Research Article
BibTex RIS Cite

Development, Characterization, and Catalytic Performance of MIL-53(Al)-Supported Ruthenium Nanoclusters in the Reduction of Nitrophenol Derivatives

Year 2025, Volume: 15 Issue: 4, 1454 - 1471
https://doi.org/10.21597/jist.1791505

Abstract

Nitrophenols are pollutants with high toxicity and bioaccumulation potential, posing a serious threat to the environment. Reducing these compounds to less harmful amine derivatives is of great importance for environmental protection and sustainable chemical applications. In this study, the catalytic performance of the Ru/MIL-53(Al) nanocatalyst in the reduction of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP) was investigated. Kinetic analyses revealed turnover frequency (TOF) values of 56.19 1/min for 4-NP and 24.21 1/min for 2-NP, indicating that the reduction of 4-NP is kinetically more favorable. Thermodynamic evaluations showed that the reaction rates increased with temperature and proceeded via an activation-controlled pathway. The MIL-53(Al) support prevented the aggregation of Ru nanoparticles, thereby enhancing the structural stability of the catalyst. Reusability tests demonstrated that the catalyst retained 89.6% of its initial activity for 2-NP and 85.9% for 4-NP even after five consecutive cycles. These findings highlight that the Ru@MIL-53(Al) nanocatalyst offers a highly efficient, stable, and environmentally friendly catalytic system for the reduction of nitrophenols.

Supporting Institution

TÜBİTAK

Project Number

1919B012473648

Thanks

We would like to thank the Scientific and Technological Research Council of Türkiye (TÜBİTAK) for its financial support to our project (Project No: 1919B012473648) within the scope of the 2209-A Research Project Support Programme for Undergraduate Students

