Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 4, 1480 - 1494
https://doi.org/10.21597/jist.1662167

Abstract

References

  • Alraddadi, S., & Assaedi, H. (2020). Characterization and potential applications of different powder volcanic ash. Journal of King Saud University - Science, 32(7), 2969–2975. doi: 10.1016/J.JKSUS.2020.07.019
  • Avşar, E., Ulusay, R., & Mutlutürk, M. (2015). An experimental investigation of the mechanical behavior and microstructural features of a volcanic soil (Isparta, Turkey) and stability of cut slopes in this soil. Engineering Geology, 189, 68–83. doi: 10.1016/J.ENGGEO.2015.01.027
  • Bu, Y., Liu, J., Chu, H., Wei, S., Yin, Q., Kang, L., Luo, X., Sun, L., Xu, F., Huang, P., Rosei, F., Pimerzin, A. A., Seifert, H. J., Du, Y., & Wang, J. (2021). Catalytic hydrogen evolution of nabh4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon. Nanomaterials, 11(12). doi: 10.3390/NANO11123259/S1
  • Campbell, C. T. (2013). The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 46(8), 1712–1719. doi: 10.1021/AR3003514/ASSET/IMAGES/MEDIUM/AR-2012-003514_0008.GIF
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. Journal of Materials Science, 51(22), 10301–10317. doi: 10.1007/S10853-016-0257-1/METRICS
  • Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., & Sels, B. F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 45(3), 584–611. doi: 10.1039/C5CS00859J
  • Fine, G., & Stolper, E. (1986). Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth and Planetary Science Letters, 76(3–4), 263–278. doi: 10.1016/0012-821X(86)90078-6
  • GÖzeten, İ., & Tunç, M. (2022). Palladium nanoparticles supported on multı-walled carbon nanotube (MWCNT) for the catalytic hexavalent chromium reduction. Materials Chemistry and Physics, 278, 125628. doi: 10.1016/J.MATCHEMPHYS.2021.125628
  • Gözeten, İ., & Tunç, M. (2022a). Palladium Nanoparticles Supported on Activated Carbon (C) for the Catalytic Hexavalent Chromium Reduction. Water, Air, and Soil Pollution, 233(1), 1–14. doi: 10.1007/S11270-021-05479-4/FİG.S/8
  • Gözeten, İ., & Tunç, M. (2022b). Palladium nanoparticles supported on aluminum oxide (Al2O3) for the catalytic hexavalent chromium reduction. Journal of Nanoparticle Research, 24(1). doi: 10.1007/S11051-021-05389-W
  • Gözeten, İ., Karakaş, K., Karataş, Y., Tunç, M., & Gülcan, M. (2023). The catalytic activity of halloysite-supported Ru nanoparticles in the methanolysis of sodium borohydride for hydrogen production. International Journal of Hydrogen Energy, 48(92), 35838–35849. doi: 10.1016/J.IJHYDENE.2023.05.297
  • Huang, Z., Wang, Z., Chen, F., Shen, Q., & Zhang, L. (2016). Band structures and optical properties of Al-doped α-Si3N4: theoretical and experimental studies. Ceramics International, 42(2), 3681–3686. doi: 10.1016/J.CERAMINT.2015.11.036
  • Karaoǧlu, Ö., Helvaci, C., & Ersoy, Y. (2010). Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos, 119(3–4), 193–210. doi: 10.1016/J.LITHOS.2010.07.001
  • Kaushik, M., & Moores, A. (2016). Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry, 18(3), 622–637. doi: 10.1039/C5GC02500A
  • Khalily, M. A., Yurderi, M., Haider, A., Bulut, A., Patil, B., Zahmakiran, M., & Uyar, T. (2018). Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane. ACS Applied Materials & Interfaces, 10(31), 26162–26169. doi: 10.1021/ACSAMI.8B04822
  • Kürkçüoğlu, M. E., Kahraman, F. Ç., Dizman, S., & Bilgici Cengiz, G. (2024). Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye. Nuclear Engineering and Technology. doi: 10.1016/J.NET.2024.05.002
  • Mohammed, L. H., Gulbagca, F., Tiri, R. N. E., Aygun, A., Bekmezci, M., & Sen, F. (2023). Hydrothermal-assisted synthesis of Co-doped ZnO nanoparticles catalyst for sodium borohydride dehydrogenation and photodegradation of organic pollutants in water. Chemical Engineering Journal Advances, 14, 100495. doi: 10.1016/J.CEJA.2023.100495
  • Pandey, M., Singh, M., Wasnik, K., Gupta, S., Patra, S., Gupta, P. S., Pareek, D., Chaitanya, N. S. N., Maity, S., Reddy, A. B. M., Tilak, R., & Paik, P. (2021). Targeted and Enhanced Antimicrobial Inhibition of Mesoporous ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 Composite Nanoparticles. ACS Omega, 6(47), 31615–31631. doi: 10.1021/ACSOMEGA.1C04139
  • Paterson, R., Alharbi, A. A., Wills, C., Dixon, C., Šiller, L., Chamberlain, T. W., Griffiths, A., Collins, S. M., Wu, K., Simmons, M. D., Bourne, R. A., Lovelock, K. R. J., Seymour, J., Knight, J. G., & Doherty, S. (2022). Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Molecular Catalysis, 528, 112476. doi: 10.1016/J.MCAT.2022.112476
  • Pérez-Mayoral, E., Calvino-Casilda, V., & Soriano, E. (2016). Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science & Technology, 6(5), 1265–1291. doi: 10.1039/C5CY01437A
  • Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528. doi: 10.1016/J.CONBUILDMAT.2022.127528
  • Rakap, M. (2015). Hydrolysis of Sodium Borohydride and Ammonia Borane for Hydrogen Generation Using Highly Efficient Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Ru–Pd Nanoparticles as Catalysts. International Journal of Green Energy, 12(12), 1288–1300. doi: 10.1080/15435075.2014.895737
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29. doi: 10.1016/J.APCATB.2009.05.014
  • Rakap, M., & Özkar, S. (2012). Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catalysis Today, 183(1), 17–25. doi: 10.1016/J.CATTOD.2011.04.022
  • Rakap, M., & Rakap, M. (2020a). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003
  • Rakap, M., & Rakap, M. (2020b). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003
  • Rakap, M., Kalu, E. E., & Özkar, S. (2011). Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 509(25), 7016–7021. doi: 10.1016/J.JALLCOM.2011.04.023
  • Rose, W. I., & Durant, A. J. (2009). Fine ash content of explosive eruptions. Journal of Volcanology and Geothermal Research, 186(1–2), 32–39. doi: 10.1016/J.JVOLGEORES.2009.01.010
  • Tchadjié, L. N., Djobo, J. N. Y., Ranjbar, N., Tchakouté, H. K., Kenne, B. B. D., Elimbi, A., & Njopwouo, D. (2016). Potential of using granite waste as raw material for geopolymer synthesis. Ceramics International, 42(2), 3046–3055. doi: 10.1016/J.CERAMINT.2015.10.091
  • Tiri, R. N. E., Gulbagca, F., Aygun, A., Cherif, A., & Sen, F. (2022). Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environmental Research, 206, 112622. doi: 10.1016/J.ENVRES.2021.112622
  • Wang, Y., Li, T., Bai, S., Qi, K., Cao, Z., Zhang, K., Wu, S., & Wang, D. (2016). Catalytic hydrolysis of sodium borohydride via nanostructured cobalt–boron catalysts. International Journal of Hydrogen Energy, 41(1), 276–284. doi: 10.1016/J.IJHYDENE.2015.11.076
  • Yang, C. C., Chen, M. S., & Chen, Y. W. (2011). Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen Energy, 36(2), 1418–1423. doi: 10.1016/J.IJHYDENE.2010.11.006
  • Zhu, L., Liu, X. Q., Jiang, H. L., & Sun, L. B. (2017). Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129–8176. doi: 10.1021/ACS.CHEMREV.7B00091/ASSET/IMAGES/MEDIUM/CR-2017-000914_0048.GIF

