Research Article
BibTex RIS Cite

Diosmin Flavanoid'in Bazı Metabolik Enzimler Üzerindeki İnhibisyon Etkisi ve Antioksidan Özelliklerinin İncelenmesi

Year 2025, Volume: 15 Issue: 4, 1433 - 1443
https://doi.org/10.21597/jist.1720689

Abstract

Diosmin, flavanon glikozit hesperidin'in dehidrasyonu ile elde edilen doğal bir flavonoiddir. Bu çalışma, çeşitli sağlık sorunlarıyla bağlantılı olan insan karbonik anhidraz (hCA I ve hCA II) ve asetilkolinesteraz (AChE) enzimleri üzerinde diosmin flavonoidinin inhibisyon etkilerini değerlendirmiş ve bunları standart ilaçlarla karşılaştırmıştır. Antioksidan aktiviteyi belirlemek için, in vitro ABTS·+, DPPH radikal temizleme, bakır iyonu (Cu2+), FRAP ve Fe3+ indirgeme aktiviteleri ayrı ayrı gerçekleştirilmiştir. Butil hidroksianisol (BHA), trolox, α-tokoferol, butil hidroksitoluen (BHT) ve askorbik asit gibi referans antioksidanlar kullanılmıştır. Sonuçlar, diosminin güçlü bir antioksidan aktivite göstermediğini ortaya koymuştur. Ayrıca, diosminin hCA I, hCA II ve AChE enzimleri üzerindeki inhibisyon etkileri incelenmiştir. Diosmin, sırasıyla 3,84±0,63 ve 15,64±1,90 nM Ki değerleri ile hCA I ve hCA II enzimlerini etkili bir şekilde inhibe etti (Tablo 1). Standart ilaç AZA'nın Ki değerleri (Ki: 1,44±0,32 nM için hCA I- Ki: 3,66±0,25 nM için hCA II). Öte yandan, diosmin AChE enzimlerini 9,31±2,40 Ki değerleriyle etkili bir şekilde inhibe etti. Standart ilaç Tacrine'in AChE için Ki değerleri 6,22±1,95 nM'dir.

References

  • Ahmed, G. Y., Osman, A. A., & Mukhtar, A. (2024). Acetylcholinesterase enzyme among cancer patients a potential diagnostic and prognostic indicator a multicenter case–control study. Scientific Reports, 14(1), 5127.
  • Aslan, K., & Gülçin, I. (2024). Microbial Antioxidant Enzymes and Their Fermentative Production. Natural Antioxidants and in vitroAntioxidant Assays, 179.
  • Aslan, K., Kelle, K., Yilmaz, M. A., Erden Kopar, E., & Gulcin, I. (2024). Investigation of Cuckoo‐Pint's (Arum maculatum) Phytochemistry, In Vitro Antioxidant Potential, Enzyme Inhibition, and Antimicrobial Activity. ChemistrySelect, 9(37), e202403588.
  • Aslan, K., Kızıltaş, H., Güven, L., Karagecili, H., Arslan, D., & Gülçin, İ. (2025). Enzyme Inhibition Properties of Calendula officinalis, Matricaria chamomilla, and Anthemis pseudocotula: Kinetics and Molecular Docking Studies. RECORDS OF NATURAL PRODUCTS.
  • Balcı, N., Çelik, H., Türkan, F., Çelebioğlu, N., Çelik, T., & Bursal, E. (2023). Schiff base synthesis with a new reliable method and investigation of their inhibition effects on glutathione S‐transferase and cholinesterase enzymes. ChemistrySelect, 8(18), e202204566.
  • Balcı, N., Şakiroğlu, H., Türkan, F., & Bursal, E. (2022). In vitro and in silico enzyme inhibition effects of some metal ions and compounds on glutathione S-transferase enzyme purified from Vaccinium arctostapylous L. Journal of Biomolecular Structure and Dynamics, 40(22), 11587-11593.
