Research Article
BibTex RIS Cite

Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle

Year 2025, Volume: 15 Issue: 4, 1311 - 1328
https://doi.org/10.21597/jist.1651197

Abstract

This study proposes an advanced EMS for a SHEV equipped with lithium-ion (Li-ion) batteries and supercapacitors (SC). The developed rule-based EMS optimizes power distribution between the internal combustion engine (ICE), electric motor (EM), and energy storage system (ESS), ensuring efficient energy utilization while enhancing battery lifespan and vehicle performance. The proposed EMS dynamically adjusts power flow based on real-time driving conditions and charge state, preventing excessive charge/discharge currents and improving regenerative braking efficiency. A comprehensive simulation was conducted using the ADVISOR (Advanced Vehicle Simulator) platform to evaluate vehicle performance under Urban Dynamometer Driving Schedule (UDDS) and New European Driving Cycle (NEDC) conditions. Results demonstrate that the EMS significantly enhances energy efficiency, reduces fuel consumption, and extends battery longevity while ensuring optimal power delivery. Comparative analysis reveals superior performance under NEDC conditions due to smoother acceleration and braking patterns. These findings highlight the effectiveness of integrating supercapacitors with Li-ion batteries in SHEV architectures, providing a viable solution for sustainable and efficient hybrid vehicle design.

