Research Article
BibTex RIS Cite

Multi-Criteria Analysis of Electric Heavy-Duty Vehicle Selection: A Fuzzy AHP-TOPSIS Framework

Year 2025, Volume: 8 Issue: 2, 112 - 132, 25.10.2025
https://doi.org/10.51513/jitsa.1700101

Abstract

One of the main challenges that international road freight transport must consider in the coming period is national and international environmental regulations. One way to comply with these regulations is to convert the vehicle fleet to electric heavy-duty vehicles. However, this transformation, which requires significant capital investment, involves making the right vehicle selection, a decision with long-term implications. The aim of this study is to develop an integrated model that systematically addresses the multi-dimensional decision-making process in the selection of electric heavy-duty vehicles (EHDVs) within the context of international road freight transport. The study employs a combined approach using the fuzzy AHP and TOPSIS methods. The fuzzy AHP method was utilized in the stage of determining the weights of the criteria, while the TOPSIS method was employed in the stage of selecting the alternatives. According to the study findings, the criteria effective in EHDV selection, as determined by the fuzzy AHP analysis, are, in order of importance: load capacity, range, purchase cost, charging power, operating cost, and motor power. The TOPSIS analysis results the EHDV ranking as follows: alternative 1, alternative 2, alternative 4, alternative 5, and alternative 3. While studies on electric vehicle selection have generally focused on passenger vehicles or light-duty vehicles, this study proposes a model that can be directly applied to both academic and industrial decision-making processes by addressing the EHDV selection problem in the context of international road freight transport.