  • Bursal, E., & Gülçin, İ. (2011). Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food research international, 44(5), 1482-1489. Campanero, M. A., Escolar, M., Perez, G., Garcia-Quetglas, E., Sadaba, B., & Azanza, J. R. (2010). Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. Journal of pharmaceutical and biomedical analysis, 51(4), 875-881.
  • Öztürk, C., & Küfrevioğlu, Ö. İ. (2024). Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources. Protein Expression and Purification, 219, 106474.
  • Öztürk, C., Balci, N., Aslan, O. N., & Kalay, E. (2025). Novel Sulfonylhydrazones With Sulfonate Ester Framework: Promising Dual Inhibitors of AChE and hCAs. Biotechnology and Applied Biochemistry, e2780.
  • Del Prete, S., & Pagano, M. (2024). Enzyme Inhibitors as Multifaceted Tools in Medicine and Agriculture. Molecules, 29(18), 4314.
  • Delaune, K. P., & Alsayouri, K. (2019). Physiology, noncompetitive inhibitor.
  • Dubey, K., Dubey, R., Gupta, R., & Gupta, A. (2021). Exploration of diosmin to control diabetes and its complications-an in vitro and in silico approach. Current Computer-Aided Drug Design, 17(2), 307-313.
  • Durmaz, L., Karageçili, H., Erturk, A., Ozden, E. M., Taslimi, P., Alwasel, S., & Gülçin, İ. (2024). Hamamelitannin’s antioxidant effect and its inhibition capability on α-glycosidase,
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.
  • Farzaliyev, V., Ertürk, A., Abbasova, M., Nabiyev, O., Demir, Y., Kızıltaş, H., ... & Gülçin, İ. (2024). Synthesis and Inhibitor Effect Novel Alkoxymethyl Derivatives of Dihetero Cycloalkanes on Carbonic Anhydrase and Acetylcholinesterase. Chemistry & Biodiversity, e202400296.
  • Firdous, S. M., Hazra, S., Gopinath, S. C., El-Desouky, G. E., & Aboul-Soud, M. A. (2021). Antihyperlipidemic potential of diosmin in Swiss Albino mice with high-fat diet induced hyperlipidemia. Saudi journal of biological sciences, 28(1), 109-115.
  • Gerges, S. H., Wahdan, S. A., Elsherbiny, D. A., & El-Demerdash, E. (2022). Pharmacology of diosmin, a citrus flavone glycoside: an updated review. European journal of drug metabolism and pharmacokinetics, 1-18.
  • Gocer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gülçin, İ., ... & Supuran, C. T. (2016). Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of enzyme inhibition and medicinal chemistry, 31(3), 441-447.
  • Göçer, H., & Gülçin, İ. (2011). Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. International journal of food sciences and nutrition, 62(8), 821-825.
  • Gulcin, İ. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 1-105.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248
  • Gülcin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of toxicology, 86(3), 345-391.
  • Gülcin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of toxicology, 86(3), 345-391.
  • Gülçin, İ. (2005). The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International journal of food sciences and nutrition, 56(7), 491-499.
  • Gülçin, İ. (2009). Antioxidant activity of l-adrenaline: A structure–activity insight. Chemico-biological interactions, 179(2-3), 71-80.
  • Gülçin, İ. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative food science & emerging technologies, 11(1), 210-218.
  • İzol, E., Bursal, E., Yapıcı, İ., Abdullah Yilmaz, M., Yilmaz, İ., & Gülçin, İ. (2024). Chemical Content by LC–MS/MS, Antiglaucoma, and Antioxidant Activity of Propolis Samples From Different Regions of Türkiye. Journal of Food Biochemistry, 2024(1), 7488590.
  • Jyoti, U., & Devi, S. (2025). Diosmin as Antidiabetic Agent: A Comprehensive Mechanistic Approach. Current Bioactive Compounds.
  • Karaytuğ, M. O., Balcı, N., Türkan, F., Gürbüz, M., Demirkol, M. E., Namlı, Z., ... & Gülçin, İ. (2023). Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S‐transferase inhibitors. Journal of Biochemical and Molecular Toxicology, 37(2), e23259.