References

  • Bagwe, R. M., Byerly, A., dos Santos Jr, E. C., & Ben-Miled, Z. (2019). Adaptive rule-based energy management strategy for a parallel HEV. Energies, 12(23), 4472. https://doi.org/10.3390/en12234472
  • Baur, D. G., & Todorova, N. (2018). Automobile manufacturers, electric vehicles and the price of oil. Energy Economics, 74, 252–262. https://doi.org/10.1016/J.ENECO.2018.05.034
  • Cao, C., Li, Z. Bin, Wang, X. L., Zhao, X. B., & Han, W. Q. (2014). Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2(JUN). https://doi.org/10.3389/FENRG.2014.00025/PDF
  • Chau, K. T., & Wong, Y. S. (2002). Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 43(15), 1953–1968. https://doi.org/10.1016/S0196-8904(01)00148-0
  • Chau, K., Wong, Y., & Chan, C. (1999). An overview of energy sources for electric vehicles. Energy Conversion Management, 40(1), 1021–1039.
  • Costa, C. M., Barbosa, J. C., Castro, H., Gonçalves, R., & Lanceros-Méndez, S. (2021). Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries. Renewable and Sustainable Energy Reviews, 151, 111548. https://doi.org/10.1016/J.RSER.2021.111548
  • Domarchi, C., & Cherchi, E. (2023). Electric vehicle forecasts: A review of models and methods including diffusion and substitution effects. Transport Reviews, 43(6), 1118–1143. https://doi.org/10.1080/01441647.2023.2266481
  • Ehsani, M., Gao, Y., Longo, S., & Ebrahimi, K. M. . (2019). Modern electric, hybrid electric, and fuel cell vehicles. Taylor & Francis, CRC Press. https://www.nobelkitabevi.com.tr/makina-otomotiv/15564-modern-electric-hybrid-electric-and-fuel-cell-vehicles-9781138330498.html
  • Ferreira, A. A., Pomilio, J. A., Spiazzi, G., & de Araujo Silva, L. (2008). Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Transactions on Power Electronics, 23(1), 107–115. https://doi.org/10.1109/TPEL.2007.911775
  • Foyer, J., Aykut, S. C., & Morena, E. (2018). Introduction: COP21 and the “climatisation” of global debates. In Globalising the Climate. Routledge. https://doi.org/10.4324/9781315560595-1/INTRODUCTION-COP21-CLIMATISATION-GLOBAL-DEBATES-JEAN-FOYER-STEFAN-AYKUT-EDOUARD-MORENA
  • Gao, L., Liu, S., & Dougal, R. A. (2002). Dynamic lithium-ion battery model for system simulation. IEEE Transactions on Components and Packaging Technologies, 25(3), 495–505. https://doi.org/10.1109/TCAPT.2002.803653
  • Herath, A., Kodituwakku, S., Dasanayake, D., Binduhewa, P., Ekanayake, J., & Samarakoon, K. (2019). Comparison of optimization‐ and rule‐based EMS for domestic PV‐battery installation with time‐varying local SoC limits. Journal of Electrical and Computer Engineering, 2019(1), 8162475.
  • He, H., Xiong, R., Guo, H., & Li, S. (2012). Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Conversion and Management, 64, 113–121. https://doi.org/10.1016/J.ENCONMAN.2012.04.014
  • Jackson, R. B., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Le Quéré, C., & Peters, G. P. (2019). Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environmental Research Letters, 14(12). https://doi.org/10.1088/1748-9326/AB57B3
  • Jinrui, N., Fengchun, S., & Qinglian, R. (2006). A study of energy management system of electric vehicles. 2006 IEEE Vehicle Power and Propulsion Conference, VPPC 2006. https://doi.org/10.1109/VPPC.2006.364301
  • Johnson, V. H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321–329. https://doi.org/10.1016/S0378-7753(02)00194-5
  • Karabacak, M., & Eskikurt, H. I. (2012). Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Applied Mathematical Modelling, 36(11), 5199–5213. https://doi.org/10.1016/J.APM.2011.12.048
  • Kerem, A. (2014). Elektrikli Araç Teknolojisinin Gelişimi & Gelecek Beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1–13. https://dergipark.org.tr/tr/pub/makufebed/issue/19419/206527
  • Khaligh, A., & Li, Z. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814. https://doi.org/10.1109/TVT.2010.2047877
  • Liu, C., & Liu, Y. (2022). Energy Management Strategy for Plug-In Hybrid Electric Vehicles Based on Driving Condition Recognition: A Review. Electronics 2022, Vol. 11, Page 342, 11(3), 342. https://doi.org/10.3390/ELECTRONICS11030342
  • May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145–157. https://doi.org/10.1016/J.EST.2017.11.008
  • Mi, C., & Masrur, M. A. (2017). Hybrid electric vehicles: Principles and applications with practical perspectives: Second edition. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives: Second Edition, 1–567. https://doi.org/10.1002/9781118970553
  • Michalczuk, M., Grzesiak, L. M., & Ufnalski, B. (2013). Hybridization of the lithium energy storage for an urban electric vehicle. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2), 325–333. https://doi.org/10.2478/BPASTS-2013-0030
  • Mitkowski, W., & Skruch, P. (2013). Fractional-order models of the supercapacitors in the form of RC ladder networks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), 581–587. https://doi.org/10.2478/BPASTS-2013-0059
  • Patel, K. K., Singhal, T., Pandey, V., Sumangala, T. P., & Sreekanth, M. S. (2021). Evolution and recent developments of high performance electrode material for supercapacitors: A review. Journal of Energy Storage, 44, 103366. https://doi.org/10.1016/J.EST.2021.103366
  • Pérez, L. V., Bossio, G. R., Moitre, D., & García, G. O. (2006). Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation, 73(1–4), 244–254. https://doi.org/10.1016/J.MATCOM.2006.06.016
  • Soylu, S., & Soylu, S. (2011). Electric Vehicles - The Benefits and Barriers. Electric Vehicles €“ The Benefits and Barriers. https://doi.org/10.5772/717
  • Tan, R. H. G., & Hoo, L. Y. H. (2015). DC-DC converter modeling and simulation using state space approach. 2015 IEEE Conference on Energy Conversion, CENCON 2015, 42–47. https://doi.org/10.1109/CENCON.2015.7409511
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82–102. https://doi.org/10.1016/j.rser.2012.11.077
  • Trovão, J. P., Pereirinha, P. G., Jorge, H. M., & Antunes, C. H. (2013). A multi-level energy management system for multi-source electric vehicles - An integrated rule-based meta-heuristic approach. Applied Energy, 105, 304–318. https://doi.org/10.1016/j.apenergy.2012.12.081
  • Young, K. H. (2016). Research in Nickel/Metal Hydride Batteries 2016. Batteries 2016, Vol. 2, Page 31, 2(4), 31. https://doi.org/10.3390/BATTERIES2040031
  • Zhang, X., & Mi, C. (2011). Vehicle Power Management: Modeling, Control and Optimization. Power Systems, 51. https://doi.org/10.1007/978-0-85729-736-5/COVER

