Research Article
BibTex RIS Cite

Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması

Year 2025, Volume: 15 Issue: 4, 1472 - 1479
https://doi.org/10.21597/jist.1687595

Abstract

Bu çalışmada, karboksilik asit fonksiyonel grubuna sahip tiyazol türevlerinin Laktoperoksidaz (LPO) enzimi üzerindeki inhibitör etkileri detaylı olarak incelenmiştir. Enzim saflaştırma işlemi, sığır sütünden elde edilen LPO’nun Sepharose 4B-L-tirozin-sülfanilamid afinite kolon kromatografisi ile başarılı bir şekilde izole edilmesiyle gerçekleştirilmiştir. İnhibisyon çalışmalarında substrat olarak 2,2'-azino-bis(3-etilbenzotiyazolin-6-sülfonik asit) (ABTS) kullanılmış ve elde edilen kinetik veriler doğrultusunda, karboksilik asit içeren tiyazol türevlerinin LPO enzim aktivitesini etkili biçimde inhibe ettiği belirlenmiştir. Test edilen beş farklı tiyazol türevinin inhibisyon parametreleri değerlendirilmiş; bileşiklerin Ki değerleri sırasıyla 1.734 ± 0.810 µM, 1.988 ± 0.934 µM, 1.226 ± 0.148 µM, 1.128 ± 0.053 µM ve 3.818 ± 0.264 µM olarak saptanmıştır. Yapılan inhibitör tip analizleri sonucunda yalnızca 2-bromo-tiyazol-5-karboksilik asidin (a) yarışmalı (kompetitif) inhibisyon mekanizması gösterdiği, diğer dört bileşiğin ise yarışmasız (nonkompetitif) inhibitör olarak davrandığı belirlenmiştir. Özellikle tiyazol-5-karboksilik asit türevi (d), 1.128 ± 0.053 µM’lik en düşük Ki değeri ve 2.840 µM’lik IC₅₀ değeri ile çalışmada en güçlü inhibitör etkiyi gösteren bileşik olmuştur. Bu sonuç, söz konusu bileşiğin LPO enzimi için potansiyel bir inhibitör aday olarak değerlendirilmesine olanak sağlamaktadır.