  • Kelebekli, L., Balcı, N., & Şahin, E. (2014). Stereospecific synthesis of highly substituted novel carbasugar as carbonic anhydrase inhibitors: decahydronaphthalene-1, 2, 3, 4, 5, 6, 7-heptol. Tetrahedron, 70(34), 5175-5181.
  • Köksal, E., & Gülçin, İ. (2008). Antioxidant activity of cauliflower (Brassica oleracea L.). Turkish Journal of Agriculture and Forestry, 32(1), 65-78.
  • Kuppusamy, A., Arumugam, M., & George, S. (2017). Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. International journal of biological macromolecules, 95, 199-203.
  • Lee Y, Yuk D, Lee J, et al. (2009) Epigallocatechin-3-gallate pre vents lipopolysaccharide-induced elevation of β-amyloid gener ation and memory deficiency. Brain Res 1250, 164–174.
  • Li, X., Chen, B., Xie, H., He, Y., Zhong, D., & Chen, D. (2018). Antioxidant structure–activity relationship analysis of five dihydrochalcones. Molecules, 23(5), 1162.
  • Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., ... & Sarkar, A. (2022). Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants–maintenance of structural individuality and functional blend. Advances in Redox Research, 5, 100039.
  • McHardy, S. F., Wang, H. Y. L., McCowen, S. V., & Valdez, M. C. (2017). Recent advances in acetylcholinesterase Inhibitors and Reactivators: an update on the patent literature (2012-2015). Expert opinion on therapeutic patents, 27(4), 455-476. Rufer, A. C. (2021). Drug discovery for enzymes. Drug discovery today, 26(4), 875-886.
  • Ovando C, Hernandez D, Hernandez E, et al. (2009) Chemical studies of anthocyanins: a review. Food Chem 113, 859–871.
  • Ozgun, D. O., Yamali, C., Gul, H. I., Taslimi, P., Gulcin, I., Yanik, T., & Supuran, C. T. (2016). Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. Journal of enzyme inhibition and medicinal chemistry, 31(6), 1498-1501.
  • Öztürk, C., Kalay, E., Gerni, S., Balci, N., Tokali, F. S., Aslan, O. N., & Polat, E. (2024). Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I–II inhibition properties. Biotechnology and Applied Biochemistry, 71(1), 223-231.
  • Pedrood, K., Sherafati, M., Mohammadi-Khanaposhtani, M., Asgari, M. S., Hosseini, S., Rastegar, H., ... & Gulcin, I. (2021). Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. International Journal of Biological Macromolecules, 170, 1-12.
  • Rees, T. M., & Brimijoin, S. (2003). The role of acetylcholinesterase in the pathogenesis of Alzheimer's disease. Drugs of today (Barcelona, Spain: 1998), 39(1), 75-83.
  • Rufer, A. C. (2021). Drug discovery for enzymes. Drug discovery today, 26(4), 875-886.
  • Shaaban, H. H., Hozayen, W. G., Khaliefa, A. K., El-Kenawy, A. E., Ali, T. M., & Ahmed, O. M. (2022). Diosmin and trolox have anti-arthritic, anti-inflammatory and antioxidant potencies in complete Freund’s adjuvant-induced arthritic male Wistar rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants, 11(9), 1721.
  • Sharma, T.; Sharma, S.; Kamyab, H.; Kumar, A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. J. Clean. Prod. 2020, 247, 119138.
  • Supuran, C. T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature reviews Drug discovery, 7(2), 168-181.
  • Supuran, C. T. (2021). Emerging role of carbonic anhydrase inhibitors. Clinical Science, 135(10), 1233-1249.
  • Supuran, C. T. (2024). Multi-and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacological reviews, 100004.
  • Taslimi, P., & Gulçin, İ. (2018). Antioxidant and anticholinergic properties of olivetol. Journal of food biochemistry, 42(3), e12516.
  • Taslimi, P., & Gulçin, İ. (2018). Antioxidant and anticholinergic properties of olivetol. Journal of food biochemistry, 42(3), e12516.