References

  • Ahadi, N., Askari, S., Fouladitajar, A., & Akbari, I. (2022). Facile synthesis of hierarchically structured MIL-53 (Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions. Scientific Reports, 12(1), 2649.
  • Al-Kahtani, A. A., Almuqati, T., Alhokbany, N., Ahamad, T., Naushad, M., & Alshehri, S. M. (2018). A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes. Journal of Cleaner Production, 191, 429–435.
  • Cardoso Juarez, A. O., Ocampo Lopez, E. I., Kesarla, M. K., & Bogireddy, N. K. R. (2024). Advances in 4-nitrophenol detection and reduction methods and mechanisms: An updated review. ACS Omega, 9(31), 33335–33350.
  • Cevallos-Mendoza, J. E., Cedeño-Muñoz, J. S., Navia-Mendoza, J. M., Figueira, F., Amorim, C. G., Rodríguez-Díaz, J. M., & Montenegro, M. C. (2024). Development of hybrid MIL-53 (Al)@CBS for ternary adsorption of tetracyclines antibiotics in water: Physical interpretation of the adsorption mechanism. Bioresource Technology, 396, 130453.
  • Chandio, A. A., Memon, S., Memon, A. A., Balouch, A., Memon, R., Thebo, K. H., … Otho, A. A. (2023). Eco-friendly conversion of p-nitrophenol into p-aminophenol using calix[4]arene derived CuO nanoparticles: An excellent catalytic agent. Polycyclic Aromatic Compounds, 43(6), 4843–4855.
  • Din, M. I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., & Izhar, F. (2020). Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review. Critical Reviews in Analytical Chemistry, 50(4), 322–338.
  • Dinari, M., Golshadi, Z., Asadi, P., Norton, A. E., Reid, K. R., & Karimi, B. (2024). Recent progress on covalent organic frameworks supporting metal nanoparticles as promising materials for nitrophenol reduction. Nanomaterials, 14(17), 1458.
  • Do, X. D., Hoang, V. T., & Kaliaguine, S. (2011). MIL-53 (Al) mesostructured metal-organic frameworks. Microporous and Mesoporous Materials, 141(1–3), 135–139.
  • Duan, X., Xiao, M., Liang, S., Zhang, Z., Zeng, Y., Xi, J., & Wang, S. (2017). Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon, 119, 326–331.
  • Embrechts, H., Kriesten, M., Ermer, M., Peukert, W., Hartmann, M., & Distaso, M. (2020). In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68 (Al) and MIL-53 (Al). RSC Advances, 10(13), 7336–7348.
  • Feng, K., Hao, Z., Zhao, W., Wang, T., Liu, X., Zhai, N., & Wang, W. (2023). Convert waste to MOF: Nitro-MIL-53 (Al) synthesized from waste acid leachate for highly efficient capture of p-nitrophenol. Journal of Environmental Chemical Engineering, 11(3), 110239.
  • Ghorbani-Vaghei, R., Veisi, H., Aliani, M. H., Mohammadi, P., & Karmakar, B. (2021). Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. Journal of Molecular Liquids, 327, 114868.
  • Haleem, A., Shafiq, A., Chen, S. Q., & Nazar, M. (2023). A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules, 28(3), 1081.
  • Han, B., & Chakraborty, A. (2023). Functionalization, protonation and ligand extension on MIL-53 (Al) MOFs to boost water adsorption and thermal energy storage for heat transformations. Chemical Engineering Journal, 472, 145137.
  • Kalekar, A. M., Sharma, K. K. K., Luwang, M. N., & Sharma, G. K. (2016). Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Advances, 6(14), 11911–11920.
  • Karami, A., Shomal, R., Sabouni, R., Murtaza, S. Z., & Ghommem, M. (2023). Photocatalytic degradation of diclofenac using hybrid MIL-53 (Al)@TiO2 and MIL-53 (Al)@ZnO catalysts. The Canadian Journal of Chemical Engineering, 101(5), 2660–2676.
  • Li, Y., Hu, Z., Sheng, M., Gan, C., Hu, H., Sun, B., & Jiang, H. (2023). ZIF-67 template-assisted porous carbon based Ru–Co synergistic effect for efficient NH₃BH₃ hydrolysis and 4-nitrophenol reduction: Effect of morphology and pore structure adjustment. International Journal of Hydrogen Energy, 48(94), 36795–36809.
  • Liu, S., Guo, Y., Yi, S., Yan, S., Ouyang, C., Deng, F., … Li, Q. (2023). Facile synthesis of pure silicon zeolite-confined silver nanoparticles and their catalytic activity for the reduction of 4-nitrophenol and methylene blue. Separation and Purification Technology, 307, 122727.
  • Liu, Q., Deng, X., Zhu, L., Huang, P., Wang, W., Li, L., Yang, Z., Zhang, H., Xu, J., & Ye, H. (2024). Bimetallic Pd–Co and Pd–Ni nanoparticles supported on covalent organic frameworks as catalysts for the hydrogenation of 4-nitrophenol. ACS Applied Nano Materials, 7(11), 13147–13155.
  • Mahmoud, M. E., Amira, M. F., Abouelanwar, M. E., & Seleim, S. M. (2020). Catalytic reduction of nitrophenols by a novel assembled nanocatalyst based on zerovalent copper-nanopolyaniline-nanozirconium silicate. Journal of Molecular Liquids, 299, 112192.
