Research Article
BibTex RIS Cite

Analysis of the Automotive Sector Before, During and After the Covid-19 Pandemic Using Interdisciplinary Hierarchical Structure Methods

Year 2025, Volume: 15 Issue: 4, 1354 - 1370
https://doi.org/10.21597/jist.1649369

Abstract

The Covid-19 outbreak, which emerged in Wuhan, China in late 2019, spread all over the world in a short time and millions of people were infected and many people lost their lives. The Covid-19 outbreak also caused serious effects on the economies of countries. The automotive industry has experienced serious declines in terms of both production and demand, and a global economic crisis has emerged. As the automotive industry has an important role in the world economy and is an important source of employment in many countries, it has faced economic stagnation as a result of major declines in production and sales. The measures taken and reactions of the automotive industry during the pandemic have been important in shaping the future structure of the industry. In this study, the effects of the Covid-19 pandemic on the automotive sector for pre-pandemic (2018-2019), pandemic process (2020-2021) and post-pandemic (2022-2023) for twenty-five European countries have been examined using the least spanning tree (LST) and Hierarchical Trees (HT), which are hierarchical structure methods specific to the automotive sector. In addition, Bootstrap method was used to examine the reliability of the connections in the obtained LSTs. As a result, when the LST and HTs are analysed, the country clusters that were evident in the pre-pandemic period were not clearly observed in the pandemic and post-pandemic periods. However, as expected, there was a decrease in traffic accidents in European countries during the Covid-19 period and these countries formed a cluster among themselves.

Ethical Statement

Ethics Committee Approval is not required for this article.

Supporting Institution

Yozgat Bozok University BAP

Project Number

FGA-2025-1636

Thanks

This study was supported by Yozgat Bozok University Scientific Research Projects (BAP) Coordination Unit within the scope of the project coded FGA-2025-1636. We would like to thank them for their contributions.