  • Taslimi, P., Köksal, E., Gören, A. C., Bursal, E., Aras, A., Kılıç, Ö., ... & Gülçin, İ. (2020). Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arabian journal of chemistry, 13(3), 4528-4537.
  • Taslimi, P.; Gulcin, I.; Ozgeris, B.; Goksu, S.; Tumer, F.; Alwasel, S. H.; Supuran, C. T. The Human Carbonic Anhydrase Isoenzymes I and II (HCA I and II) Inhibition Effects of Trimethoxyindane Derivatives. J Enzyme Inhib Med Chem 2016, 31 (1), 152–157. https://doi.org/10.3109/14756366.2015.1014476.
  • Tel, A. Z., Aslan, K., Gulcın, I. (2025a). Phytochemical Analysis, Antioxidant, Anticholinergic, Antidiabetic, and Antiglaucoma Potentials of Sage (Salvia adiyamanensis).
  • Tel, A. Z., Aslan, K., Yılmaz, M. A., & Gulcin, İ. (2025b). A multidimensional study for design of phytochemical profiling, antioxidant potential, and enzyme inhibition effects of ışgın (Rheum telianum) as an edible plant. Food Chemistry: X, 25, 102125.
  • Topal, F. (2019). Determination of antioxidant capacity of 2, 6-quinolinediol. Journal of the Institute of Science and Technology, 9(3), 1520-1527.
  • Topal, F., Nar, M., Gocer, H., Kalin, P., Kocyigit, U. M., Gülçin, İ., & Alwasel, S. H. (2016). Antioxidant activity of taxifolin: an activity–structure relationship. Journal of enzyme inhibition and medicinal chemistry, 31(4), 674-683.
  • Toraman, G. Ö., Bayrakdar, A., Oğuz, E., Beytur, M., Türkan, F., Manap, S., ... & Yüksek, H. (2025). Synthesis, characterization of novel mannich bases and their acetylcholinesterase and glutathione S-transferase inhibitory properties: An in vitro and in silico mechanism research. Journal of Molecular Structure, 1321, 139733.
  • Trang, A., & Khandhar, P. B. (2019). Physiology, acetylcholinesterase.
  • Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), 5594386.
  • Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem., 242(18), 4221-4229
  • Zhao, W. M., Chu, F., Zhu, J. X., Li, X. L., Zhu, Y., Wang, Z. J., ... & Wang, D. G. (2025). Diosmin attenuates U UO-induced renal ferroptosis and fibrosis by inhibiting the HIF-1α/FABP4 signaling axis. Phytomedicine, 141, 156738
  • Zheng, C. D., Li, G., Li, H. Q., Xu, X. J., Gao, J. M., & Zhang, A. L. (2010). DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Natural product communications, 5(11), 1934578X1000501112.
  • Zheng, X., Zhang, X., & Zeng, F. (2025). Biological Functions and Health Benefits of Flavonoids in Fruits and Vegetables: A Contemporary Review. Foods, 14(2), 155.

Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties

Year 2025, Volume: 15 Issue: 4, 1433 - 1443
https://doi.org/10.21597/jist.1720689

Abstract

Diosmin is a natural flavonoid obtained by dehydrating flavanone glycoside hesperidin. This study evaluated the inhibition effects of diosmin flavonoid on human carbonic anhydrases (hCA I and hCA II) and acetylcholinesterase (AChE) enzymes, which are linked to various health issues, and compared the results with standard drugs. The antioxidant potential was assessed using five assays, namely DPPH, ABTS, FRAP, CUPRAC and Fe3+ reducing assays. The results determined that diosmin didn’t exhibit strong antioxidant activity. Additionally, the inhibition effects of diosmin on hCA I, hCA II, and AChE enzymes were examined. It effectively inhibited hCA I and hCA II enzymes with Ki values of 3.84±0.63 nM and 15.64±1.90 nM, respectively (Table 1). For comparison, the Ki values of the standard drug AZA were 1.44 ± 0.32 nM for hCA I and 3.66 ± 0.25 nM for hCA II. On the other hand, diosmin effectively inhibited AChE enzymes with Ki values of 9.31±2.40 nM. The Ki values of the standard drug Tacrine was 6.22±1.95 nM for AChE. These findings suggest that diosmin may serve as a selective enzyme inhibitor, particularly for hCA I, but has limited antioxidant capacity. Diosmin exhibited relatively weak antioxidant activity compared to standard antioxidants.