References

  • Abul, N., Gerni, S., Korkmaz, I. N., Demir, Y., Özdemir, H., Gülçin, İ. (2023). Screening of in vitro inhibition of lactoperoxidase enzyme by methyl benzoate derivatives with molecular docking studies. Chemistry & Biodiversity, 20(8), e202300687.
  • Alfi, A. A., Alharbi, A., Qurban, J., Abualnaja, M. M., Abumelha, H. M., Saad, F. A., El-Metwaly, N. M. (2022). Molecular modeling and docking studies of new antioxidant pyrazole-thiazole hybrids. Journal of Molecular Structure, 1267, 133582.
  • Almaz, Z., Oztekin, A., Abul, N., Gerni, S., Erel, D., Kocak, S. M., Sengül, M. E., Ozdemir, H. (2021). A new approach for affinity‐based purification of horseradish peroxidase. Biotechnology and applied biochemistry, 68(1), 102-113.
  • Al-Shemary, R. K., Mohapatra, R. K., Kumar, M., Sarangi, A. K., Azam, M., Tuli, H. S., Ansari, A., Mohapatra, P.K., Dhama, K. (2023). Synthesis, structural investigations, XRD, DFT, anticancer and molecular docking study of a series of thiazole based Schiff base metal complexes. Journal of Molecular Structure, 1275, 134676.
  • Arnold, C. (1881). Einige neue reactionen der Milch. Archiv der Pharmazie, 219(1), 41-42.
  • Bayrak, S., Gerni, S., Öztürk, C., Almaz, Z., Bayrak, Ç., Kılınç, N., Özdemir, H. (2024). Lactoperoxidase Inhibition of Celecoxib Derivatives Containing the Pyrazole Linked‐Sulfonamide Moiety: Antioxidant Capacity, Antimicrobial Activity, and Molecular Docking Studies. Journal of Biochemical and Molecular Toxicology, 38(11), e70055.
  • Biçer, A., Çağlayan, C., Demir, Y., Türkeş, C., Altundaş, R., Akyıldız, H., Beydemir, Ş. (2024). Synthesis of N-substituted 4-phenyl-2-aminothiazole derivatives and investigation of their inhibition properties against hCA I, II, and AChE enzymes. Archives of Biochemistry and Biophysics, 761, 110159.
  • De Wit, J. N., & Van Hooydonk, A. C. M. (1996). Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk and Dairy Journal, 50.
  • Doğan, A., Özdemir, S., Yalcin, M., Sari, H., Nural, Y. (2021). Naphthoquinone-thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness. Journal of Research in Pharmacy, 25(3).
  • Efeoglu, C., Selcuk, O., Demir, B., Sahin, E., Sari, H., Türkeş, C., Demir, Y., Nural, Y., Beydemir, Ş. (2024). New naphthoquinone thiazole hybrids as carbonic anhydrase and cholinesterase inhibitors: Synthesis, crystal structure, molecular docking, and acid dissociation constant. Journal of Molecular Structure, 1301, 137365.
  • Gerni, S., Öztürk, C., Kılınç, N., Özdemir, H., Küfrevioğlu, Ö. İ. (2024). Unveiling the Suppressive Potential of Phenolic Compounds on Bovine Milk Lactoperoxidase. ChemistrySelect, 9(11), e202304844. Hussain, R., Ullah, H., Rahim, F., Sarfraz, M., Taha, M., Iqbal, R., Rehman, W., Khan, S., Shah, S.A.A., Hyder, S.,
  • Alhomrani, M., Alamri, A.S., Abdulaziz, O., Abdelaziz, M. A. (2022). Multipotent cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules, 27(18), 6087.
  • Jagadale, S. M., Abhale, Y. K., Pawar, H. R., Shinde, A., Bobade, V. D., Chavan, A. P., Sarkar, D., Mhaske, P. C. (2022). Synthesis of new thiazole and pyrazole clubbed 1, 2, 3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycyclic Aromatic Compounds, 42(6), 3216-3237.
  • Kalin, R., Köksal, Z., Bayrak, S., Gerni, S., Ozyürek, I. N., Usanmaz, H., Karaman, M., Atasever, A., Özdemir, H., Gülçin, İ. (2022). Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk. Journal of Biomolecular Structure and Dynamics, 40(1), 401-410.
  • Kavaz, N. M., Erel, D., Korkmaz, I. N., Gerni, S., Abul, N., Bayrak, S., Köksal, Z., Kalın, R., Öztekin, A., Özdemir, H. (2022). A New Affinity Matrixe Synthesized from Aminobenzohydrazide Derivatives for Purification of Lactoperoxidase Enzyme. ChemistrySelect, 7(27), e202200657.
  • Khan, S., Ullah, H., Taha, M., Rahim, F., Sarfraz, M., Iqbal, R., Iqbal, N., Hussain, R., Shah, S.A.A., Ayub, K., Albalawi, M.A., Abdelaziz, M.A., Alatawi, F.S., Khan, K. M. (2023). Synthesis, DFT studies, molecular docking and biological activity evaluation of thiazole-sulfonamide derivatives as potent Alzheimer’s inhibitors. Molecules, 28(2), 559.
  • Korkmaz, I. N. (2022). In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity. Cumhuriyet Science Journal, 43(1), 33-37.
  • Korkmaz, I. N., Şenol, H., Kalın, R. (2025). Inhibition Effects of Some Phenolic Anthraquinone Derivatives on Lactoperoxidase Activity: A Detailed in Vitro and in Silico investigation. Food Biophysics, 20(2), 1-17.
  • Köksal, Z., Güller, P., Keskin, A. (2024). Lactoperoxidase inhibition by some carnosol and carnosic acid derivatives: In vitro, In silico and statistical approaches. Food Bioscience, 62, 105485.
  • Köksal, Z., Kalın, R., Gerni, S., Gülçin, İ., Özdemir, H. (2017a). The inhibition effects of some natural products on lactoperoxidase purified from bovine milk. Journal of Biochemical and Molecular Toxicology, 31(9), e21939.
  • Köksal, Z., Kalın, R., Gülçin, İ., Özdemir, H., Atasever, A. (2016). Impact of some avermectins on lactoperoxidase in bovine milk. International journal of food properties, 19(6), 1207-1216.
  • Köksal, Z., Kalin, R., Camadan, Y., Usanmaz, H., Almaz, Z., Gülçin, I., Gökçen, T., Gören, A.C., Ozdemir, H. (2017b). Secondary sulfonamides as effective lactoperoxidase inhibitors. Molecules, 22(6), 793.
  • Kumar, R., Bhatia, K. L., Dauter, Z., Betzel, C. H., Singh, T. P. (1995). Purification, crystallization and preliminary X-ray crystallographic analysis of lactoperoxidase from buffalo milk. Biological Crystallography, 51(6), 1094-1096.
  • Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American chemical society, 56(3), 658-666.
  • Mor, S., & Khatri, M. (2022). Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl) thiazol-2-yl) indeno [1, 2-c] pyrazol-4 (1H)-ones. Journal of Molecular Structure, 1249, 131526.
  • Nural, Y. (2018). Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3-[2-(pyrrolidin-1-yl) thiazole-5-carbonyl]-2 H-chromen-2-one derivatives. Monatshefte für Chemie-Chemical Monthly, 149, 1905-1918.
  • Oztekin, A., Almaz, Z., Gerni, S., Erel, D., Kocak, S. M., Sengül, M. E., Ozdemir, H. (2019). Purification of peroxidase enzyme from radish species in fast and high yield with affinity chromatography technique. Journal of Chromatography B, 1114, 86-92.
  • Sever, B., Altıntop, M. D., Demir, Y., Çiftçi, G. A., Beydemir, Ş., Özdemir, A. (2020). Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorganic Chemistry, 102, 104110.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., Akalın Çiftçi, G., Beydemir, Ş. (2021). Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv der Pharmazie, 354(12), 2100294.
  • Shindler, J. S., & Bardsley, W. G. (1975). Steady-state kinetics of lactoperoxidase with ABTS as chromogen. Biochemical and Biophysical Research Communications, 67(4), 1307-1312.
  • Singh, A., Malhotra, D., Singh, K., Chadha, R., Bedi, P. M. S. (2022). Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure, 1266, 133479.
  • Taha, M., Hayat, S., Rahim, F., Uddin, N., Wadood, A., Nawaz, M., Gollapalli, M., Rehman, A.U., Khan, K.M., Farooq, R. K. (2023). Exploring thiazole-based Schiff base analogs as potent α-glucosidase and α-amylase inhibitor: their synthesis and in-silico study. Journal of Molecular Structure, 1287, 135672.
  • Zhou, W., Ni, S., Mei, H., Han, J., Pan, Y. (2015). Cyclization reaction of N-allylbenzothioamide for direct construction of thiazole and thiazoline. Tetrahedron Letters, 56(27), 4128-4130.