References

  • Aljohani, TM, Assolami, YO, Alrumayh, O., Mohamed, MA, & Almutairi, A. (2025). Pandemi Sonrası Dünyada Sürdürülebilir Enerji Sistemleri: COVID-19 Sonrası Küresel Enerji İlgili Piyasaların Tepkileri ve Stratejilerinin Taksonomi Tabanlı Analizi. Sürdürülebilirlik, 17 (5), 2307.
  • Alsulami, Samirah H., and Jalal H. Bayati. (2022). Covid-19 infection structure analysis based on minimum spanning tree visualization in the kingdom of Saudi Arabia regions. Journal of Chemistry. https://doi.org/10.1155/2022/1726286
  • Barreiro-Pereira, F. ve Abdelkader-Benmesaud-Conde, T. (2025). COVID-19 Pandemisinin Avrupa Birliği Ekonomisi, Enerjisi ve Çevresi Üzerindeki Etkisi. COVID-19 ve Kamu Politikasında (s. 17-33). Emerald Publishing Limited.
  • Balci, Y., ve Çetin, G. (2020). Covid-19 Pandemi Sürecinin Türkiye'de İstihdama Etkileri ve Kamu Açısından Alınması Gereken Tedbirler. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19(37), 40-58.
  • Berge, C., Ghouila-Houri, A., Merrington, M., & Ramanujacharyulu, C. (1965). Programming, games and transportation networks.
  • Bivona, S., Bonanno, G., Burlon, R., Gurrera, D., Leone, C. (2008). Taxonomy of correlations of wind velocity - an application to the Sicilian area. Physica A-Statistical Mechanics and Its Applications, 387(23): 5910-5915. https://doi.org/10.1016/j.physa.2008.06.026
  • Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4): 046130-4. https://doi.org/10.1103/PhysRevE.68.046130
  • Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., Mantegna, R.N. (2004). Networks of equities in financial markets. European Physical Journal B, 38(2): 363-371. Doi: 10.1140/epjb/e2004-00129-6
  • Bonanno, G., Vandewalle, N., Mantegna, R.N. (2000). Taxonomy of stock market indices. Physical Review E, 62(6): R7615-R7618. https://doi.org/10.1103/PhysRevE.62.R7615
  • Boranova, V., Huidrom, R., Ozturk, E., Stepanyan, A., Topalova, P., & Zhang, S. F. (2022). Cars in Europe: Supply chains and spillovers during COVID-19 times. International Monetary Fund.
  • Brida, J.G., Esteban, L.P., Risso, W.A., Devesa, M.J.S. 2010. The international hotel industry in Spain: Its hierarchical structure. Tourism Management, 31(1): 57-73. https://doi.org/10.1016/j.tourman.2009.02.003
  • Brida, J.G., Gomez, D.M., Risso, W.A. (2009). Symbolic hierarchical analysis in currency markets: An application to contagion in currency crises. Expert Systems with Applications, 36(4): 7721-7728. https://doi.org/10.1016/j.eswa.2008.09.038
  • Brida, J.G., Risso, W.A. (2007). Dynamics and structure of the main Italian companies. International Journal of Modern Physics C, 18(11): 1783-1793. https://doi.org/10.1142/S0129183107011741
  • Brida, J.G., Risso, W.A. (2009). Dynamic and Structure of the Italian Stock Market based on returns and volume trading, Economic Bulletin, 29: 2420-2426.
  • Brida, J.G., Risso, W.A. (2010). Dynamics and Structure of the 30 Largest North American Companies. Computational Economics, 35(1): 85-99. Doi: 10.1007/s10614-009-9187-1
  • Cazcarro, I., García-Gusano, D., Iribarren, D., Linares, P., Romero, J. C., Arocena, P., ... & Cadarso, M. Á. (2022). Energy-socio-economic-environmental modelling for the EU energy and post-COVID-19 transitions. Science of the Total Environment, 805, 150329. https://doi.org/10.1016/j.scitotenv.2021.150329
  • Černá, I., Éltető, A., Folfas, P., Kuźnar, A., Křenková, E., Minárik, M., ... & Zábojník, S. (2022). GVCs in Central Europe: A perspective of the automotive sector after COVID-19.
  • Chowdhury, Tarek, Aditi Sarkar, Sanjoy Kumar Paul, and Abdul Moktadir (2020). A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Operations Management Research 15: 166–78. https://doi.org/10.1007/s12063-020-00166-9
  • Dong, M., Zhang, X., Yang, K., Liu, R., & Chen, P. (2021). Forecasting the COVID-19 transmission in Italy based on the minimum spanning tree of dynamic region network. PeerJ, 9, e11603. Doi: 10.7717/peerj.11603
  • Dijkstra, E.W. (1959). A note on the two problems in connection with graphs, Numerische Mathematik, 1, 269.
  • Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals of Statistics, 7(1): 1-26.
  • Eom, C., Oh, G., Kim, S. (2007). Topological properties of a minimal spanning tree in the Korean and the American Stock Markets, Journal of the Korean Physical Society, 51: 1432-1436.
  • European Commission. (2025) Mobility and Transport. Erişim adresi: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (Erişim adresi: 03 Mayıs 2025).
  • European Transport and Safety Council, Road deaths in the European Union – latest data (2025) Erişim adresi: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (Erişim adresi: 03 Mayıs 2025).
  • Flori, E., Paterlini, S., Pattarin, F., & Villani, M. (2025). Evaluation of the pandemic impact on global automotive supply chain through network analysis. Journal of Economic Interaction and Coordination, 1-32. https://doi.org/10.1007/s11403-024-00440-0
  • Frieske, B., and Stieler, S. (2022). The “Semiconductor Crisis” as a Result of the COVID-19 Pandemic and Impacts on the Automotive Industry and Its Supply Chains. World Electric Vehicle Journal, 13(10), 189. https://doi.org/10.3390/wevj13100189
  • Garas, A., Argyrakis, P. (2007). Correlation study of the Athens Stock Exchange. Physica A-Statistical Mechanics and Its Applications, 380: 399-410. https://doi.org/10.3390/wevj13100189
  • Garas, A., Argyrakis, P. (2008). A network approach for the scientific collaboration in the European Framework Programs. Epl-Europhys. Lett., 84(6): 68005. Doi: 10.1209/0295-5075/84/68005
  • Guo, H., Zhao, X., Yu, H., & Zhang, X. (2021). Analysis of global stock markets’ connections with emphasis on the impact of COVID-19. Physica A: Statistical Mechanics and its Applications, 569, 125774. https://doi.org/10.1016/j.physa.2021.125774
  • Gräf, H., & Topuria, S. (2023). The impact of the Covid-19 pandemic on industrial policy in Germany and the European Union–the case of the automotive industry. European Journal of Economics and Economic Policies, 1(aop), 1-17. https://doi.org/10.4337/ejeep.2023.0112
  • Hojdik, V. (2021). Current challenges of globalization in the automotive industry in European countries. In SHS web of conferences (Vol. 92, p. 01015). EDP Sciences. https://doi.org/10.1051/shsconf/20219201015
  • Horobet, A., Popoviciu, A. S., Zlatea, E., and Alexe, R. (2021). The Eastern European Automotive Industry in a Post-Pandemic World: What Drives Performance? KnE Social Sciences, 90-108. Doi: 10.18502/kss.v5i9.9887
  • Kantar, E., Deviren, B., Keskin, M. (2014). Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period. Physica A-Statistical Mechanics and Its Applications, 414: 95-107. https://doi.org/10.1016/j.physa.2014.07.001
  • Kaya, H. P. (2023). Çip Krizinin Otomotiv Sektörü Üzerindeki Etkileri. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), 67-78. Doi:10.52791/aksarayiibd.1089035
  • Killian, M. R. D. (2022). The Effect of the COVID-19 Pandemic on New Passenger Car Registrations in Western Europe (Doctoral dissertation, Wien).
  • Klein, C., Høj, J., and Machlica, G. (2021). The impacts of the COVID-19 crisis on the automotive sector in Central and Eastern European Countries.
  • Konrad, K., Stagl, S., Krune, E., Michelmann, J., Müller, B., & Müller, M. (2018). Competitiveness of the European automotive manufacturing industry. Institute for Innovation and Technology (iit), Berlin.
  • Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, 7, 48.