Project Number

1919B012307319

References

  • Aiello, G., Quaranta, S., Inguanta, R., Certa, A., and Venticinque, M. (2024). A multi-criteria decision-making framework for zero emission vehicle fleet renewal considering lifecycle and scenario uncertainty. Energies, 17(6), 1371.
  • Alamoodi, A. H., Albahri, O. S., Deveci, M., Albahri, A. S., Yussof, S., Dinçer, H., ... and Sharaf, I. M. (2024). Selection of electric bus models using 2-tuple linguistic T-spherical fuzzy-based decision-making model. Expert Systems with Applications, 249, 123498. https://doi.org/10.1016/j.eswa.2024.123498
  • Alonso-Villar, A., Davíðsdóttir, B., Stefánsson, H., Ásgeirsson, E. I., and Kristjánsson, R. (2023). Electrification potential for heavy-duty vehicles in harsh climate conditions: A case study based technical feasibility assessment. Journal of Cleaner Production, 417, 137997. https://doi.org/10.1016/j.jclepro.2023.137997
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., and Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Bergqvist, R., Monios, J., and Jönsson, J. (2023). Potential for rapid adoption of battery-electric heavy-duty trucks for pre-and post-haulage at intermodal terminals. Research in Transportation Business & Management, 50, 101035. https://doi.org/10.1016/j.rtbm.2023.101035
  • Bhardwaj, S., and Mostofi, H. (2022). Technical and business aspects of battery electric trucks-a systematic review. Future Transportation, 2(2), 382-401. https://doi.org/10.3390/futuretransp2020021
  • Biswas, T. K., and Das, M. C. (2019). Selection of commercially available electric vehicle using fuzzy AHP-MABAC. Journal of The Institution of Engineers (India): Series C, 100, 531-537. https://doi.org/10.1007/s40032-018-0481-3
  • Biswas, T., Chatterjee, P., and Choudhuri, B. (2020). Selection of commercially available alternative passenger vehicle in automotive environment. Operational research in engineering sciences: theory and applications, 3(1), 16-27. https://doi.org/10.31181/oresta200113b
  • Bošković, S., Švadlenka, L., Jovčić, S., Dobrodolac, M., Simić, V., and Bacanin, N. (2023). An alternative ranking order method accounting for two-step normalization (AROMAN)—A case study of the electric vehicle selection problem. IEEE Access, 11, 39496-39507. 10.1109/ACCESS.2023.3265818
  • Breed, A. K., Speth, D., and Plötz, P. (2021). CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe. Energy Policy, 159, 112640. https://doi.org/10.1016/j.enpol.2021.112640
  • Brusselaers, N., Macharis, C., and Mommens, K. (2023). The health impact of freight transport-related air pollution on vulnerable population groups. Environmental Pollution, 329, 121555. https://doi.org/10.1016/j.envpol.2023.121555
  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
  • Büyükselçuk, E. Ç. (2024). Elektrikli kamyon seçiminde dairesel sezgisel bulanık kümelere dayalı VIKOR yönteminin uygulanması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 402-427.
  • Bynum, C., Sze, C., Kearns, D., Polovick, B., and Simon, K. (2018). An examination of a voluntary policy model to effect behavioral change and influence interactions and decision making in the freight sector. Transportation Research Part D: Transport and Environment, 61, 19-32. https://doi.org/10.1016/j.trd.2016.11.018
  • Cantillo, V., Amaya, J., Serrano, I., Cantillo-García, V., and Galván, J. (2022). Influencing factors of trucking companies willingness to shift to alternative fuel vehicles. Transportation Research Part E: Logistics and Transportation Review, 163, 102753. https://doi.org/10.1016/j.tre.2022.102753
  • Çelikbilek, Y., and Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics, 7(2), 281-300. https://doi.org/10.1080/23270012.2020.1748528
  • Chatterjee, S., Das, P. P., and Chakraborty, S. (2024). A novel integrated multi-criteria decision-making approach for solving delivery drone selection problem. OPSEARCH, 1-30. https://doi.org/10.1007/s12597-024-00794-w
  • Cheng, X., and Lin, J. (2024). Is electric truck a viable alternative to diesel truck in long-haul operation?. Transportation Research Part D: Transport and Environment, 129, 104119. https://doi.org/10.1016/j.trd.2024.104119
  • Cunanan, C., Tran, M. K., Lee, Y., Kwok, S., Leung, V., and Fowler, M. (2021). A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 3(2), 474-489. https://doi.org/10.3390/cleantechnol3020028
  • Dağdeviren, M., Yavuz, S., and Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems With Applications, 36(4), 8143-8151. https://doi.org/10.1016/j.eswa.2008.10.016
  • Das, M. C., Pandey, A., Mahato, A. K., and Singh, R. K. (2019). Comparative performance of electric vehicles using evaluation of mixed data. Opsearch, 56, 1067-1090. https://doi.org/10.1007/s12597-019-00398-9
  • Feng, W., and Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transportation Research Part C: Emerging Technologies, 26, 135-145. https://doi.org/10.1016/j.trc.2012.06.007
