neural networks and vision transformers for precise corn leaf disease identification. Neural Computing and Applications, 37(4), 2479–2496. https://doi.org/10.1007/S00521-024-10769-Z/TABLES/5
  • Ravi, S., & Larochelle, H. (2022). Optimization as a Model for Few-Shot Learning. Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant Disease Detection and Classification by Deep Learning. Plants 2019, Vol. 8, Page 468, 8(11), 468. https://doi.org/10.3390/PLANTS8110468
  • Shao, Y., Wu, W., You, X., Gao, C., & Sang, N. (2023). Improving the Generalization of MAML in Few-Shot Classification via Bi-Level Constraint. IEEE Transactions on Circuits and Systems for Video Technology, 33(7), 3284–3295. https://doi.org/10.1109/TCSVT.2022.3232717
  • Thapa, R., Zhang, K., Snavely, N., Belongie, S., & Khan, A. (2020). The Plant Pathology Challenge 2020 data set to classify foliar disease of apples. Applications in Plant Sciences, 8(9). https://doi.org/10.1002/APS3.11390
  • Wu, X., Deng, H., Wang, Q., Lei, L., Gao, Y., & Hao, G. (2023). Meta-learning shows great potential in plant disease recognition under few available samples. The Plant Journal, 114(4), 767–782. https://doi.org/10.1111/TPJ.16176
  • Xu, J., & Du, Q. (2020). Learning transferable features in meta-learning for few-shot text classification. Pattern Recognit. Lett., 135, 271–278. https://doi.org/10.1016/J.PATREC.2020.05.007
  • Vezıroglu, E., Pacal, I., & Coşkunçay, A. (2023). Derin Evrişimli Sinir Ağları Kullanılarak Pirinç Hastalıklarının Sınıflandırılması. Journal of the Institute of Science and Technology, 13(2), 792-814. https://doi.org/10.21597/jist.1265769
  • Ye, H. J., Ming, L., Zhan, D. C., & Chao, W. L. (2024). How to Train Your MAML to Excel in Few-Shot Classification. ArXiv, abs/2106.16245(3), 1425–1440. https://doi.org/10.1109/TPAMI.2022.3160362

A Robust Apple Disease Classification Approach Using Vision Transformer-Based Meta-Learning

Year 2025, Volume: 15 Issue: 4, 1193 - 1205
https://doi.org/10.21597/jist.1641204

Abstract

Few-shot learning has emerged as an important solution for agricultural classification problems, where labelled data is often scarce. This study proposes the integration of the Vision Transformer (ViT) model with Model-Agnostic Meta-Learning (MAML and MAML++) algorithms to classify apple leaf diseases. The performance of these approaches was evaluated in 2-way 5-shot and 4-way 1-shot scenarios. The MAML algorithm achieved its best performance in the 2-way 5-shot scenario (96.27% accuracy, 0.1299 loss), while its worst performance was observed in the 4-way 1-shot scenario (88.80% accuracy, 0.2884 loss), resulting in a 7.47% accuracy gap. In contrast, the MAML++ algorithm demonstrated better consistency, with a smaller accuracy gap of 7.13% between its best (90.73% accuracy, 0.3580 loss) and worst (83.60% accuracy, 0.5401 loss) performances. These findings indicate that, despite MAML achieving better classification performance, MAML++ is more consistent and robust. By combining the feature extraction capabilities of Vision Transformers with meta-learning algorithms, this study presents a new approach for accurate and reliable disease classification under real-world conditions. The results demonstrate that the proposed approach has significant potential in agricultural applications, particularly in scenarios with limited labelled data.