High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride

Year 2025, Volume: 15 Issue: 4, 1480 - 1494
https://doi.org/10.21597/jist.1662167

Abstract

A large portion of the world's energy consumption is provided by fossil fuel sources. However, these fossil fuel resources are heading towards depletion and causing serious health problems to the environment. Accessing renewable environmentally friendly energy sources is of great importance. Recent studies highlight hydrogen energy as a very serious alternative energy source. We report the production of a new and highly active nanoparticle system consisting of palladium nanoparticles (Pd(0)NPs) impregnated on volcanic ash (VASH) for the hydrolytic dehydrogenation reaction of sodium borohydride (NaBH4). Pd(0)NPs on VASH can be reproducibly prepared by the conventional impregnation-reduction method. The catalytic performance of new Pd(0)@VASH NPs in the hydrolytic dehydrogenetin of NaBH4 was investigated. Characterization of Pd(0)@VASH nanoclusters was carried out using advanced techniques (ICP-OES, FTIR, SEM, SEM-EDX- Elemental mapping, N2 adsorption-desorption, XRD, XPS). Based on the data of the rich kinetic study, the activation parameters (Ea, ΔH≠ and ΔS≠) of the hydrolytic dehydrogenation reaction of sodium borohydride using the Pd(0)@VASH nanocatalyst were determined. The nature of the rate equation of the hydrolytic dehydrogenation reaction of sodium borohydride was elucidated.

Ethical Statement

Yok

Supporting Institution

Yok

Thanks

İ.Gözeten would like to thank M.Harbi Çalımlı (Assoc. Prof. Dr., Iğdır University), and M. Salih Nas (Assoc. Prof. Dr., Iğdır University) for their scientific contributions and chemical material support.