  • Golui, S., Mahapatra, B. S., and Mahapatra, G. S. (2024). A new correlation-based measure on Fermatean fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert Systems With Applications, 237, 121605. https://doi.org/10.1016/j.eswa.2023.121605
  • Gomes, C. F. S., Sousa, F., Pereira, T., Oliveira, M., and Torres, L. N. M. (2023). Multicriteria methodology for selection of a personal electric vehicle. Brazilian Journal of Operations & Production Management, 20(2), 1415-1415. https://doi.org/10.14488/BJOPM.1415.2023
  • Görçün, Ö. F., Simic, V., Kundu, P., Özbek, A., and Küçükönder, H. (2024). Electric vehicle selection for industrial users using an interval-valued intuitionistic fuzzy COPRAS-based model. Environment, Development and Sustainability, 1-42. https://doi.org/10.1007/s10668-024-05562-w
  • Gul, M., Guven, B., and Guneri, A. F. (2018). A new Fine-Kinney-based risk assessment framework using FAHP-FVIKOR incorporation. Journal of Loss Prevention in the Process Industries, 53, 3-16. https://doi.org/10.1016/j.jlp.2017.08.014
  • Güler, A., and Polatgil, M. (2024) Investigation of the effect of expert's opinions on multi-criteria decision making techniques in electric vehicle selection. European Transport 99 (3). https://doi.org/10.48295/ET.2024.99.3
  • Hamurcu, M., and Eren, T. (2020). Electric bus selection with multicriteria decision analysis for green transportation. Sustainability, 12(7), 2777. https://doi.org/10.3390/su12072777
  • Hao, C., Ge, Y., Liang, J., He, Z., Huang, Z., and Dou, G. (2023). Research on promotion pathways for zero-emission medium-and heavy-duty trucks: A case study of Hainan Island. Atmosphere, 14(5), 882. https://doi.org/10.3390/atmos14050882
  • Hensher, D. A., and Wei, E. (2024). Energy and environmental costs in transitioning to zero and low emission trucks for the Australian truck Fleet: An industry perspective. Transportation Research Part A: Policy and Practice, 185, 104108. https://doi.org/10.1016/j.tra.2024.104108
  • Hovi, I. B., Pinchasik, D. R., Figenbaum, E., and Thorne, R. J. (2019). Experiences from battery-electric truck users in Norway. World Electric Vehicle Journal, 11(1), 5. https://doi.org/10.3390/wevj11010005
  • International Council on Clean Transportation (ICCT). (2023). Battery electric trucks emit 63% less GHG emissions than diesel. ICCT. Erişim: 16 Aralık 2024, https://theicct.org/battery-electric-trucks-emit-63-less-ghg-emissions-than-diesel/
  • Jahangir Samet, M., Liimatainen, H., van Vliet, O. P. R., and Pöllänen, M. (2021). Road freight transport electrification potential by using battery electric trucks in Finland and Switzerland. Energies, 14(4), 823. https://doi.org/10.3390/en14040823
  • Kene, R., Olwal, T., and van Wyk, B. J. (2021). Sustainable electric vehicle transportation. Sustainability, 13(22), 12379. https://doi.org/10.3390/su132212379
  • Konstantinou, T., and Gkritza, K. (2023a). Are we getting close to truck electrification? US truck fleet managers’ stated intentions to electrify their fleets. Transportation Research Part A: Policy and Practice, 173, 103697. https://doi.org/10.1016/j.tra.2023.103697
  • Konstantinou, T., and Gkritza, K. (2023b). Examining the barriers to electric truck adoption as a system: A Grey-DEMATEL approach. Transportation Research Interdisciplinary Perspectives, 17, 100746. https://doi.org/10.1016/j.trip.2022.100746
  • Lee, D. Y., Thomas, V. M., and Brown, M. A. (2013). Electric urban delivery trucks: Energy use, greenhouse gas emissions, and cost-effectiveness. Environmental Science & Technology, 47(14), 8022-8030. https://doi.org/10.1021/es400179w
  • Leonard, A. T., Salek, F., Azizi, A., and Resalati, S. (2022). Electrification of a class 8 heavy-duty truck considering battery pack sizing and cargo capacity. Applied Sciences, 12(19), 9683. https://doi.org/10.3390/app12199683
  • Malozyomov, B. V., Martyushev, N. V., Sorokova, S. N., Efremenkov, E. A., Valuev, D. V., and Qi, M. (2024). Mathematical modelling of traction equipment parameters of electric cargo trucks. Mathematics, 12(4), 577. https://doi.org/10.3390/math12040577
  • Mauler, L., Dahrendorf, L., Duffner, F., Winter, M., and Leker, J. (2022). Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A US case study. Journal of Energy Storage, 46, 103891. https://doi.org/10.1016/j.est.2021.103891
  • Mete, A. N., ve Öztaş Karlı, R. G. (2025). Elektrikli skuterlerin şehir ekosistemine katkısı: Bulanık AHP perspektifi. Iğdır Üniversitesi Sosyal Bilimler Dergisi, (38), 323-341. https://doi.org/10.54600/igdirsosbilder.1495011
  • Moreno-Solaz, H., Artacho-Ramírez, M. Á., Aragonés-Beltrán, P., and Cloquell-Ballester, V. A. (2023). Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15481
  • Moultak, M., Lutsey, N., and Hall, D. (2017). Transitioning to zero-emission heavy-duty freight vehicles. The International Council on Clean Transportation. Erişim: 15 Mayıs 2024, https://theicct.org/publication/transitioning-to-zero-emission-heavy-duty-freight-vehicles/