Investigation of the Effects of Carboxylic Acid-Linked Thiazole Derivatives on the Lactoperoxidase EnzymeI

Year 2025, Volume: 15 Issue: 4, 1472 - 1479
https://doi.org/10.21597/jist.1687595

Abstract

In this study, the inhibitory effects of thiazole derivatives containing a carboxylic acid functional group on the lactoperoxidase (LPO) enzyme were investigated in detail. LPO was successfully purified from bovine milk using Sepharose 4 B-L-tyrosine-sulfanilamide affinity column chromatography. In the inhibition studies, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was used as the substrate. Based on the obtained kinetic data, it was determined that thiazole derivatives bearing a carboxylic acid group effectively inhibited LPO enzyme activity. The inhibition parameters of five different thiazole derivatives were evaluated, and their Ki values were determined as 1.734 ± 0.810 µM, 1.988 ± 0.934 µM, 1.226 ± 0.148 µM, 1.128 ± 0.053 µM, and 3.818 ± 0.264 µM, respectively. Inhibitor type analyses revealed that only 2-bromothiazole-5-carboxylic acid (a) exhibited a competitive inhibition mechanism, while the remaining four compounds acted as non-competitive inhibitors. Notably, the thiazole-5-carboxylic acid derivative (d) demonstrated the strongest inhibitory effect in the study, with the lowest Ki value of 1.128 ± 0.053 µM and an IC₅₀ value of 2.840 µM. These results suggest that this compound may serve as a promising inhibitor candidate for the LPO enzyme.