  • Kufelová, I., & Raková, M. (2020). Impact of the Covid-19 pandemic on the automotive industry in Slovakia and selected countries. In SHS Web of Conferences (Vol. 83, p. 01040). EDP Sciences. https://doi.org/10.1051/shsconf/20208301040
  • Lazarov, D. (2020). Analysis of the effects on the metal processing, electric, machinery and automotive industry from the health-economic crisis caused by the Covid-19 pandemic.
  • Lechowski, G., Krzywdzinski, M., Humphrey, J., & Pardi, T. (2025). Global Shifts in the Automotive Industry. Outlining the New Arrangements Between Technology, Policy, Firms, and Markets. In Global Shifts in the Automotive Sector: Markets, Firms and Technologies in the Age of Geopolitical Disruption (pp. 345-365). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80641-4_14
  • Li, B., & Liao, Z. (2020). Finding changes in the foreign exchange market from the perspective of currency network. Physica A: Statistical Mechanics and its Applications, 545, 123727. https://doi.org/10.1016/j.physa.2019.123727
  • Mahdi, Baidaa Saleh, and Jalal Hatem Hussein Al-Bayati. (2022). Minimum spanning tree application in Covid-19 network structure analysis in the countries of the Middle East. Journal of Discrete Mathematical Sciences and Cryptography 25.8: 2723-2728. https://doi.org/10.1080/09720529.2022.2060923
  • Mantegna, R.N. (1999). Hierarchical structure in financial markets. The European Physical Journal B, 11(1): 193-197.
  • Matesanz, D., Ortega, G.J. (2014). Network analysis of exchange data: interdependence drives crisis contagion. Quality & Quantity, 48(4): 1835-1851. https://doi.org/10.1007/s11135-013-9855-z
  • Mbatha, Vusisizwe Moses, and Sedjro Aaron Alovokpinhou. (2022). The structure of the South African stock market network during COVID-19 hard lockdown. Physica A: Statistical Mechanics and its Applications 590: 126770. https://doi.org/10.1016/j.physa.2021.126770
  • McDonald, M., Suleman, O., Williams, S., Howison, S., Johnson, N.F. (2005). Detecting a currency's dominance or dependence using foreign exchange network trees. Physical Review E, 72(4) 046106-11. https://doi.org/10.1103/PhysRevE.72.046106
  • Mizuno, T., Takayasu, H., Takayasu, M. (2006). Correlation networks among currencies. Physica A-Statistical Mechanics and Its Applications, 364: 336-342. https://doi.org/10.1016/j.physa.2005.08.079
  • Nie, Chun-Xiao. (2022). Analysis of critical events in the correlation dynamics of cryptocurrency market. Physica A: Statistical Mechanics and its Applications 586: 126462. https://doi.org/10.1016/j.physa.2021.126462
  • Niu, Y., Werle, N., Cohen, M., Cui, S., Deshpande, V., Ernst, R., ... & Wu, J. (2025). Restructuring Global Supply Chains: Navigating Challenges of the COVID-19 Pandemic and Beyond. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2024.0879
  • OECDPCR (Organisation for Economic Co-operation and Development Pessenger Car Registrations) Available online: (Erişim adresi: 06 Mart 2025).
  • OECDRA (Organisation for Economic Co-operation and Development Road Accidents) Erişim adresi: https://data.oecd.org/transport/road-accidents.htm#indicator-chart (Erişim adresi: 06 Mart 2025).
  • OICA Sales/registrations of new vehicles in countries represented.” International Organization of Motor Vehicle, Erişim adresi: https://www.oica.net/ (Erişim adresi: 06 Mart 2025).
  • Ortega, G.J., Matesanz, D. (2006). Cross-country hierarchical structure and currency crises. International Journal of Modern Physics C, 17(3): 333-341. https://doi.org/10.1142/S012918310600856X
  • Özçelik, A. E., & Karan, B. (2021). Pandemi sürecinin otomotiv sektörüne ve üretimine etkisi. MAS Journal of Applied Sciences, 6(4), 926-939. https://doi.org/10.52520/masjaps.136
  • Pang, R. K. K., Granados, O. M., Chhajer, H., & Legara, E. F. T. (2021). An analysis of network filtering methods to sovereign bond yields during COVID-19. Physica A: Statistical mechanics and its applications, 574, 125995. https://doi.org/10.1016/j.physa.2021.125995
  • Pelle, A., & Tabajdi, G. (2021). Covid-19 and transformational megatrends in the European automotive industry: Evidence from business decisions with a Central and Eastern European focus. Entrepreneurial Business and Economics Review, 9(4), 19-33.
  • Prim, R. C. (1957). Shortest connection networks and some generalizations, Bell Systems Technical Journal, 36, 1389. Doi: 10.1002/j.1538-7305.1957.tb01515.x
  • Radić, N., & Radić, V. (2021). Macroeconomic Consequences Caused by the COVID-19 Pandemic–Case Study of the Automotive Industry. LIMEN 2021, 79.
  • Sensoy A, Tabak BM. (2014). Dynamic spanning trees in stock market networks: The case of Asia-Pacific. Physica A-Statistical Mechanics and Its Applications, 414: 387-402. https://doi.org/10.1016/j.physa.2014.07.067
  • Spada, E. (2004). Use of the Minimum Spanning Tree Model for Molecular Epidemiological Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection, Journal of Clinical Microbiology, 42, 4230. https://doi.org/10.1128/jcm.42.9.4230-4236.2004
  • Szmigiera, M. (2021). COVID-19 Crisis Level Worldwide 2020. Statista. Erişim adresi: https://www.statista.com/statistics/1117538/ coronavirus-crisis-level/ (Erişim adresi: 06 Mart 2025).
  • Şeker, B., Tümenbatur, A., & Tanyaş, M. (2021). Pandemi sürecinde otomotiv değer zinciri için risk yönetimi modeli önerisi. Business Economics and Management Research Journal, 4(1), 33-46.
  • Tabak, B.M., Serra, T.R., Cajueiro, D.O. (2009). The expectation hypothesis of interest rates and network theory: The case of Brazil. Physica A-Statistical Mechanics and Its Applications, 388(7): 1137-1149. https://doi.org/10.1016/j.physa.2008.12.036
  • T.C. Ticaret Bakanlığı, Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ticaret.gov.tr/data/63e3783113b876229cf9c701/Portekiz_Ulke_Sunumu_4_5_2021.pdf (Erişim adresi: 06 Mart 2025).
  • Torok, L. (2020). The link between car sales and the economic crisis in the European Union at the time of the Covid-19 epidemic.
  • Túry, G. (2018). The role of the automotive industry as an export-intensive sector in the EU peripheral regions. Export Influencing Factors in the Iberian, Baltic and Visegrád Regions. Budapest: Institute of World Economics Centre for Economic and Regional Studies, 146-178.
  • Ulusoy, T., Keskin, M., Shirvani, A., Deviren, B., Kantar, E., Donmez, C.C. (2012). Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach. Physica A-Statistical Mechanics and Its Applications, 391(21): 5121-5131. https://doi.org/10.1016/j.physa.2012.01.026
  • Vandewalle, N., Brisbois, F., Tordoir, X. (2001). Non-random topology of stock markets, Quantative Finance, 1: 372-374. Doi: 10.1088/1469-7688/1/3/308
  • World Health Organization. (2022). About the Virus. World Health Organization. Erişim adresi: https://www.euro.who.int/en/ health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncov#:~{}:text=On%2031%20December%20 2019%2C,2019%2DnCoV%E2%80%9D (Erişim adresi: 06 Mart 2025).
  • Worldometer. (2022). Coronavirus Cases. Worldometer. Erişim adresi: https://www.worldometers.info/coronavirus/ (Erişim adresi: 06 Mart 2025).
  • Xue, L., Chen, F., Guo, S., Fu, G., Li, T., & Yang, Y. (2019). Time varying correlation structure of Chinese stock market of crude oil related companies greatly influenced by external factors. Physica a: Statistical Mechanics and Its Applications, 530, 121086. https://doi.org/10.1016/j.physa.2019.121086
  • Zhang, W., Zhuang, X., & Li, Y. (2019). Dynamic evolution process of financial impact path under the multidimensional spatial effect based on G20 financial network. Physica A: Statistical Mechanics and its Applications, 532, 121876. https://doi.org/10.1016/j.physa.2019.121876

Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi

Year 2025, Volume: 15 Issue: 4, 1354 - 1370
https://doi.org/10.21597/jist.1649369

Abstract

2019 yılının sonlarında Çin'in Wuhan şehrinde ortaya çıkan Covid-19 salgını, kısa sürede tüm dünyaya yayılmış ve milyonlarca insanın enfekte olup, birçok kişi de yaşamını yitirmiştir. Covid-19 salgını, aynı zamanda ülkelerin ekonomilerinde ciddi etkilere de sebep olmuştur. Otomotiv sektörü hem üretim hem de talep açısından ciddi düşüşler yaşamış ve küresel bir ekonomik kriz ortaya çıkmıştır. Otomotiv endüstrisi, dünya ekonomisinde önemli bir role sahip olması ve pek çok ülkede önemli bir istihdam kaynağı olması sebebiyle, üretim ve satışlarda yaşanan büyük gerilemeler sonucunda ekonomik durgunlukla karşı karşıya kalmıştır. Salgın süresince otomotiv sektörünün aldığı önlemler ve verdiği tepkiler, sektörün gelecekteki yapısını şekillendirecek önemde olmuştur. Bu çalışmada, yirmi beş Avrupa ülkesi için pandemi öncesi (2018-2019), pandemi süreci (2020-2021) ve pandemi sonrası (2022-2023) için otomotiv sektörünün Covid-19 salgınının etkilerinin otomotiv sektörü özelinde hiyerarşik yapı metotlarından en küçük örten ağaç (EÖA) ve Hiyerarşik Ağaçlar (HA) kullanılarak incelenmesi gerçekleştirilmiştir. Ayrıca elde edilen EÖA’larda bağlantıların güvenirliğini incelemek için Bootstrap metodundan faydalanılmıştır. Sonuç olarak, EÖA ve HA’lar incelendiğinde salgın öncesi dönemde belirgin olan ülke kümelerinin salgın ve sonrası dönemlerde açık şekilde görülmemiştir. Bununla birlikte beklenildiği gibi Avrupa ülkelerinde Covid-19 döneminde trafik kazalarında bir azalma meydana gelmiş ve bu ülkeler kendi aralarında bir küme oluşturmuşlardır.