  • Maleki, M. H., Rezaie, M., & Dinari, M. (2022). Facile synthesis of green and efficient magnetic nanocomposites of carrageenan/copper for the reduction of nitrophenol derivatives. International Journal of Biological Macromolecules, 220, 954–963.
  • Qi, B., Wu, C., Liu, Y., Liu, J., & Zhang, H. (2019). Self-assembled magnetic Pt nanocomposites for the catalytic reduction of nitrophenol. ACS Applied Nano Materials, 2(7), 4377–4385.
  • Qin, H., Zhu, J., Li, Q., Ran, X., Cai, M., Wang, H., & Mao, S. (2025). Sustainable treatment of nitrophenol wastewater through combined electrochemical redox and biological processes. Chemical Engineering Journal, 512, 162602.
  • Roy, D., Neogi, S., & De, S. (2021). Highly efficient reduction of p-nitrophenol by sodium borohydride over binary ZIF-67/g-C3N4 heterojunction catalyst. Journal of Environmental Chemical Engineering, 9(6), 106677.
  • Rüzgar, A. (2025). Synthesis and characterisation of Pd/MIL-68 (Al) nanoparticles for high performance catalytic reduction of 4-nitrophenol. Research on Chemical Intermediates, 1–25.
  • Rüzgar, A., Karataş, Y., & Gülcan, M. (2023). Synthesis and characterization of Pd⁰ nanoparticles supported over hydroxyapatite nanospheres for potential application as a promising catalyst for nitrophenol reduction. Heliyon, 9(11).
  • Rüzgar, A., Karataş, Y., Yurderi, M., Şener, L., Gülcan, M., & Zahmakiran, M. (2025). Synthesis, characterization, and determination of the catalytic roles of tungsten(VI) oxide-supported Pd⁰ nanoparticles in the reduction of nitroaromatic pollutants. Materials Chemistry and Physics, 131368.
  • Safira, A. R., Alluhayb, A. H., Aadil, M., Alkaseem, M., Fattah-alhosseini, A., & Kaseem, M. (2024). Enhanced photocatalytic reduction of p-nitrophenol by polyvinylpyrrolidone-modified MOF/porous MgO composite heterostructures. Composites Part B: Engineering, 284, 111710.
  • Salazar, J. M., Weber, G., Simon, J. M., Bezverkhyy, I., & Bellat, J. P. (2015). Characterization of adsorbed water in MIL-53 (Al) by FTIR spectroscopy and ab-initio calculations. The Journal of Chemical Physics, 142(12).
  • Salahshoori, I., Jorabchi, M. N., Ghasemi, S., Ranjbarzadeh-Dibazar, A., Vahedi, M., & Khonakdar, H. A. (2023). MIL-53 (Al) nanostructure for non-steroidal anti-inflammatory drug adsorption in wastewater treatment: Molecular simulation and experimental insights. Process Safety and Environmental Protection, 175, 473–494.
  • Salionov, D., Semivrazhskaya, O. O., Casati, N. P., Ranocchiari, M., Bjelić, S., Verel, R., … Sushkevich, V. L. (2022). Unraveling the molecular mechanism of MIL-53 (Al) crystallization. Nature Communications, 13(1), 3762.
  • Sedghi, R., Heravi, M. M., Asadi, S., Nazari, N., & Nabid, M. R. (2016). Recently used nanocatalysts in reduction of nitroarenes. Current Organic Chemistry, 20(6), 696–734.
  • Soğukömeroğulları, H. G., Karataş, Y., Celebi, M., Gülcan, M., Sönmez, M., & Zahmakiran, M. (2019). Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. Journal of Hazardous Materials, 369, 96–107.
  • Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Marwat, A., & Ahmad, A. (2021). Catalytic reduction of nitrophenol and MB wastewater using homogeneous Pt NPs confined in hierarchically porous silica. Journal of Environmental Chemical Engineering, 9(4), 105567.
  • Sudhakar, P., & Soni, H. (2018). Catalytic reduction of nitrophenols using silver nanoparticles-supported activated carbon derived from agro-waste. Journal of Environmental Chemical Engineering, 6(1), 28–36.
  • Veerakumar, P., Sangili, A., Chen, S. M., & Karuppusamy, N. (2023). Sustainable synthesis of ruthenium–palladium-based nanonet assembly for efficient reduction of 4-nitrophenol and nitrofurantoin. ACS Applied Nano Materials, 6(21), 19740–19755.
  • Yadav, G., Yadav, N., & Ahmaruzzaman, M. (2025). Photoreduction of nitrophenol using metal oxide-based nanocomposites: A green and efficient approach for aqueous environmental remediation. International Journal of Environmental Analytical Chemistry, 105(8), 1779–1800.
  • Yan, Q., Wang, X. Y., Feng, J. J., Mei, L. P., & Wang, A. J. (2021). Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. Journal of Colloid and Interface Science, 582, 701–710.
  • Yang, K., Zhou, L., Yu, G., Xiong, X., Ye, M., Li, Y., … Xia, Q. (2016). Ru nanoparticles supported on MIL-53 (Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 41(15), 6300–6309.
  • Yanping, D., Tian, X., Zhao, H., & Luo, J. (2024). Anchoring of Pd nanoparticles over amines grafted 3D TiO₂ catalyst for the improved selective hydrogenation of 4-nitrophenol. Solid State Sciences, 149, 107474.

MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması

Year 2025, Volume: 15 Issue: 4, 1454 - 1471
https://doi.org/10.21597/jist.1791505

Abstract

Nitrofenoller, toksik ve biyobirikim potansiyeli yüksek kirleticiler olup çevresel açıdan ciddi tehdit oluşturmaktadır. Bu bileşiklerin daha az zararlı amin türevlerine indirgenmesi, çevre sağlığı ve sürdürülebilir kimya uygulamaları için büyük önem taşır. Bu çalışmada, Ru/MIL-53(Al) nanokatalizörünün 2-nitrofenol (2-NP) ve 4-nitrofenol (4-NP) indirgenmesindeki etkinliği araştırılmıştır. Kinetik analizler sonucunda 4-NP için dönüşüm frekansı (TOF) 56.19 1/dk, 2-NP için ise 24.21 1/dk olarak bulunmuş; böylece 4-NP indirgenmesinin kinetik açıdan daha avantajlı olduğu belirlenmiştir. Termodinamik değerlendirmeler, reaksiyon hızlarının sıcaklık artışıyla yükseldiğini ve sürecin aktivasyon kontrollü ilerlediğini göstermiştir. MIL-53(Al) desteği, Ru nanoparçacıklarının agregasyonunu engelleyerek katalizörün kararlılığını artırmıştır. Yeniden kullanılabilirlik testleri, beş döngü sonunda 2-NP için %89.6, 4-NP için ise %85.9 oranında aktivitenin korunduğunu göstermiştir. Sonuçlar, Ru@MIL-53(Al) nanokatalizörünün nitrofenollerin indirgenmesinde yüksek verimli, kararlı ve çevre dostu bir katalitik sistem sunduğunu ortaya koymaktadır.

Supporting Institution

TÜBİTAK

Project Number

1919B012473648

Thanks

2209-A- Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamındaki projemize (Proje No:1919B012473648) maddi desteği için Türkiye Bilimsel ve Teknolojik Araştırma Kurumu'na teşekkür ederiz