References

  • Abul, N., Gerni, S., Korkmaz, I. N., Demir, Y., Özdemir, H., Gülçin, İ. (2023). Screening of in vitro inhibition of lactoperoxidase enzyme by methyl benzoate derivatives with molecular docking studies. Chemistry & Biodiversity, 20(8), e202300687.
  • Alfi, A. A., Alharbi, A., Qurban, J., Abualnaja, M. M., Abumelha, H. M., Saad, F. A., El-Metwaly, N. M. (2022). Molecular modeling and docking studies of new antioxidant pyrazole-thiazole hybrids. Journal of Molecular Structure, 1267, 133582.
  • Almaz, Z., Oztekin, A., Abul, N., Gerni, S., Erel, D., Kocak, S. M., Sengül, M. E., Ozdemir, H. (2021). A new approach for affinity‐based purification of horseradish peroxidase. Biotechnology and applied biochemistry, 68(1), 102-113.
  • Al-Shemary, R. K., Mohapatra, R. K., Kumar, M., Sarangi, A. K., Azam, M., Tuli, H. S., Ansari, A., Mohapatra, P.K., Dhama, K. (2023). Synthesis, structural investigations, XRD, DFT, anticancer and molecular docking study of a series of thiazole based Schiff base metal complexes. Journal of Molecular Structure, 1275, 134676.
  • Arnold, C. (1881). Einige neue reactionen der Milch. Archiv der Pharmazie, 219(1), 41-42.
  • Bayrak, S., Gerni, S., Öztürk, C., Almaz, Z., Bayrak, Ç., Kılınç, N., Özdemir, H. (2024). Lactoperoxidase Inhibition of Celecoxib Derivatives Containing the Pyrazole Linked‐Sulfonamide Moiety: Antioxidant Capacity, Antimicrobial Activity, and Molecular Docking Studies. Journal of Biochemical and Molecular Toxicology, 38(11), e70055.
  • Biçer, A., Çağlayan, C., Demir, Y., Türkeş, C., Altundaş, R., Akyıldız, H., Beydemir, Ş. (2024). Synthesis of N-substituted 4-phenyl-2-aminothiazole derivatives and investigation of their inhibition properties against hCA I, II, and AChE enzymes. Archives of Biochemistry and Biophysics, 761, 110159.
  • De Wit, J. N., & Van Hooydonk, A. C. M. (1996). Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk and Dairy Journal, 50.
  • Doğan, A., Özdemir, S., Yalcin, M., Sari, H., Nural, Y. (2021). Naphthoquinone-thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness. Journal of Research in Pharmacy, 25(3).
  • Efeoglu, C., Selcuk, O., Demir, B., Sahin, E., Sari, H., Türkeş, C., Demir, Y., Nural, Y., Beydemir, Ş. (2024). New naphthoquinone thiazole hybrids as carbonic anhydrase and cholinesterase inhibitors: Synthesis, crystal structure, molecular docking, and acid dissociation constant. Journal of Molecular Structure, 1301, 137365.
  • Gerni, S., Öztürk, C., Kılınç, N., Özdemir, H., Küfrevioğlu, Ö. İ. (2024). Unveiling the Suppressive Potential of Phenolic Compounds on Bovine Milk Lactoperoxidase. ChemistrySelect, 9(11), e202304844. Hussain, R., Ullah, H., Rahim, F., Sarfraz, M., Taha, M., Iqbal, R., Rehman, W., Khan, S., Shah, S.A.A., Hyder, S.,
  • Alhomrani, M., Alamri, A.S., Abdulaziz, O., Abdelaziz, M. A. (2022). Multipotent cholinesterase inhibitors for the treatment of Alzheimer’s disease: Synthesis, biological analysis and molecular docking study of benzimidazole-based thiazole derivatives. Molecules, 27(18), 6087.
  • Jagadale, S. M., Abhale, Y. K., Pawar, H. R., Shinde, A., Bobade, V. D., Chavan, A. P., Sarkar, D., Mhaske, P. C. (2022). Synthesis of new thiazole and pyrazole clubbed 1, 2, 3-triazol derivatives as potential antimycobacterial and antibacterial agents. Polycyclic Aromatic Compounds, 42(6), 3216-3237.
  • Kalin, R., Köksal, Z., Bayrak, S., Gerni, S., Ozyürek, I. N., Usanmaz, H., Karaman, M., Atasever, A., Özdemir, H., Gülçin, İ. (2022). Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk. Journal of Biomolecular Structure and Dynamics, 40(1), 401-410.
  • Kavaz, N. M., Erel, D., Korkmaz, I. N., Gerni, S., Abul, N., Bayrak, S., Köksal, Z., Kalın, R., Öztekin, A., Özdemir, H. (2022). A New Affinity Matrixe Synthesized from Aminobenzohydrazide Derivatives for Purification of Lactoperoxidase Enzyme. ChemistrySelect, 7(27), e202200657.