Ethical Statement

Bu makalede Etik Kurul Onayı gerekli değildir.

Supporting Institution

Yozgat Bozok Üniversitesi BAP

Project Number

FGA-2025-1636

Thanks

Bu çalışma, Yozgat Bozok Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi tarafından FGA-2025-1636 kodlu proje kapsamında desteklenmiştir. Sağladıkları katkılar için teşekkür ederiz.

References

  • Aljohani, TM, Assolami, YO, Alrumayh, O., Mohamed, MA, & Almutairi, A. (2025). Pandemi Sonrası Dünyada Sürdürülebilir Enerji Sistemleri: COVID-19 Sonrası Küresel Enerji İlgili Piyasaların Tepkileri ve Stratejilerinin Taksonomi Tabanlı Analizi. Sürdürülebilirlik, 17 (5), 2307.
  • Alsulami, Samirah H., and Jalal H. Bayati. (2022). Covid-19 infection structure analysis based on minimum spanning tree visualization in the kingdom of Saudi Arabia regions. Journal of Chemistry. https://doi.org/10.1155/2022/1726286
  • Barreiro-Pereira, F. ve Abdelkader-Benmesaud-Conde, T. (2025). COVID-19 Pandemisinin Avrupa Birliği Ekonomisi, Enerjisi ve Çevresi Üzerindeki Etkisi. COVID-19 ve Kamu Politikasında (s. 17-33). Emerald Publishing Limited.
  • Balci, Y., ve Çetin, G. (2020). Covid-19 Pandemi Sürecinin Türkiye'de İstihdama Etkileri ve Kamu Açısından Alınması Gereken Tedbirler. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 19(37), 40-58.
  • Berge, C., Ghouila-Houri, A., Merrington, M., & Ramanujacharyulu, C. (1965). Programming, games and transportation networks.
  • Bivona, S., Bonanno, G., Burlon, R., Gurrera, D., Leone, C. (2008). Taxonomy of correlations of wind velocity - an application to the Sicilian area. Physica A-Statistical Mechanics and Its Applications, 387(23): 5910-5915. https://doi.org/10.1016/j.physa.2008.06.026
  • Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.N. (2003). Topology of correlation-based minimal spanning trees in real and model markets. Physical Review E, 68(4): 046130-4. https://doi.org/10.1103/PhysRevE.68.046130
  • Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., Mantegna, R.N. (2004). Networks of equities in financial markets. European Physical Journal B, 38(2): 363-371. Doi: 10.1140/epjb/e2004-00129-6
  • Bonanno, G., Vandewalle, N., Mantegna, R.N. (2000). Taxonomy of stock market indices. Physical Review E, 62(6): R7615-R7618. https://doi.org/10.1103/PhysRevE.62.R7615
  • Boranova, V., Huidrom, R., Ozturk, E., Stepanyan, A., Topalova, P., & Zhang, S. F. (2022). Cars in Europe: Supply chains and spillovers during COVID-19 times. International Monetary Fund.
  • Brida, J.G., Esteban, L.P., Risso, W.A., Devesa, M.J.S. 2010. The international hotel industry in Spain: Its hierarchical structure. Tourism Management, 31(1): 57-73. https://doi.org/10.1016/j.tourman.2009.02.003
  • Brida, J.G., Gomez, D.M., Risso, W.A. (2009). Symbolic hierarchical analysis in currency markets: An application to contagion in currency crises. Expert Systems with Applications, 36(4): 7721-7728. https://doi.org/10.1016/j.eswa.2008.09.038
  • Brida, J.G., Risso, W.A. (2007). Dynamics and structure of the main Italian companies. International Journal of Modern Physics C, 18(11): 1783-1793. https://doi.org/10.1142/S0129183107011741
  • Brida, J.G., Risso, W.A. (2009). Dynamic and Structure of the Italian Stock Market based on returns and volume trading, Economic Bulletin, 29: 2420-2426.
  • Brida, J.G., Risso, W.A. (2010). Dynamics and Structure of the 30 Largest North American Companies. Computational Economics, 35(1): 85-99. Doi: 10.1007/s10614-009-9187-1
  • Cazcarro, I., García-Gusano, D., Iribarren, D., Linares, P., Romero, J. C., Arocena, P., ... & Cadarso, M. Á. (2022). Energy-socio-economic-environmental modelling for the EU energy and post-COVID-19 transitions. Science of the Total Environment, 805, 150329. https://doi.org/10.1016/j.scitotenv.2021.150329
  • Černá, I., Éltető, A., Folfas, P., Kuźnar, A., Křenková, E., Minárik, M., ... & Zábojník, S. (2022). GVCs in Central Europe: A perspective of the automotive sector after COVID-19.
  • Chowdhury, Tarek, Aditi Sarkar, Sanjoy Kumar Paul, and Abdul Moktadir (2020). A case study on strategies to deal with the impacts of COVID-19 pandemic in the food and beverage industry. Operations Management Research 15: 166–78. https://doi.org/10.1007/s12063-020-00166-9
  • Dong, M., Zhang, X., Yang, K., Liu, R., & Chen, P. (2021). Forecasting the COVID-19 transmission in Italy based on the minimum spanning tree of dynamic region network. PeerJ, 9, e11603. Doi: 10.7717/peerj.11603
  • Dijkstra, E.W. (1959). A note on the two problems in connection with graphs, Numerische Mathematik, 1, 269.
  • Efron, B. (1979). Bootstrap methods: another look at the jackknife, Annals of Statistics, 7(1): 1-26.
  • Eom, C., Oh, G., Kim, S. (2007). Topological properties of a minimal spanning tree in the Korean and the American Stock Markets, Journal of the Korean Physical Society, 51: 1432-1436.
  • European Commission. (2025) Mobility and Transport. Erişim adresi: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (Erişim adresi: 03 Mayıs 2025).
  • European Transport and Safety Council, Road deaths in the European Union – latest data (2025) Erişim adresi: https://transport.ec.europa.eu/news-events/news/road-safety-20640-people-died-road-crash-last-year-progress-remains-too-slow-2023-10-19_en (Erişim adresi: 03 Mayıs 2025).