References

  • Ahmed, G. Y., Osman, A. A., & Mukhtar, A. (2024). Acetylcholinesterase enzyme among cancer patients a potential diagnostic and prognostic indicator a multicenter case–control study. Scientific Reports, 14(1), 5127.
  • Aslan, K., & Gülçin, I. (2024). Microbial Antioxidant Enzymes and Their Fermentative Production. Natural Antioxidants and in vitroAntioxidant Assays, 179.
  • Aslan, K., Kelle, K., Yilmaz, M. A., Erden Kopar, E., & Gulcin, I. (2024). Investigation of Cuckoo‐Pint's (Arum maculatum) Phytochemistry, In Vitro Antioxidant Potential, Enzyme Inhibition, and Antimicrobial Activity. ChemistrySelect, 9(37), e202403588.
  • Aslan, K., Kızıltaş, H., Güven, L., Karagecili, H., Arslan, D., & Gülçin, İ. (2025). Enzyme Inhibition Properties of Calendula officinalis, Matricaria chamomilla, and Anthemis pseudocotula: Kinetics and Molecular Docking Studies. RECORDS OF NATURAL PRODUCTS.
  • Balcı, N., Çelik, H., Türkan, F., Çelebioğlu, N., Çelik, T., & Bursal, E. (2023). Schiff base synthesis with a new reliable method and investigation of their inhibition effects on glutathione S‐transferase and cholinesterase enzymes. ChemistrySelect, 8(18), e202204566.
  • Balcı, N., Şakiroğlu, H., Türkan, F., & Bursal, E. (2022). In vitro and in silico enzyme inhibition effects of some metal ions and compounds on glutathione S-transferase enzyme purified from Vaccinium arctostapylous L. Journal of Biomolecular Structure and Dynamics, 40(22), 11587-11593.
  • Bursal, E., & Gülçin, İ. (2011). Polyphenol contents and in vitro antioxidant activities of lyophilised aqueous extract of kiwifruit (Actinidia deliciosa). Food research international, 44(5), 1482-1489. Campanero, M. A., Escolar, M., Perez, G., Garcia-Quetglas, E., Sadaba, B., & Azanza, J. R. (2010). Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. Journal of pharmaceutical and biomedical analysis, 51(4), 875-881.
  • Öztürk, C., & Küfrevioğlu, Ö. İ. (2024). Affinity gel synthesis from the p-aminobenzoic acid derivative 4-amino-2-methylbenzoic acid and purification of polyphenol oxidase from various plant sources. Protein Expression and Purification, 219, 106474.
  • Öztürk, C., Balci, N., Aslan, O. N., & Kalay, E. (2025). Novel Sulfonylhydrazones With Sulfonate Ester Framework: Promising Dual Inhibitors of AChE and hCAs. Biotechnology and Applied Biochemistry, e2780.
  • Del Prete, S., & Pagano, M. (2024). Enzyme Inhibitors as Multifaceted Tools in Medicine and Agriculture. Molecules, 29(18), 4314.
  • Delaune, K. P., & Alsayouri, K. (2019). Physiology, noncompetitive inhibitor.
  • Dubey, K., Dubey, R., Gupta, R., & Gupta, A. (2021). Exploration of diosmin to control diabetes and its complications-an in vitro and in silico approach. Current Computer-Aided Drug Design, 17(2), 307-313.
  • Durmaz, L., Karageçili, H., Erturk, A., Ozden, E. M., Taslimi, P., Alwasel, S., & Gülçin, İ. (2024). Hamamelitannin’s antioxidant effect and its inhibition capability on α-glycosidase,
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.