References

  • Alraddadi, S., & Assaedi, H. (2020). Characterization and potential applications of different powder volcanic ash. Journal of King Saud University - Science, 32(7), 2969–2975. doi: 10.1016/J.JKSUS.2020.07.019
  • Avşar, E., Ulusay, R., & Mutlutürk, M. (2015). An experimental investigation of the mechanical behavior and microstructural features of a volcanic soil (Isparta, Turkey) and stability of cut slopes in this soil. Engineering Geology, 189, 68–83. doi: 10.1016/J.ENGGEO.2015.01.027
  • Bu, Y., Liu, J., Chu, H., Wei, S., Yin, Q., Kang, L., Luo, X., Sun, L., Xu, F., Huang, P., Rosei, F., Pimerzin, A. A., Seifert, H. J., Du, Y., & Wang, J. (2021). Catalytic hydrogen evolution of nabh4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon. Nanomaterials, 11(12). doi: 10.3390/NANO11123259/S1
  • Campbell, C. T. (2013). The energetics of supported metal nanoparticles: Relationships to sintering rates and catalytic activity. Accounts of Chemical Research, 46(8), 1712–1719. doi: 10.1021/AR3003514/ASSET/IMAGES/MEDIUM/AR-2012-003514_0008.GIF
  • Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., & Kumar, S. (2016). Reactivity of volcanic ash in alkaline medium, microstructural and strength characteristics of resulting geopolymers under different synthesis conditions. Journal of Materials Science, 51(22), 10301–10317. doi: 10.1007/S10853-016-0257-1/METRICS
  • Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., & Sels, B. F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chemical Society Reviews, 45(3), 584–611. doi: 10.1039/C5CS00859J
  • Fine, G., & Stolper, E. (1986). Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth and Planetary Science Letters, 76(3–4), 263–278. doi: 10.1016/0012-821X(86)90078-6
  • GÖzeten, İ., & Tunç, M. (2022). Palladium nanoparticles supported on multı-walled carbon nanotube (MWCNT) for the catalytic hexavalent chromium reduction. Materials Chemistry and Physics, 278, 125628. doi: 10.1016/J.MATCHEMPHYS.2021.125628
  • Gözeten, İ., & Tunç, M. (2022a). Palladium Nanoparticles Supported on Activated Carbon (C) for the Catalytic Hexavalent Chromium Reduction. Water, Air, and Soil Pollution, 233(1), 1–14. doi: 10.1007/S11270-021-05479-4/FİG.S/8
  • Gözeten, İ., & Tunç, M. (2022b). Palladium nanoparticles supported on aluminum oxide (Al2O3) for the catalytic hexavalent chromium reduction. Journal of Nanoparticle Research, 24(1). doi: 10.1007/S11051-021-05389-W
  • Gözeten, İ., Karakaş, K., Karataş, Y., Tunç, M., & Gülcan, M. (2023). The catalytic activity of halloysite-supported Ru nanoparticles in the methanolysis of sodium borohydride for hydrogen production. International Journal of Hydrogen Energy, 48(92), 35838–35849. doi: 10.1016/J.IJHYDENE.2023.05.297
  • Huang, Z., Wang, Z., Chen, F., Shen, Q., & Zhang, L. (2016). Band structures and optical properties of Al-doped α-Si3N4: theoretical and experimental studies. Ceramics International, 42(2), 3681–3686. doi: 10.1016/J.CERAMINT.2015.11.036
  • Karaoǧlu, Ö., Helvaci, C., & Ersoy, Y. (2010). Petrogenesis and 40Ar/39Ar geochronology of the volcanic rocks of the Uşak-Güre basin, western Türkiye. Lithos, 119(3–4), 193–210. doi: 10.1016/J.LITHOS.2010.07.001
  • Kaushik, M., & Moores, A. (2016). Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry, 18(3), 622–637. doi: 10.1039/C5GC02500A
  • Khalily, M. A., Yurderi, M., Haider, A., Bulut, A., Patil, B., Zahmakiran, M., & Uyar, T. (2018). Atomic Layer Deposition of Ruthenium Nanoparticles on Electrospun Carbon Nanofibers: A Highly Efficient Nanocatalyst for the Hydrolytic Dehydrogenation of Methylamine Borane. ACS Applied Materials & Interfaces, 10(31), 26162–26169. doi: 10.1021/ACSAMI.8B04822
  • Kürkçüoğlu, M. E., Kahraman, F. Ç., Dizman, S., & Bilgici Cengiz, G. (2024). Evaluation of radioactivity and radiological parameters in soil samples in Isparta, Türkiye. Nuclear Engineering and Technology. doi: 10.1016/J.NET.2024.05.002
  • Mohammed, L. H., Gulbagca, F., Tiri, R. N. E., Aygun, A., Bekmezci, M., & Sen, F. (2023). Hydrothermal-assisted synthesis of Co-doped ZnO nanoparticles catalyst for sodium borohydride dehydrogenation and photodegradation of organic pollutants in water. Chemical Engineering Journal Advances, 14, 100495. doi: 10.1016/J.CEJA.2023.100495