  • Flori, E., Paterlini, S., Pattarin, F., & Villani, M. (2025). Evaluation of the pandemic impact on global automotive supply chain through network analysis. Journal of Economic Interaction and Coordination, 1-32. https://doi.org/10.1007/s11403-024-00440-0
  • Frieske, B., and Stieler, S. (2022). The “Semiconductor Crisis” as a Result of the COVID-19 Pandemic and Impacts on the Automotive Industry and Its Supply Chains. World Electric Vehicle Journal, 13(10), 189. https://doi.org/10.3390/wevj13100189
  • Garas, A., Argyrakis, P. (2007). Correlation study of the Athens Stock Exchange. Physica A-Statistical Mechanics and Its Applications, 380: 399-410. https://doi.org/10.3390/wevj13100189
  • Garas, A., Argyrakis, P. (2008). A network approach for the scientific collaboration in the European Framework Programs. Epl-Europhys. Lett., 84(6): 68005. Doi: 10.1209/0295-5075/84/68005
  • Guo, H., Zhao, X., Yu, H., & Zhang, X. (2021). Analysis of global stock markets’ connections with emphasis on the impact of COVID-19. Physica A: Statistical Mechanics and its Applications, 569, 125774. https://doi.org/10.1016/j.physa.2021.125774
  • Gräf, H., & Topuria, S. (2023). The impact of the Covid-19 pandemic on industrial policy in Germany and the European Union–the case of the automotive industry. European Journal of Economics and Economic Policies, 1(aop), 1-17. https://doi.org/10.4337/ejeep.2023.0112
  • Hojdik, V. (2021). Current challenges of globalization in the automotive industry in European countries. In SHS web of conferences (Vol. 92, p. 01015). EDP Sciences. https://doi.org/10.1051/shsconf/20219201015
  • Horobet, A., Popoviciu, A. S., Zlatea, E., and Alexe, R. (2021). The Eastern European Automotive Industry in a Post-Pandemic World: What Drives Performance? KnE Social Sciences, 90-108. Doi: 10.18502/kss.v5i9.9887
  • Kantar, E., Deviren, B., Keskin, M. (2014). Hierarchical structure of the European countries based on debts as a percentage of GDP during the 2000-2011 period. Physica A-Statistical Mechanics and Its Applications, 414: 95-107. https://doi.org/10.1016/j.physa.2014.07.001
  • Kaya, H. P. (2023). Çip Krizinin Otomotiv Sektörü Üzerindeki Etkileri. Aksaray Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(1), 67-78. Doi:10.52791/aksarayiibd.1089035
  • Killian, M. R. D. (2022). The Effect of the COVID-19 Pandemic on New Passenger Car Registrations in Western Europe (Doctoral dissertation, Wien).
  • Klein, C., Høj, J., and Machlica, G. (2021). The impacts of the COVID-19 crisis on the automotive sector in Central and Eastern European Countries.
  • Konrad, K., Stagl, S., Krune, E., Michelmann, J., Müller, B., & Müller, M. (2018). Competitiveness of the European automotive manufacturing industry. Institute for Innovation and Technology (iit), Berlin.
  • Kruskal, J. B. 1956. On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, 7, 48.
  • Kufelová, I., & Raková, M. (2020). Impact of the Covid-19 pandemic on the automotive industry in Slovakia and selected countries. In SHS Web of Conferences (Vol. 83, p. 01040). EDP Sciences. https://doi.org/10.1051/shsconf/20208301040
  • Lazarov, D. (2020). Analysis of the effects on the metal processing, electric, machinery and automotive industry from the health-economic crisis caused by the Covid-19 pandemic.
  • Lechowski, G., Krzywdzinski, M., Humphrey, J., & Pardi, T. (2025). Global Shifts in the Automotive Industry. Outlining the New Arrangements Between Technology, Policy, Firms, and Markets. In Global Shifts in the Automotive Sector: Markets, Firms and Technologies in the Age of Geopolitical Disruption (pp. 345-365). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-80641-4_14
  • Li, B., & Liao, Z. (2020). Finding changes in the foreign exchange market from the perspective of currency network. Physica A: Statistical Mechanics and its Applications, 545, 123727. https://doi.org/10.1016/j.physa.2019.123727
  • Mahdi, Baidaa Saleh, and Jalal Hatem Hussein Al-Bayati. (2022). Minimum spanning tree application in Covid-19 network structure analysis in the countries of the Middle East. Journal of Discrete Mathematical Sciences and Cryptography 25.8: 2723-2728. https://doi.org/10.1080/09720529.2022.2060923
  • Mantegna, R.N. (1999). Hierarchical structure in financial markets. The European Physical Journal B, 11(1): 193-197.
  • Matesanz, D., Ortega, G.J. (2014). Network analysis of exchange data: interdependence drives crisis contagion. Quality & Quantity, 48(4): 1835-1851. https://doi.org/10.1007/s11135-013-9855-z
  • Mbatha, Vusisizwe Moses, and Sedjro Aaron Alovokpinhou. (2022). The structure of the South African stock market network during COVID-19 hard lockdown. Physica A: Statistical Mechanics and its Applications 590: 126770. https://doi.org/10.1016/j.physa.2021.126770
  • McDonald, M., Suleman, O., Williams, S., Howison, S., Johnson, N.F. (2005). Detecting a currency's dominance or dependence using foreign exchange network trees. Physical Review E, 72(4) 046106-11. https://doi.org/10.1103/PhysRevE.72.046106
  • Mizuno, T., Takayasu, H., Takayasu, M. (2006). Correlation networks among currencies. Physica A-Statistical Mechanics and Its Applications, 364: 336-342. https://doi.org/10.1016/j.physa.2005.08.079