  • Farzaliyev, V., Ertürk, A., Abbasova, M., Nabiyev, O., Demir, Y., Kızıltaş, H., ... & Gülçin, İ. (2024). Synthesis and Inhibitor Effect Novel Alkoxymethyl Derivatives of Dihetero Cycloalkanes on Carbonic Anhydrase and Acetylcholinesterase. Chemistry & Biodiversity, e202400296.
  • Firdous, S. M., Hazra, S., Gopinath, S. C., El-Desouky, G. E., & Aboul-Soud, M. A. (2021). Antihyperlipidemic potential of diosmin in Swiss Albino mice with high-fat diet induced hyperlipidemia. Saudi journal of biological sciences, 28(1), 109-115.
  • Gerges, S. H., Wahdan, S. A., Elsherbiny, D. A., & El-Demerdash, E. (2022). Pharmacology of diosmin, a citrus flavone glycoside: an updated review. European journal of drug metabolism and pharmacokinetics, 1-18.
  • Gocer, H., Topal, F., Topal, M., Küçük, M., Teke, D., Gülçin, İ., ... & Supuran, C. T. (2016). Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. Journal of enzyme inhibition and medicinal chemistry, 31(3), 441-447.
  • Göçer, H., & Gülçin, İ. (2011). Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. International journal of food sciences and nutrition, 62(8), 821-825.
  • Gulcin, İ. (2025). Antioxidants: a comprehensive review. Archives of Toxicology, 1-105.
  • Gulcin, İ., & Alwasel, S. H. (2023). DPPH radical scavenging assay. Processes, 11(8), 2248
  • Gülcin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of toxicology, 86(3), 345-391.
  • Gülcin, I. (2012). Antioxidant activity of food constituents: an overview. Archives of toxicology, 86(3), 345-391.
  • Gülçin, İ. (2005). The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. International journal of food sciences and nutrition, 56(7), 491-499.
  • Gülçin, İ. (2009). Antioxidant activity of l-adrenaline: A structure–activity insight. Chemico-biological interactions, 179(2-3), 71-80.
  • Gülçin, İ. (2010). Antioxidant properties of resveratrol: A structure–activity insight. Innovative food science & emerging technologies, 11(1), 210-218.
  • İzol, E., Bursal, E., Yapıcı, İ., Abdullah Yilmaz, M., Yilmaz, İ., & Gülçin, İ. (2024). Chemical Content by LC–MS/MS, Antiglaucoma, and Antioxidant Activity of Propolis Samples From Different Regions of Türkiye. Journal of Food Biochemistry, 2024(1), 7488590.
  • Jyoti, U., & Devi, S. (2025). Diosmin as Antidiabetic Agent: A Comprehensive Mechanistic Approach. Current Bioactive Compounds.
  • Karaytuğ, M. O., Balcı, N., Türkan, F., Gürbüz, M., Demirkol, M. E., Namlı, Z., ... & Gülçin, İ. (2023). Piperazine derivatives with potent drug moiety as efficient acetylcholinesterase, butyrylcholinesterase, and glutathione S‐transferase inhibitors. Journal of Biochemical and Molecular Toxicology, 37(2), e23259.
  • Kelebekli, L., Balcı, N., & Şahin, E. (2014). Stereospecific synthesis of highly substituted novel carbasugar as carbonic anhydrase inhibitors: decahydronaphthalene-1, 2, 3, 4, 5, 6, 7-heptol. Tetrahedron, 70(34), 5175-5181.
  • Köksal, E., & Gülçin, İ. (2008). Antioxidant activity of cauliflower (Brassica oleracea L.). Turkish Journal of Agriculture and Forestry, 32(1), 65-78.
  • Kuppusamy, A., Arumugam, M., & George, S. (2017). Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. International journal of biological macromolecules, 95, 199-203.
  • Lee Y, Yuk D, Lee J, et al. (2009) Epigallocatechin-3-gallate pre vents lipopolysaccharide-induced elevation of β-amyloid gener ation and memory deficiency. Brain Res 1250, 164–174.