Seri Hibrit Elektrikli Araçlarda Süperkapasitör & Lityum İyon Batarya Yönetimi

Year 2025, Volume: 15 Issue: 4, 1311 - 1328
https://doi.org/10.21597/jist.1651197

Abstract

Bu çalışma, lityum-iyon (Li-ion) bataryalar & süperkapasitörler (SC) ile donatılmış bir seri hibrit elektrikli araç (SHEV) için gelişmiş bir enerji yönetim sistemi (EMS) önermektedir. Geliştirilen kural tabanlı EMS, içten yanmalı motor (ICE), elektrik motoru (EM) & enerji depolama sistemi (ESS) arasındaki güç dağıtımını optimize ederek enerji kullanımını verimli hale getirirken batarya ömrünü & araç performansını artırmaktadır. Önerilen EMS, gerçek zamanlı sürüş koşulları & şarj durumu temelinde güç akışını dinamik olarak ayarlayarak aşırı şarj/deşarj akımlarını önlemekte & rejeneratif frenleme verimliliğini artırmaktadır. Araç performansını değerlendirmek için Gelişmiş Araç Simülatörü platformu (ADVISOR) kullanılarak Kentsel Dinamometre Sürüş Çevrimi (UDDS) & Yeni Avrupa Sürüş Çevrimi (NEDC) koşullarında kapsamlı bir simülasyon gerçekleştirilmiştir. Elde edilen sonuçlar, EMS’nin enerji verimliliğini önemli ölçüde artırdığını, yakıt tüketimini azalttığını & batarya ömrünü uzattığını göstermektedir. Karşılaştırmalı analiz, NEDC sürüş çevriminde daha dengeli hızlanma & frenleme desenleri nedeniyle daha üstün bir performans sergilendiğini ortaya koymuştur. Bu bulgular, süperkapasitörlerin Li-ion bataryalar ile entegrasyonunun SHEV mimarilerinde etkin bir çözüm sunduğunu & sürdürülebilir, verimli hibrit araç tasarımı için önemli bir katkı sağladığını göstermektedir.