  • Khan, S., Ullah, H., Taha, M., Rahim, F., Sarfraz, M., Iqbal, R., Iqbal, N., Hussain, R., Shah, S.A.A., Ayub, K., Albalawi, M.A., Abdelaziz, M.A., Alatawi, F.S., Khan, K. M. (2023). Synthesis, DFT studies, molecular docking and biological activity evaluation of thiazole-sulfonamide derivatives as potent Alzheimer’s inhibitors. Molecules, 28(2), 559.
  • Korkmaz, I. N. (2022). In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity. Cumhuriyet Science Journal, 43(1), 33-37.
  • Korkmaz, I. N., Şenol, H., Kalın, R. (2025). Inhibition Effects of Some Phenolic Anthraquinone Derivatives on Lactoperoxidase Activity: A Detailed in Vitro and in Silico investigation. Food Biophysics, 20(2), 1-17.
  • Köksal, Z., Güller, P., Keskin, A. (2024). Lactoperoxidase inhibition by some carnosol and carnosic acid derivatives: In vitro, In silico and statistical approaches. Food Bioscience, 62, 105485.
  • Köksal, Z., Kalın, R., Gerni, S., Gülçin, İ., Özdemir, H. (2017a). The inhibition effects of some natural products on lactoperoxidase purified from bovine milk. Journal of Biochemical and Molecular Toxicology, 31(9), e21939.
  • Köksal, Z., Kalın, R., Gülçin, İ., Özdemir, H., Atasever, A. (2016). Impact of some avermectins on lactoperoxidase in bovine milk. International journal of food properties, 19(6), 1207-1216.
  • Köksal, Z., Kalin, R., Camadan, Y., Usanmaz, H., Almaz, Z., Gülçin, I., Gökçen, T., Gören, A.C., Ozdemir, H. (2017b). Secondary sulfonamides as effective lactoperoxidase inhibitors. Molecules, 22(6), 793.
  • Kumar, R., Bhatia, K. L., Dauter, Z., Betzel, C. H., Singh, T. P. (1995). Purification, crystallization and preliminary X-ray crystallographic analysis of lactoperoxidase from buffalo milk. Biological Crystallography, 51(6), 1094-1096.
  • Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American chemical society, 56(3), 658-666.
  • Mor, S., & Khatri, M. (2022). Synthesis, antimicrobial evaluation, α-amylase inhibitory ability and molecular docking studies of 3-alkyl-1-(4-(aryl/heteroaryl) thiazol-2-yl) indeno [1, 2-c] pyrazol-4 (1H)-ones. Journal of Molecular Structure, 1249, 131526.
  • Nural, Y. (2018). Synthesis, antimycobacterial activity, and acid dissociation constants of polyfunctionalized 3-[2-(pyrrolidin-1-yl) thiazole-5-carbonyl]-2 H-chromen-2-one derivatives. Monatshefte für Chemie-Chemical Monthly, 149, 1905-1918.
  • Oztekin, A., Almaz, Z., Gerni, S., Erel, D., Kocak, S. M., Sengül, M. E., Ozdemir, H. (2019). Purification of peroxidase enzyme from radish species in fast and high yield with affinity chromatography technique. Journal of Chromatography B, 1114, 86-92.
  • Sever, B., Altıntop, M. D., Demir, Y., Çiftçi, G. A., Beydemir, Ş., Özdemir, A. (2020). Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorganic Chemistry, 102, 104110.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., Akalın Çiftçi, G., Beydemir, Ş. (2021). Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv der Pharmazie, 354(12), 2100294.
  • Shindler, J. S., & Bardsley, W. G. (1975). Steady-state kinetics of lactoperoxidase with ABTS as chromogen. Biochemical and Biophysical Research Communications, 67(4), 1307-1312.
  • Singh, A., Malhotra, D., Singh, K., Chadha, R., Bedi, P. M. S. (2022). Thiazole derivatives in medicinal chemistry: Recent advancements in synthetic strategies, structure activity relationship and pharmacological outcomes. Journal of Molecular Structure, 1266, 133479.
  • Taha, M., Hayat, S., Rahim, F., Uddin, N., Wadood, A., Nawaz, M., Gollapalli, M., Rehman, A.U., Khan, K.M., Farooq, R. K. (2023). Exploring thiazole-based Schiff base analogs as potent α-glucosidase and α-amylase inhibitor: their synthesis and in-silico study. Journal of Molecular Structure, 1287, 135672.
  • Zhou, W., Ni, S., Mei, H., Han, J., Pan, Y. (2015). Cyclization reaction of N-allylbenzothioamide for direct construction of thiazole and thiazoline. Tetrahedron Letters, 56(27), 4128-4130.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Molecular Medicine
Journal Section Research Article
Authors