  • Li, X., Chen, B., Xie, H., He, Y., Zhong, D., & Chen, D. (2018). Antioxidant structure–activity relationship analysis of five dihydrochalcones. Molecules, 23(5), 1162.
  • Mandal, M., Sarkar, M., Khan, A., Biswas, M., Masi, A., Rakwal, R., ... & Sarkar, A. (2022). Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) in plants–maintenance of structural individuality and functional blend. Advances in Redox Research, 5, 100039.
  • McHardy, S. F., Wang, H. Y. L., McCowen, S. V., & Valdez, M. C. (2017). Recent advances in acetylcholinesterase Inhibitors and Reactivators: an update on the patent literature (2012-2015). Expert opinion on therapeutic patents, 27(4), 455-476. Rufer, A. C. (2021). Drug discovery for enzymes. Drug discovery today, 26(4), 875-886.
  • Ovando C, Hernandez D, Hernandez E, et al. (2009) Chemical studies of anthocyanins: a review. Food Chem 113, 859–871.
  • Ozgun, D. O., Yamali, C., Gul, H. I., Taslimi, P., Gulcin, I., Yanik, T., & Supuran, C. T. (2016). Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. Journal of enzyme inhibition and medicinal chemistry, 31(6), 1498-1501.
  • Öztürk, C., Kalay, E., Gerni, S., Balci, N., Tokali, F. S., Aslan, O. N., & Polat, E. (2024). Sulfonamide derivatives with benzothiazole scaffold: Synthesis and carbonic anhydrase I–II inhibition properties. Biotechnology and Applied Biochemistry, 71(1), 223-231.
  • Pedrood, K., Sherafati, M., Mohammadi-Khanaposhtani, M., Asgari, M. S., Hosseini, S., Rastegar, H., ... & Gulcin, I. (2021). Design, synthesis, characterization, enzymatic inhibition evaluations, and docking study of novel quinazolinone derivatives. International Journal of Biological Macromolecules, 170, 1-12.
  • Rees, T. M., & Brimijoin, S. (2003). The role of acetylcholinesterase in the pathogenesis of Alzheimer's disease. Drugs of today (Barcelona, Spain: 1998), 39(1), 75-83.
  • Rufer, A. C. (2021). Drug discovery for enzymes. Drug discovery today, 26(4), 875-886.
  • Shaaban, H. H., Hozayen, W. G., Khaliefa, A. K., El-Kenawy, A. E., Ali, T. M., & Ahmed, O. M. (2022). Diosmin and trolox have anti-arthritic, anti-inflammatory and antioxidant potencies in complete Freund’s adjuvant-induced arthritic male Wistar rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants, 11(9), 1721.
  • Sharma, T.; Sharma, S.; Kamyab, H.; Kumar, A. Energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases: A review. J. Clean. Prod. 2020, 247, 119138.
  • Supuran, C. T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature reviews Drug discovery, 7(2), 168-181.
  • Supuran, C. T. (2021). Emerging role of carbonic anhydrase inhibitors. Clinical Science, 135(10), 1233-1249.
  • Supuran, C. T. (2024). Multi-and poly-pharmacology of carbonic anhydrase inhibitors. Pharmacological reviews, 100004.
  • Taslimi, P., & Gulçin, İ. (2018). Antioxidant and anticholinergic properties of olivetol. Journal of food biochemistry, 42(3), e12516.
  • Taslimi, P., & Gulçin, İ. (2018). Antioxidant and anticholinergic properties of olivetol. Journal of food biochemistry, 42(3), e12516.
  • Taslimi, P., Köksal, E., Gören, A. C., Bursal, E., Aras, A., Kılıç, Ö., ... & Gülçin, İ. (2020). Anti-Alzheimer, antidiabetic and antioxidant potential of Satureja cuneifolia and analysis of its phenolic contents by LC-MS/MS. Arabian journal of chemistry, 13(3), 4528-4537.