References

  • Bagwe, R. M., Byerly, A., dos Santos Jr, E. C., & Ben-Miled, Z. (2019). Adaptive rule-based energy management strategy for a parallel HEV. Energies, 12(23), 4472. https://doi.org/10.3390/en12234472
  • Baur, D. G., & Todorova, N. (2018). Automobile manufacturers, electric vehicles and the price of oil. Energy Economics, 74, 252–262. https://doi.org/10.1016/J.ENECO.2018.05.034
  • Cao, C., Li, Z. Bin, Wang, X. L., Zhao, X. B., & Han, W. Q. (2014). Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2(JUN). https://doi.org/10.3389/FENRG.2014.00025/PDF
  • Chau, K. T., & Wong, Y. S. (2002). Overview of power management in hybrid electric vehicles. Energy Conversion and Management, 43(15), 1953–1968. https://doi.org/10.1016/S0196-8904(01)00148-0
  • Chau, K., Wong, Y., & Chan, C. (1999). An overview of energy sources for electric vehicles. Energy Conversion Management, 40(1), 1021–1039.
  • Costa, C. M., Barbosa, J. C., Castro, H., Gonçalves, R., & Lanceros-Méndez, S. (2021). Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries. Renewable and Sustainable Energy Reviews, 151, 111548. https://doi.org/10.1016/J.RSER.2021.111548
  • Domarchi, C., & Cherchi, E. (2023). Electric vehicle forecasts: A review of models and methods including diffusion and substitution effects. Transport Reviews, 43(6), 1118–1143. https://doi.org/10.1080/01441647.2023.2266481
  • Ehsani, M., Gao, Y., Longo, S., & Ebrahimi, K. M. . (2019). Modern electric, hybrid electric, and fuel cell vehicles. Taylor & Francis, CRC Press. https://www.nobelkitabevi.com.tr/makina-otomotiv/15564-modern-electric-hybrid-electric-and-fuel-cell-vehicles-9781138330498.html
  • Ferreira, A. A., Pomilio, J. A., Spiazzi, G., & de Araujo Silva, L. (2008). Energy management fuzzy logic supervisory for electric vehicle power supplies system. IEEE Transactions on Power Electronics, 23(1), 107–115. https://doi.org/10.1109/TPEL.2007.911775
  • Foyer, J., Aykut, S. C., & Morena, E. (2018). Introduction: COP21 and the “climatisation” of global debates. In Globalising the Climate. Routledge. https://doi.org/10.4324/9781315560595-1/INTRODUCTION-COP21-CLIMATISATION-GLOBAL-DEBATES-JEAN-FOYER-STEFAN-AYKUT-EDOUARD-MORENA
  • Gao, L., Liu, S., & Dougal, R. A. (2002). Dynamic lithium-ion battery model for system simulation. IEEE Transactions on Components and Packaging Technologies, 25(3), 495–505. https://doi.org/10.1109/TCAPT.2002.803653
  • Herath, A., Kodituwakku, S., Dasanayake, D., Binduhewa, P., Ekanayake, J., & Samarakoon, K. (2019). Comparison of optimization‐ and rule‐based EMS for domestic PV‐battery installation with time‐varying local SoC limits. Journal of Electrical and Computer Engineering, 2019(1), 8162475.
  • He, H., Xiong, R., Guo, H., & Li, S. (2012). Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Conversion and Management, 64, 113–121. https://doi.org/10.1016/J.ENCONMAN.2012.04.014
  • Jackson, R. B., Friedlingstein, P., Andrew, R. M., Canadell, J. G., Le Quéré, C., & Peters, G. P. (2019). Persistent fossil fuel growth threatens the Paris Agreement and planetary health. Environmental Research Letters, 14(12). https://doi.org/10.1088/1748-9326/AB57B3
  • Jinrui, N., Fengchun, S., & Qinglian, R. (2006). A study of energy management system of electric vehicles. 2006 IEEE Vehicle Power and Propulsion Conference, VPPC 2006. https://doi.org/10.1109/VPPC.2006.364301
  • Johnson, V. H. (2002). Battery performance models in ADVISOR. Journal of Power Sources, 110(2), 321–329. https://doi.org/10.1016/S0378-7753(02)00194-5
  • Karabacak, M., & Eskikurt, H. I. (2012). Design, modelling and simulation of a new nonlinear and full adaptive backstepping speed tracking controller for uncertain PMSM. Applied Mathematical Modelling, 36(11), 5199–5213. https://doi.org/10.1016/J.APM.2011.12.048
  • Kerem, A. (2014). Elektrikli Araç Teknolojisinin Gelişimi & Gelecek Beklentileri. Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1), 1–13. https://dergipark.org.tr/tr/pub/makufebed/issue/19419/206527
  • Khaligh, A., & Li, Z. (2010). Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art. IEEE Transactions on Vehicular Technology, 59(6), 2806–2814. https://doi.org/10.1109/TVT.2010.2047877
  • Liu, C., & Liu, Y. (2022). Energy Management Strategy for Plug-In Hybrid Electric Vehicles Based on Driving Condition Recognition: A Review. Electronics 2022, Vol. 11, Page 342, 11(3), 342. https://doi.org/10.3390/ELECTRONICS11030342
  • May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145–157. https://doi.org/10.1016/J.EST.2017.11.008
  • Mi, C., & Masrur, M. A. (2017). Hybrid electric vehicles: Principles and applications with practical perspectives: Second edition. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives: Second Edition, 1–567. https://doi.org/10.1002/9781118970553
  • Michalczuk, M., Grzesiak, L. M., & Ufnalski, B. (2013). Hybridization of the lithium energy storage for an urban electric vehicle. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(2), 325–333. https://doi.org/10.2478/BPASTS-2013-0030
  • Mitkowski, W., & Skruch, P. (2013). Fractional-order models of the supercapacitors in the form of RC ladder networks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 61(3), 581–587. https://doi.org/10.2478/BPASTS-2013-0059
  • Patel, K. K., Singhal, T., Pandey, V., Sumangala, T. P., & Sreekanth, M. S. (2021). Evolution and recent developments of high performance electrode material for supercapacitors: A review. Journal of Energy Storage, 44, 103366. https://doi.org/10.1016/J.EST.2021.103366
  • Pérez, L. V., Bossio, G. R., Moitre, D., & García, G. O. (2006). Optimization of power management in an hybrid electric vehicle using dynamic programming. Mathematics and Computers in Simulation, 73(1–4), 244–254. https://doi.org/10.1016/J.MATCOM.2006.06.016
  • Soylu, S., & Soylu, S. (2011). Electric Vehicles - The Benefits and Barriers. Electric Vehicles €“ The Benefits and Barriers. https://doi.org/10.5772/717
  • Tan, R. H. G., & Hoo, L. Y. H. (2015). DC-DC converter modeling and simulation using state space approach. 2015 IEEE Conference on Energy Conversion, CENCON 2015, 42–47. https://doi.org/10.1109/CENCON.2015.7409511
  • Tie, S. F., & Tan, C. W. (2013). A review of energy sources and energy management system in electric vehicles. Renewable and Sustainable Energy Reviews, 20, 82–102. https://doi.org/10.1016/j.rser.2012.11.077
  • Trovão, J. P., Pereirinha, P. G., Jorge, H. M., & Antunes, C. H. (2013). A multi-level energy management system for multi-source electric vehicles - An integrated rule-based meta-heuristic approach. Applied Energy, 105, 304–318. https://doi.org/10.1016/j.apenergy.2012.12.081
  • Young, K. H. (2016). Research in Nickel/Metal Hydride Batteries 2016. Batteries 2016, Vol. 2, Page 31, 2(4), 31. https://doi.org/10.3390/BATTERIES2040031
  • Zhang, X., & Mi, C. (2011). Vehicle Power Management: Modeling, Control and Optimization. Power Systems, 51. https://doi.org/10.1007/978-0-85729-736-5/COVER
There are 32 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Feyyaz Alpsalaz 0000-0002-7695-6426