Serpil Gerni 0000-0001-7699-1697

Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date April 30, 2025
Acceptance Date July 1, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Gerni, S. (2025). Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması. Journal of the Institute of Science and Technology, 15(4), 1472-1479. https://doi.org/10.21597/jist.1687595
AMA Gerni S. Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması. J. Inst. Sci. and Tech. November 2025;15(4):1472-1479. doi:10.21597/jist.1687595
Chicago Gerni, Serpil. “Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1472-79. https://doi.org/10.21597/jist.1687595.
EndNote Gerni S (November 1, 2025) Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması. Journal of the Institute of Science and Technology 15 4 1472–1479.
IEEE S. Gerni, “Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1472–1479, 2025, doi: 10.21597/jist.1687595.
ISNAD Gerni, Serpil. “Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması”. Journal of the Institute of Science and Technology 15/4 (November2025), 1472-1479. https://doi.org/10.21597/jist.1687595.
JAMA Gerni S. Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması. J. Inst. Sci. and Tech. 2025;15:1472–1479.
MLA Gerni, Serpil. “Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1472-9, doi:10.21597/jist.1687595.
Vancouver Gerni S. Karboksilik Asit Bağlantılı Tiyazol Türevlerinin Laktoperoksidaz Enzimi Üzerindeki Etkilerinin Araştırılması. J. Inst. Sci. and Tech. 2025;15(4):1472-9.