References

  • Ahadi, N., Askari, S., Fouladitajar, A., & Akbari, I. (2022). Facile synthesis of hierarchically structured MIL-53 (Al) with superior properties using an environmentally-friendly ultrasonic method for separating lead ions from aqueous solutions. Scientific Reports, 12(1), 2649.
  • Al-Kahtani, A. A., Almuqati, T., Alhokbany, N., Ahamad, T., Naushad, M., & Alshehri, S. M. (2018). A clean approach for the reduction of hazardous 4-nitrophenol using gold nanoparticles decorated multiwalled carbon nanotubes. Journal of Cleaner Production, 191, 429–435.
  • Cardoso Juarez, A. O., Ocampo Lopez, E. I., Kesarla, M. K., & Bogireddy, N. K. R. (2024). Advances in 4-nitrophenol detection and reduction methods and mechanisms: An updated review. ACS Omega, 9(31), 33335–33350.
  • Cevallos-Mendoza, J. E., Cedeño-Muñoz, J. S., Navia-Mendoza, J. M., Figueira, F., Amorim, C. G., Rodríguez-Díaz, J. M., & Montenegro, M. C. (2024). Development of hybrid MIL-53 (Al)@CBS for ternary adsorption of tetracyclines antibiotics in water: Physical interpretation of the adsorption mechanism. Bioresource Technology, 396, 130453.
  • Chandio, A. A., Memon, S., Memon, A. A., Balouch, A., Memon, R., Thebo, K. H., … Otho, A. A. (2023). Eco-friendly conversion of p-nitrophenol into p-aminophenol using calix[4]arene derived CuO nanoparticles: An excellent catalytic agent. Polycyclic Aromatic Compounds, 43(6), 4843–4855.
  • Din, M. I., Khalid, R., Hussain, Z., Hussain, T., Mujahid, A., Najeeb, J., & Izhar, F. (2020). Nanocatalytic assemblies for catalytic reduction of nitrophenols: A critical review. Critical Reviews in Analytical Chemistry, 50(4), 322–338.
  • Dinari, M., Golshadi, Z., Asadi, P., Norton, A. E., Reid, K. R., & Karimi, B. (2024). Recent progress on covalent organic frameworks supporting metal nanoparticles as promising materials for nitrophenol reduction. Nanomaterials, 14(17), 1458.
  • Do, X. D., Hoang, V. T., & Kaliaguine, S. (2011). MIL-53 (Al) mesostructured metal-organic frameworks. Microporous and Mesoporous Materials, 141(1–3), 135–139.
  • Duan, X., Xiao, M., Liang, S., Zhang, Z., Zeng, Y., Xi, J., & Wang, S. (2017). Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon, 119, 326–331.
  • Embrechts, H., Kriesten, M., Ermer, M., Peukert, W., Hartmann, M., & Distaso, M. (2020). In situ Raman and FTIR spectroscopic study on the formation of the isomers MIL-68 (Al) and MIL-53 (Al). RSC Advances, 10(13), 7336–7348.
  • Feng, K., Hao, Z., Zhao, W., Wang, T., Liu, X., Zhai, N., & Wang, W. (2023). Convert waste to MOF: Nitro-MIL-53 (Al) synthesized from waste acid leachate for highly efficient capture of p-nitrophenol. Journal of Environmental Chemical Engineering, 11(3), 110239.
  • Ghorbani-Vaghei, R., Veisi, H., Aliani, M. H., Mohammadi, P., & Karmakar, B. (2021). Alginate modified magnetic nanoparticles to immobilization of gold nanoparticles as an efficient magnetic nanocatalyst for reduction of 4-nitrophenol in water. Journal of Molecular Liquids, 327, 114868.
  • Haleem, A., Shafiq, A., Chen, S. Q., & Nazar, M. (2023). A comprehensive review on adsorption, photocatalytic and chemical degradation of dyes and nitro-compounds over different kinds of porous and composite materials. Molecules, 28(3), 1081.
  • Han, B., & Chakraborty, A. (2023). Functionalization, protonation and ligand extension on MIL-53 (Al) MOFs to boost water adsorption and thermal energy storage for heat transformations. Chemical Engineering Journal, 472, 145137.
  • Kalekar, A. M., Sharma, K. K. K., Luwang, M. N., & Sharma, G. K. (2016). Catalytic activity of bare and porous palladium nanostructures in the reduction of 4-nitrophenol. RSC Advances, 6(14), 11911–11920.
  • Karami, A., Shomal, R., Sabouni, R., Murtaza, S. Z., & Ghommem, M. (2023). Photocatalytic degradation of diclofenac using hybrid MIL-53 (Al)@TiO2 and MIL-53 (Al)@ZnO catalysts. The Canadian Journal of Chemical Engineering, 101(5), 2660–2676.
  • Li, Y., Hu, Z., Sheng, M., Gan, C., Hu, H., Sun, B., & Jiang, H. (2023). ZIF-67 template-assisted porous carbon based Ru–Co synergistic effect for efficient NH₃BH₃ hydrolysis and 4-nitrophenol reduction: Effect of morphology and pore structure adjustment. International Journal of Hydrogen Energy, 48(94), 36795–36809.
  • Liu, S., Guo, Y., Yi, S., Yan, S., Ouyang, C., Deng, F., … Li, Q. (2023). Facile synthesis of pure silicon zeolite-confined silver nanoparticles and their catalytic activity for the reduction of 4-nitrophenol and methylene blue. Separation and Purification Technology, 307, 122727.
  • Liu, Q., Deng, X., Zhu, L., Huang, P., Wang, W., Li, L., Yang, Z., Zhang, H., Xu, J., & Ye, H. (2024). Bimetallic Pd–Co and Pd–Ni nanoparticles supported on covalent organic frameworks as catalysts for the hydrogenation of 4-nitrophenol. ACS Applied Nano Materials, 7(11), 13147–13155.
  • Mahmoud, M. E., Amira, M. F., Abouelanwar, M. E., & Seleim, S. M. (2020). Catalytic reduction of nitrophenols by a novel assembled nanocatalyst based on zerovalent copper-nanopolyaniline-nanozirconium silicate. Journal of Molecular Liquids, 299, 112192.