  • Taslimi, P.; Gulcin, I.; Ozgeris, B.; Goksu, S.; Tumer, F.; Alwasel, S. H.; Supuran, C. T. The Human Carbonic Anhydrase Isoenzymes I and II (HCA I and II) Inhibition Effects of Trimethoxyindane Derivatives. J Enzyme Inhib Med Chem 2016, 31 (1), 152–157. https://doi.org/10.3109/14756366.2015.1014476.
  • Tel, A. Z., Aslan, K., Gulcın, I. (2025a). Phytochemical Analysis, Antioxidant, Anticholinergic, Antidiabetic, and Antiglaucoma Potentials of Sage (Salvia adiyamanensis).
  • Tel, A. Z., Aslan, K., Yılmaz, M. A., & Gulcin, İ. (2025b). A multidimensional study for design of phytochemical profiling, antioxidant potential, and enzyme inhibition effects of ışgın (Rheum telianum) as an edible plant. Food Chemistry: X, 25, 102125.
  • Topal, F. (2019). Determination of antioxidant capacity of 2, 6-quinolinediol. Journal of the Institute of Science and Technology, 9(3), 1520-1527.
  • Topal, F., Nar, M., Gocer, H., Kalin, P., Kocyigit, U. M., Gülçin, İ., & Alwasel, S. H. (2016). Antioxidant activity of taxifolin: an activity–structure relationship. Journal of enzyme inhibition and medicinal chemistry, 31(4), 674-683.
  • Toraman, G. Ö., Bayrakdar, A., Oğuz, E., Beytur, M., Türkan, F., Manap, S., ... & Yüksek, H. (2025). Synthesis, characterization of novel mannich bases and their acetylcholinesterase and glutathione S-transferase inhibitory properties: An in vitro and in silico mechanism research. Journal of Molecular Structure, 1321, 139733.
  • Trang, A., & Khandhar, P. B. (2019). Physiology, acetylcholinesterase.
  • Tumilaar, S. G., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), 5594386.
  • Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem., 242(18), 4221-4229
  • Zhao, W. M., Chu, F., Zhu, J. X., Li, X. L., Zhu, Y., Wang, Z. J., ... & Wang, D. G. (2025). Diosmin attenuates U UO-induced renal ferroptosis and fibrosis by inhibiting the HIF-1α/FABP4 signaling axis. Phytomedicine, 141, 156738
  • Zheng, C. D., Li, G., Li, H. Q., Xu, X. J., Gao, J. M., & Zhang, A. L. (2010). DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Natural product communications, 5(11), 1934578X1000501112.
  • Zheng, X., Zhang, X., & Zeng, F. (2025). Biological Functions and Health Benefits of Flavonoids in Fruits and Vegetables: A Contemporary Review. Foods, 14(2), 155.
There are 62 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Research Article
Authors

Neslihan Balcı 0000-0002-1798-5550

Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date June 16, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Balcı, N. (2025). Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties. Journal of the Institute of Science and Technology, 15(4), 1433-1443. https://doi.org/10.21597/jist.1720689
AMA Balcı N. Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties. J. Inst. Sci. and Tech. November 2025;15(4):1433-1443. doi:10.21597/jist.1720689
Chicago Balcı, Neslihan. “Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1433-43. https://doi.org/10.21597/jist.1720689.
EndNote Balcı N (November 1, 2025) Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties. Journal of the Institute of Science and Technology 15 4 1433–1443.
IEEE N. Balcı, “Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1433–1443, 2025, doi: 10.21597/jist.1720689.
ISNAD Balcı, Neslihan. “Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties”. Journal of the Institute of Science and Technology 15/4 (November2025), 1433-1443. https://doi.org/10.21597/jist.1720689.
JAMA Balcı N. Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties. J. Inst. Sci. and Tech. 2025;15:1433–1443.
MLA Balcı, Neslihan. “Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1433-4, doi:10.21597/jist.1720689.
Vancouver Balcı N. Inhibition Effect of Diosmin Flavanoid on Some Metabolic Enzymes and Investigation of Antioxidant Properties. J. Inst. Sci. and Tech. 2025;15(4):1433-4.