  • Pandey, M., Singh, M., Wasnik, K., Gupta, S., Patra, S., Gupta, P. S., Pareek, D., Chaitanya, N. S. N., Maity, S., Reddy, A. B. M., Tilak, R., & Paik, P. (2021). Targeted and Enhanced Antimicrobial Inhibition of Mesoporous ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 Composite Nanoparticles. ACS Omega, 6(47), 31615–31631. doi: 10.1021/ACSOMEGA.1C04139
  • Paterson, R., Alharbi, A. A., Wills, C., Dixon, C., Šiller, L., Chamberlain, T. W., Griffiths, A., Collins, S. M., Wu, K., Simmons, M. D., Bourne, R. A., Lovelock, K. R. J., Seymour, J., Knight, J. G., & Doherty, S. (2022). Heteroatom modified polymer immobilized ionic liquid stabilized ruthenium nanoparticles: Efficient catalysts for the hydrolytic evolution of hydrogen from sodium borohydride. Molecular Catalysis, 528, 112476. doi: 10.1016/J.MCAT.2022.112476
  • Pérez-Mayoral, E., Calvino-Casilda, V., & Soriano, E. (2016). Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science & Technology, 6(5), 1265–1291. doi: 10.1039/C5CY01437A
  • Pınarcı, İ., & Kocak, Y. (2022). Hydration mechanisms and mechanical properties of pumice substituted cementitious binder. Construction and Building Materials, 335, 127528. doi: 10.1016/J.CONBUILDMAT.2022.127528
  • Rakap, M. (2015). Hydrolysis of Sodium Borohydride and Ammonia Borane for Hydrogen Generation Using Highly Efficient Poly(N-Vinyl-2-Pyrrolidone)-Stabilized Ru–Pd Nanoparticles as Catalysts. International Journal of Green Energy, 12(12), 1288–1300. doi: 10.1080/15435075.2014.895737
  • Rakap, M., & Özkar, S. (2009). Intrazeolite cobalt(0) nanoclusters as low-cost and reusable catalyst for hydrogen generation from the hydrolysis of sodium borohydride. Applied Catalysis B: Environmental, 91(1–2), 21–29. doi: 10.1016/J.APCATB.2009.05.014
  • Rakap, M., & Özkar, S. (2012). Hydroxyapatite-supported cobalt(0) nanoclusters as efficient and cost-effective catalyst for hydrogen generation from the hydrolysis of both sodium borohydride and ammonia-borane. Catalysis Today, 183(1), 17–25. doi: 10.1016/J.CATTOD.2011.04.022
  • Rakap, M., & Rakap, M. (2020a). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003
  • Rakap, M., & Rakap, M. (2020b). PVP-Protected Pt-Ru Nanoparticles as Highly Efficient Catalysts for Hydrogen Generation from Hydrolysis of Sodium Borohydride. General Chemistry, 6(4), 200003. doi: 10.21127/YAOYIGC20200003
  • Rakap, M., Kalu, E. E., & Özkar, S. (2011). Cobalt–nickel–phosphorus supported on Pd-activated TiO2 (Co–Ni–P/Pd-TiO2) as cost-effective and reusable catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution. Journal of Alloys and Compounds, 509(25), 7016–7021. doi: 10.1016/J.JALLCOM.2011.04.023
  • Rose, W. I., & Durant, A. J. (2009). Fine ash content of explosive eruptions. Journal of Volcanology and Geothermal Research, 186(1–2), 32–39. doi: 10.1016/J.JVOLGEORES.2009.01.010
  • Tchadjié, L. N., Djobo, J. N. Y., Ranjbar, N., Tchakouté, H. K., Kenne, B. B. D., Elimbi, A., & Njopwouo, D. (2016). Potential of using granite waste as raw material for geopolymer synthesis. Ceramics International, 42(2), 3046–3055. doi: 10.1016/J.CERAMINT.2015.10.091
  • Tiri, R. N. E., Gulbagca, F., Aygun, A., Cherif, A., & Sen, F. (2022). Biosynthesis of Ag–Pt bimetallic nanoparticles using propolis extract: Antibacterial effects and catalytic activity on NaBH4 hydrolysis. Environmental Research, 206, 112622. doi: 10.1016/J.ENVRES.2021.112622
  • Wang, Y., Li, T., Bai, S., Qi, K., Cao, Z., Zhang, K., Wu, S., & Wang, D. (2016). Catalytic hydrolysis of sodium borohydride via nanostructured cobalt–boron catalysts. International Journal of Hydrogen Energy, 41(1), 276–284. doi: 10.1016/J.IJHYDENE.2015.11.076
  • Yang, C. C., Chen, M. S., & Chen, Y. W. (2011). Hydrogen generation by hydrolysis of sodium borohydride on CoB/SiO2 catalyst. International Journal of Hydrogen Energy, 36(2), 1418–1423. doi: 10.1016/J.IJHYDENE.2010.11.006
  • Zhu, L., Liu, X. Q., Jiang, H. L., & Sun, L. B. (2017). Metal-Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129–8176. doi: 10.1021/ACS.CHEMREV.7B00091/ASSET/IMAGES/MEDIUM/CR-2017-000914_0048.GIF
There are 33 citations in total.