  • Nie, Chun-Xiao. (2022). Analysis of critical events in the correlation dynamics of cryptocurrency market. Physica A: Statistical Mechanics and its Applications 586: 126462. https://doi.org/10.1016/j.physa.2021.126462
  • Niu, Y., Werle, N., Cohen, M., Cui, S., Deshpande, V., Ernst, R., ... & Wu, J. (2025). Restructuring Global Supply Chains: Navigating Challenges of the COVID-19 Pandemic and Beyond. Manufacturing & Service Operations Management. https://doi.org/10.1287/msom.2024.0879
  • OECDPCR (Organisation for Economic Co-operation and Development Pessenger Car Registrations) Available online: (Erişim adresi: 06 Mart 2025).
  • OECDRA (Organisation for Economic Co-operation and Development Road Accidents) Erişim adresi: https://data.oecd.org/transport/road-accidents.htm#indicator-chart (Erişim adresi: 06 Mart 2025).
  • OICA Sales/registrations of new vehicles in countries represented.” International Organization of Motor Vehicle, Erişim adresi: https://www.oica.net/ (Erişim adresi: 06 Mart 2025).
  • Ortega, G.J., Matesanz, D. (2006). Cross-country hierarchical structure and currency crises. International Journal of Modern Physics C, 17(3): 333-341. https://doi.org/10.1142/S012918310600856X
  • Özçelik, A. E., & Karan, B. (2021). Pandemi sürecinin otomotiv sektörüne ve üretimine etkisi. MAS Journal of Applied Sciences, 6(4), 926-939. https://doi.org/10.52520/masjaps.136
  • Pang, R. K. K., Granados, O. M., Chhajer, H., & Legara, E. F. T. (2021). An analysis of network filtering methods to sovereign bond yields during COVID-19. Physica A: Statistical mechanics and its applications, 574, 125995. https://doi.org/10.1016/j.physa.2021.125995
  • Pelle, A., & Tabajdi, G. (2021). Covid-19 and transformational megatrends in the European automotive industry: Evidence from business decisions with a Central and Eastern European focus. Entrepreneurial Business and Economics Review, 9(4), 19-33.
  • Prim, R. C. (1957). Shortest connection networks and some generalizations, Bell Systems Technical Journal, 36, 1389. Doi: 10.1002/j.1538-7305.1957.tb01515.x
  • Radić, N., & Radić, V. (2021). Macroeconomic Consequences Caused by the COVID-19 Pandemic–Case Study of the Automotive Industry. LIMEN 2021, 79.
  • Sensoy A, Tabak BM. (2014). Dynamic spanning trees in stock market networks: The case of Asia-Pacific. Physica A-Statistical Mechanics and Its Applications, 414: 387-402. https://doi.org/10.1016/j.physa.2014.07.067
  • Spada, E. (2004). Use of the Minimum Spanning Tree Model for Molecular Epidemiological Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection, Journal of Clinical Microbiology, 42, 4230. https://doi.org/10.1128/jcm.42.9.4230-4236.2004
  • Szmigiera, M. (2021). COVID-19 Crisis Level Worldwide 2020. Statista. Erişim adresi: https://www.statista.com/statistics/1117538/ coronavirus-crisis-level/ (Erişim adresi: 06 Mart 2025).
  • Şeker, B., Tümenbatur, A., & Tanyaş, M. (2021). Pandemi sürecinde otomotiv değer zinciri için risk yönetimi modeli önerisi. Business Economics and Management Research Journal, 4(1), 33-46.
  • Tabak, B.M., Serra, T.R., Cajueiro, D.O. (2009). The expectation hypothesis of interest rates and network theory: The case of Brazil. Physica A-Statistical Mechanics and Its Applications, 388(7): 1137-1149. https://doi.org/10.1016/j.physa.2008.12.036
  • T.C. Ticaret Bakanlığı, Erişim adresi: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ticaret.gov.tr/data/63e3783113b876229cf9c701/Portekiz_Ulke_Sunumu_4_5_2021.pdf (Erişim adresi: 06 Mart 2025).
  • Torok, L. (2020). The link between car sales and the economic crisis in the European Union at the time of the Covid-19 epidemic.
  • Túry, G. (2018). The role of the automotive industry as an export-intensive sector in the EU peripheral regions. Export Influencing Factors in the Iberian, Baltic and Visegrád Regions. Budapest: Institute of World Economics Centre for Economic and Regional Studies, 146-178.
  • Ulusoy, T., Keskin, M., Shirvani, A., Deviren, B., Kantar, E., Donmez, C.C. (2012). Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach. Physica A-Statistical Mechanics and Its Applications, 391(21): 5121-5131. https://doi.org/10.1016/j.physa.2012.01.026
  • Vandewalle, N., Brisbois, F., Tordoir, X. (2001). Non-random topology of stock markets, Quantative Finance, 1: 372-374. Doi: 10.1088/1469-7688/1/3/308
  • World Health Organization. (2022). About the Virus. World Health Organization. Erişim adresi: https://www.euro.who.int/en/ health-topics/health-emergencies/coronavirus-covid-19/novel-coronavirus-2019-ncov#:~{}:text=On%2031%20December%20 2019%2C,2019%2DnCoV%E2%80%9D (Erişim adresi: 06 Mart 2025).
  • Worldometer. (2022). Coronavirus Cases. Worldometer. Erişim adresi: https://www.worldometers.info/coronavirus/ (Erişim adresi: 06 Mart 2025).
  • Xue, L., Chen, F., Guo, S., Fu, G., Li, T., & Yang, Y. (2019). Time varying correlation structure of Chinese stock market of crude oil related companies greatly influenced by external factors. Physica a: Statistical Mechanics and Its Applications, 530, 121086. https://doi.org/10.1016/j.physa.2019.121086
  • Zhang, W., Zhuang, X., & Li, Y. (2019). Dynamic evolution process of financial impact path under the multidimensional spatial effect based on G20 financial network. Physica A: Statistical Mechanics and its Applications, 532, 121876. https://doi.org/10.1016/j.physa.2019.121876
There are 73 citations in total.