  • Maleki, M. H., Rezaie, M., & Dinari, M. (2022). Facile synthesis of green and efficient magnetic nanocomposites of carrageenan/copper for the reduction of nitrophenol derivatives. International Journal of Biological Macromolecules, 220, 954–963.
  • Qi, B., Wu, C., Liu, Y., Liu, J., & Zhang, H. (2019). Self-assembled magnetic Pt nanocomposites for the catalytic reduction of nitrophenol. ACS Applied Nano Materials, 2(7), 4377–4385.
  • Qin, H., Zhu, J., Li, Q., Ran, X., Cai, M., Wang, H., & Mao, S. (2025). Sustainable treatment of nitrophenol wastewater through combined electrochemical redox and biological processes. Chemical Engineering Journal, 512, 162602.
  • Roy, D., Neogi, S., & De, S. (2021). Highly efficient reduction of p-nitrophenol by sodium borohydride over binary ZIF-67/g-C3N4 heterojunction catalyst. Journal of Environmental Chemical Engineering, 9(6), 106677.
  • Rüzgar, A. (2025). Synthesis and characterisation of Pd/MIL-68 (Al) nanoparticles for high performance catalytic reduction of 4-nitrophenol. Research on Chemical Intermediates, 1–25.
  • Rüzgar, A., Karataş, Y., & Gülcan, M. (2023). Synthesis and characterization of Pd⁰ nanoparticles supported over hydroxyapatite nanospheres for potential application as a promising catalyst for nitrophenol reduction. Heliyon, 9(11).
  • Rüzgar, A., Karataş, Y., Yurderi, M., Şener, L., Gülcan, M., & Zahmakiran, M. (2025). Synthesis, characterization, and determination of the catalytic roles of tungsten(VI) oxide-supported Pd⁰ nanoparticles in the reduction of nitroaromatic pollutants. Materials Chemistry and Physics, 131368.
  • Safira, A. R., Alluhayb, A. H., Aadil, M., Alkaseem, M., Fattah-alhosseini, A., & Kaseem, M. (2024). Enhanced photocatalytic reduction of p-nitrophenol by polyvinylpyrrolidone-modified MOF/porous MgO composite heterostructures. Composites Part B: Engineering, 284, 111710.
  • Salazar, J. M., Weber, G., Simon, J. M., Bezverkhyy, I., & Bellat, J. P. (2015). Characterization of adsorbed water in MIL-53 (Al) by FTIR spectroscopy and ab-initio calculations. The Journal of Chemical Physics, 142(12).
  • Salahshoori, I., Jorabchi, M. N., Ghasemi, S., Ranjbarzadeh-Dibazar, A., Vahedi, M., & Khonakdar, H. A. (2023). MIL-53 (Al) nanostructure for non-steroidal anti-inflammatory drug adsorption in wastewater treatment: Molecular simulation and experimental insights. Process Safety and Environmental Protection, 175, 473–494.
  • Salionov, D., Semivrazhskaya, O. O., Casati, N. P., Ranocchiari, M., Bjelić, S., Verel, R., … Sushkevich, V. L. (2022). Unraveling the molecular mechanism of MIL-53 (Al) crystallization. Nature Communications, 13(1), 3762.
  • Sedghi, R., Heravi, M. M., Asadi, S., Nazari, N., & Nabid, M. R. (2016). Recently used nanocatalysts in reduction of nitroarenes. Current Organic Chemistry, 20(6), 696–734.
  • Soğukömeroğulları, H. G., Karataş, Y., Celebi, M., Gülcan, M., Sönmez, M., & Zahmakiran, M. (2019). Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. Journal of Hazardous Materials, 369, 96–107.
  • Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Marwat, A., & Ahmad, A. (2021). Catalytic reduction of nitrophenol and MB wastewater using homogeneous Pt NPs confined in hierarchically porous silica. Journal of Environmental Chemical Engineering, 9(4), 105567.
  • Sudhakar, P., & Soni, H. (2018). Catalytic reduction of nitrophenols using silver nanoparticles-supported activated carbon derived from agro-waste. Journal of Environmental Chemical Engineering, 6(1), 28–36.
  • Veerakumar, P., Sangili, A., Chen, S. M., & Karuppusamy, N. (2023). Sustainable synthesis of ruthenium–palladium-based nanonet assembly for efficient reduction of 4-nitrophenol and nitrofurantoin. ACS Applied Nano Materials, 6(21), 19740–19755.
  • Yadav, G., Yadav, N., & Ahmaruzzaman, M. (2025). Photoreduction of nitrophenol using metal oxide-based nanocomposites: A green and efficient approach for aqueous environmental remediation. International Journal of Environmental Analytical Chemistry, 105(8), 1779–1800.
  • Yan, Q., Wang, X. Y., Feng, J. J., Mei, L. P., & Wang, A. J. (2021). Simple fabrication of bimetallic platinum-rhodium alloyed nano-multipods: A highly effective and recyclable catalyst for reduction of 4-nitrophenol and rhodamine B. Journal of Colloid and Interface Science, 582, 701–710.
  • Yang, K., Zhou, L., Yu, G., Xiong, X., Ye, M., Li, Y., … Xia, Q. (2016). Ru nanoparticles supported on MIL-53 (Cr, Al) as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. International Journal of Hydrogen Energy, 41(15), 6300–6309.
  • Yanping, D., Tian, X., Zhao, H., & Luo, J. (2024). Anchoring of Pd nanoparticles over amines grafted 3D TiO₂ catalyst for the improved selective hydrogenation of 4-nitrophenol. Solid State Sciences, 149, 107474.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Organic Chemical Synthesis, Organic Chemistry (Other)
Journal Section Research Article
Authors