Yavuz Türkay 0000-0002-4263-8286

Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date March 4, 2025
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Alpsalaz, F., & Türkay, Y. (2025). Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle. Journal of the Institute of Science and Technology, 15(4), 1311-1328. https://doi.org/10.21597/jist.1651197
AMA Alpsalaz F, Türkay Y. Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle. J. Inst. Sci. and Tech. November 2025;15(4):1311-1328. doi:10.21597/jist.1651197
Chicago Alpsalaz, Feyyaz, and Yavuz Türkay. “Supercapacitor and Lithium-Ion Battery Management in a Series Hybrid Electric Vehicle”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1311-28. https://doi.org/10.21597/jist.1651197.
EndNote Alpsalaz F, Türkay Y (November 1, 2025) Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle. Journal of the Institute of Science and Technology 15 4 1311–1328.
IEEE F. Alpsalaz and Y. Türkay, “Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1311–1328, 2025, doi: 10.21597/jist.1651197.
ISNAD Alpsalaz, Feyyaz - Türkay, Yavuz. “Supercapacitor and Lithium-Ion Battery Management in a Series Hybrid Electric Vehicle”. Journal of the Institute of Science and Technology 15/4 (November2025), 1311-1328. https://doi.org/10.21597/jist.1651197.
JAMA Alpsalaz F, Türkay Y. Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle. J. Inst. Sci. and Tech. 2025;15:1311–1328.
MLA Alpsalaz, Feyyaz and Yavuz Türkay. “Supercapacitor and Lithium-Ion Battery Management in a Series Hybrid Electric Vehicle”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1311-28, doi:10.21597/jist.1651197.
Vancouver Alpsalaz F, Türkay Y. Supercapacitor and lithium-ion battery management in a series hybrid electric vehicle. J. Inst. Sci. and Tech. 2025;15(4):1311-28.