Details

Primary Language English
Subjects Organic Green Chemistry
Journal Section Research Article
Authors

İbrahim Gözeten 0000-0003-0346-9958

Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date March 20, 2025
Acceptance Date May 5, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Gözeten, İ. (2025). High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride. Journal of the Institute of Science and Technology, 15(4), 1480-1494. https://doi.org/10.21597/jist.1662167
AMA Gözeten İ. High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride. J. Inst. Sci. and Tech. November 2025;15(4):1480-1494. doi:10.21597/jist.1662167
Chicago Gözeten, İbrahim. “High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1480-94. https://doi.org/10.21597/jist.1662167.
EndNote Gözeten İ (November 1, 2025) High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride. Journal of the Institute of Science and Technology 15 4 1480–1494.
IEEE İ. Gözeten, “High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1480–1494, 2025, doi: 10.21597/jist.1662167.
ISNAD Gözeten, İbrahim. “High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride”. Journal of the Institute of Science and Technology 15/4 (November2025), 1480-1494. https://doi.org/10.21597/jist.1662167.
JAMA Gözeten İ. High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride. J. Inst. Sci. and Tech. 2025;15:1480–1494.
MLA Gözeten, İbrahim. “High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1480-94, doi:10.21597/jist.1662167.
Vancouver Gözeten İ. High Efficiency Palladium Nanoparticles Synthesized on Volcanic Ash for Hydrolytic Dehydrogenation of Sodium Borohydride. J. Inst. Sci. and Tech. 2025;15(4):1480-94.