References

  • Akhtar, F., Partheeban, N., Daniel, A., Sriramulu, S., Mehra, S., & Gupta, N. (2021). Plant Disease Detection based on Deep Learning Approach. 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, 74–77. https://doi.org/10.1109/ICACITE51222.2021.9404647
  • Andrew, J., Eunice, J., Popescu, D. E., Chowdary, M. K., & Hemanth, J. (2022). Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy, 12(10). https://doi.org/10.3390/agronomy12102395
  • Ball, J. (2021). Few-Shot Learning for Image Classification of Common Flora. http://arxiv.org/abs/2105.03056 Bracino, A. A., Concepcion, R. S., Bedruz, R. A. R., Dadios, E. P., & Vicerra, R. R. P. (2020). Development of a Hybrid Machine Learning Model for Apple (Malus domestica) Health Detection and Disease Classification. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), 1–6. https://doi.org/10.1109/HNICEM51456.2020.9400139
  • Chakraborty, S., Paul, S., & Rahat-Uz-Zaman, M. (2021). Prediction of Apple Leaf Diseases Using Multiclass Support Vector Machine. 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 147–151. https://doi.org/10.1109/ICREST51555.2021.9331132
  • Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. ICLR 2021 - 9th International Conference on Learning Representations. https://arxiv.org/abs/2010.11929v2
  • Figueroa-Flores, C., & San-Martin, P. (2023). Few-Shot Learning for Image Classification of Common Flora. ArXiv, abs/2105.03056. https://doi.org/10.3389/FPLS.2023.1211490 Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. 34th International Conference on Machine Learning, ICML 2017, 3, 1856–1868. https://arxiv.org/abs/1703.03400v3 Hughes, David. P., & Salathe, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. https://arxiv.org/abs/1511.08060v2
  • Işık, G. (2023). Improving Plant Disease Recognition Through Gradient-Based Few-shot Learning with Attention Mechanisms. Journal of the Institute of Science and Technology, 13(3), 1482–1495. https://doi.org/10.21597/JIST.1283491
  • Işık, G., & Paçal, İ. (2024). Few-shot classification of ultrasound breast cancer images using meta-learning algorithms. Neural Computing and Applications, 36(20), 12047–12059. https://doi.org/10.1007/S00521-024-09767-Y/TABLES/7
  • Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 17(1). https://doi.org/10.1186/S13007-021-00722-9
  • Nagaraju, M., & Chawla, P. (2020). Systematic review of deep learning techniques in plant disease detection. International Journal of System Assurance Engineering and Management, 11(3), 547–560. https://doi.org/10.1007/S13198-020-00972-1/FIGURES/9
  • Nagaraju, Y., Venkatesh, Swetha, S., & Stalin, S. (2020). Apple and Grape Leaf Diseases Classification using Transfer Learning via Fine-tuned Classifier. 2020 IEEE International Conference on Machine Learning and Applied Network Technologies (ICMLANT), 1–6. https://doi.org/10.1109/ICMLANT50963.2020.9355991
  • Nurgazin, M., & Tu, N. A. (2023). A Comparative Study of Vision Transformer Encoders and Few-shot Learning for Medical Image Classification. 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2505–2513. https://doi.org/10.1109/ICCVW60793.2023.00265
  • Pacal, I., & Işık, G. (2024). Utilizing convolutional neural networks and vision transformers for precise corn leaf disease identification. Neural Computing and Applications, 37(4), 2479–2496. https://doi.org/10.1007/S00521-024-10769-Z/TABLES/5
  • Ravi, S., & Larochelle, H. (2022). Optimization as a Model for Few-Shot Learning. Saleem, M. H., Potgieter, J., & Arif, K. M. (2019). Plant Disease Detection and Classification by Deep Learning. Plants 2019, Vol. 8, Page 468, 8(11), 468. https://doi.org/10.3390/PLANTS8110468
  • Shao, Y., Wu, W., You, X., Gao, C., & Sang, N. (2023). Improving the Generalization of MAML in Few-Shot Classification via Bi-Level Constraint. IEEE Transactions on Circuits and Systems for Video Technology, 33(7), 3284–3295. https://doi.org/10.1109/TCSVT.2022.3232717
  • Thapa, R., Zhang, K., Snavely, N., Belongie, S., & Khan, A. (2020). The Plant Pathology Challenge 2020 data set to classify foliar disease of apples. Applications in Plant Sciences, 8(9). https://doi.org/10.1002/APS3.11390
  • Wu, X., Deng, H., Wang, Q., Lei, L., Gao, Y., & Hao, G. (2023). Meta-learning shows great potential in plant disease recognition under few available samples. The Plant Journal, 114(4), 767–782. https://doi.org/10.1111/TPJ.16176
  • Xu, J., & Du, Q. (2020). Learning transferable features in meta-learning for few-shot text classification. Pattern Recognit. Lett., 135, 271–278. https://doi.org/10.1016/J.PATREC.2020.05.007
  • Vezıroglu, E., Pacal, I., & Coşkunçay, A. (2023). Derin Evrişimli Sinir Ağları Kullanılarak Pirinç Hastalıklarının Sınıflandırılması. Journal of the Institute of Science and Technology, 13(2), 792-814. https://doi.org/10.21597/jist.1265769
  • Ye, H. J., Ming, L., Zhan, D. C., & Chao, W. L. (2024). How to Train Your MAML to Excel in Few-Shot Classification. ArXiv, abs/2106.16245(3), 1425–1440. https://doi.org/10.1109/TPAMI.2022.3160362
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Article
Authors

Metehan Gunde 0000-0003-3323-7525

Gültekin Işık 0000-0003-3037-5586

Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date February 17, 2025
Acceptance Date April 16, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Gunde, M., & Işık, G. (2025). Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı. Journal of the Institute of Science and Technology, 15(4), 1193-1205. https://doi.org/10.21597/jist.1641204
AMA Gunde M, Işık G. Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı. J. Inst. Sci. and Tech. November 2025;15(4):1193-1205. doi:10.21597/jist.1641204
Chicago Gunde, Metehan, and Gültekin Işık. “Görüntü Dönüştürücü Tabanlı Meta-Öğrenme Ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1193-1205. https://doi.org/10.21597/jist.1641204.
EndNote Gunde M, Işık G (November 1, 2025) Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı. Journal of the Institute of Science and Technology 15 4 1193–1205.
IEEE M. Gunde and G. Işık, “Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1193–1205, 2025, doi: 10.21597/jist.1641204.
ISNAD Gunde, Metehan - Işık, Gültekin. “Görüntü Dönüştürücü Tabanlı Meta-Öğrenme Ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı”. Journal of the Institute of Science and Technology 15/4 (November2025), 1193-1205. https://doi.org/10.21597/jist.1641204.
JAMA Gunde M, Işık G. Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı. J. Inst. Sci. and Tech. 2025;15:1193–1205.
MLA Gunde, Metehan and Gültekin Işık. “Görüntü Dönüştürücü Tabanlı Meta-Öğrenme Ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1193-05, doi:10.21597/jist.1641204.
Vancouver Gunde M, Işık G. Görüntü Dönüştürücü Tabanlı Meta-Öğrenme ile Gürbüz Bir Elma Hastalığı Sınıflandırma Yaklaşımı. J. Inst. Sci. and Tech. 2025;15(4):1193-205.