Mervenur Tayfur 0009-0002-9685-5929

Adem Rüzgar 0000-0001-6922-043X

Project Number 1919B012473648
Early Pub Date November 27, 2025
Publication Date November 27, 2025
Submission Date September 26, 2025
Acceptance Date October 21, 2025
Published in Issue Year 2025 Volume: 15 Issue: 4

Cite

APA Tayfur, M., & Rüzgar, A. (2025). MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması. Journal of the Institute of Science and Technology, 15(4), 1454-1471. https://doi.org/10.21597/jist.1791505
AMA Tayfur M, Rüzgar A. MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması. J. Inst. Sci. and Tech. November 2025;15(4):1454-1471. doi:10.21597/jist.1791505
Chicago Tayfur, Mervenur, and Adem Rüzgar. “MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu Ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması”. Journal of the Institute of Science and Technology 15, no. 4 (November 2025): 1454-71. https://doi.org/10.21597/jist.1791505.
EndNote Tayfur M, Rüzgar A (November 1, 2025) MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması. Journal of the Institute of Science and Technology 15 4 1454–1471.
IEEE M. Tayfur and A. Rüzgar, “MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması”, J. Inst. Sci. and Tech., vol. 15, no. 4, pp. 1454–1471, 2025, doi: 10.21597/jist.1791505.
ISNAD Tayfur, Mervenur - Rüzgar, Adem. “MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu Ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması”. Journal of the Institute of Science and Technology 15/4 (November2025), 1454-1471. https://doi.org/10.21597/jist.1791505.
JAMA Tayfur M, Rüzgar A. MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması. J. Inst. Sci. and Tech. 2025;15:1454–1471.
MLA Tayfur, Mervenur and Adem Rüzgar. “MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu Ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması”. Journal of the Institute of Science and Technology, vol. 15, no. 4, 2025, pp. 1454-71, doi:10.21597/jist.1791505.
Vancouver Tayfur M, Rüzgar A. MIL-53(Al) Destekli Rutenyum Nanokümelerinin Geliştirilmesi, Karakterizasyonu ve Nitrofenol Türevlerinin İndirgenmesinde Katalitik Performanslarının Araştırılması. J. Inst. Sci. and Tech. 2025;15(4):1454-71.