Details

Primary Language Turkish
Subjects Classical Physics (Other)
Journal Section Research Article
Authors

Nevfel Yunus Coskun 0000-0002-0464-3818

Ersin Kantar 0000-0001-9302-1078

Project Number FGA-2025-1636
Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date March 3, 2025
Acceptance Date May 7, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Coskun, N. Y., & Kantar, E. (2025). Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi. Journal of the Institute of Science and Technology, 15(4), 1354-1370. https://doi.org/10.21597/jist.1649369
AMA Coskun NY, Kantar E. Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi. J. Inst. Sci. and Tech. November 2025;15(4):1354-1370. doi:10.21597/jist.1649369
Chicago Coskun, Nevfel Yunus, and Ersin Kantar. “Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi Ve Sonrası Otomotiv Sektörünün Analizi”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1354-70. https://doi.org/10.21597/jist.1649369.
EndNote Coskun NY, Kantar E (November 1, 2025) Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi. Journal of the Institute of Science and Technology 15 4 1354–1370.
IEEE N. Y. Coskun and E. Kantar, “Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1354–1370, 2025, doi: 10.21597/jist.1649369.
ISNAD Coskun, Nevfel Yunus - Kantar, Ersin. “Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi Ve Sonrası Otomotiv Sektörünün Analizi”. Journal of the Institute of Science and Technology 15/4 (November2025), 1354-1370. https://doi.org/10.21597/jist.1649369.
JAMA Coskun NY, Kantar E. Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi. J. Inst. Sci. and Tech. 2025;15:1354–1370.
MLA Coskun, Nevfel Yunus and Ersin Kantar. “Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi Ve Sonrası Otomotiv Sektörünün Analizi”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1354-70, doi:10.21597/jist.1649369.
Vancouver Coskun NY, Kantar E. Disiplinler Arası Hiyerarşik Yapı Metotları Kullanılarak Covid-19 Pandemisi Öncesi, Dönemi ve Sonrası Otomotiv Sektörünün Analizi. J. Inst. Sci. and Tech. 2025;15(4):1354-70.