  • Mu, Z., Zhao, F., Bai, F., Liu, Z., and Hao, H. (2024). Evaluating fuel cell vs. battery electric trucks: economic perspectives in alignment with China’s carbon neutrality target. Sustainability, 16(6), 2427. https://doi.org/10.3390/su16062427
  • Noto, F., and Mostofi, H. (2023). Acceptance analysis of electric heavy trucks and battery swapping stations in the German market. Systems, 11(9), 441. https://doi.org/10.3390/systems11090441
  • Nur, F., Alrahahleh, A., Burch, R., Babski-Reeves, K., and Marufuzzaman, M. (2020). Last mile delivery drone selection and evaluation using the interval-valued inferential fuzzy TOPSIS. Journal of Computational Design and Engineering, 7(4), 397-411. https://doi.org/10.1093/jcde/qwaa033
  • Nykvist, B., and Olsson, O. (2021). The feasibility of heavy battery electric trucks. Joule, 5(4), 901-913. 10.1016/j.joule.2021.03.007
  • Özlü, L., and Çelebi, D. (2024). Electrifying freight: modeling the decision-making process for battery electric truck procurement. Sustainability, 16(9), 3801. https://doi.org/10.3390/su16093801
  • Öztaş Karlı, R. G. (2025). Çevresel sürdürülebilirlik perspektifinden şehir içi akıllı ulaşım sistemlerinin TOPSIS analizi ile değerlendirilmesi. Trafik ve Ulaşım Araştırmaları Dergisi, 8(1), 1-14. https://doi.org/10.38002/tuad.1496774
  • Pal, K., Saraswat, D., and Budhraja, N. (2023). An ıntegrated entropy-TOPSIS approach for electric vehicle selection. Int. J. Exp. Res. Rev, 36, 311-318. https://doi.org/10.52756/ijerr.2023.v36.028
  • Piscitelli, P., Valenzano, B., Rizzo, E., Maggiotto, G., Rivezzi, M., Esposito Corcione, F., and Miani, A. (2019). Air pollution and estimated health costs related to road transportations of goods in Italy: A first healthcare burden assessment. International Journal of Environmental Research and Public Health, 16(16), 2876. https://doi.org/10.3390/ijerph16162876
  • Pradhan, P., Shabbiruddin, and Pradhan, S. (2022). Selection of electric vehicle using integrated Fuzzy-MCDM approach with analysis on challenges faced in hilly terrain. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2651-2673. https://doi.org/10.1080/15567036.2022.2056665
  • Qiao, Y., and Raufer, R. (2022). Electric truck deployment in Chinese cities: Promotion policies and implications for future policymaking. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4), e433. https://doi.org/10.1002/wene.433
  • Raoofi, Z., Huge Brodin, M., and Pernestål, A. (2024). System-level impacts of electrification on the road freight transport system: a dynamic approach. International Journal of Physical Distribution & Logistics Management, 54(6), 631-651.
  • Sejwal, R., Pal, S., Kumar Singh, N., Saini, R., and Yuvraj, N. (2022). Selection of Electric Vehicles Using MCDM Techniques. In Advanced Production and Industrial Engineering (pp. 598-607). IOS Press. https://ebooks.iospress.nl/doi/10.3233/ATDE220801
  • Sen, B., Ercan, T., and Tatari, O. (2017). Does a battery-electric truck make a difference?–Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of cleaner production, 141, 110-121. https://doi.org/10.1016/j.jclepro.2016.09.046
  • Shekhovtsov, A., Kołodziejczyk, J., and Sałabun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541. https://doi.org/10.3390/sym12091541
  • Shoman, W., Yeh, S., Sprei, F., Plötz, P., and Speth, D. (2023). Battery electric long-haul trucks in Europe: Public charging, energy, and power requirements. Transportation Research Part D: Transport and Environment, 121, 103825. https://doi.org/10.1016/j.trd.2023.103825
  • Sonar, H. C., and Kulkarni, S. D. (2021). An integrated AHP-MABAC approach for electric vehicle selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665
  • Statista. (2023a). Global road freight emissions by vehicle type 2020. Statista. Erişim Tarihi: 16.09.2024, https://www.statista.com/statistics/1200116/road-freight-emissions-by-vehicle-type-worldwide/
  • Statista. (2023b). Worldwide market forecast for electric trucks by type from 2020 to 2030. Statista. Erişim Tarihi: 16.06.2024, https://www.statista.com/statistics/1273791/electric-truck-worldwide-market-forecast-by-type/
  • Tanvir, S., Un-Noor, F., Boriboonsomsin, K., and Gao, Z. (2021). Feasibility of operating a heavy-duty battery electric truck fleet for drayage applications. Transportation Research Record, 2675(1), 258-268. https://doi.org/10.1177/0361198120957325
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2025). Türkiye’nin Uzun Dönemli İklim Stratejisi. Erişim: 14 Mayıs 2025, https://iklim.gov.tr/db/turkce/dokumanlar/turkiyenin--8230-3143-20250210095501.pdf#page=7.86
  • Tian, Z. P., Liang, H. M., Nie, R. X., Wang, X. K., and Wang, J. Q. (2023). Data-driven multi-criteria decision support method for electric vehicle selection. Computers & Industrial Engineering, 177, 109061. https://doi.org/10.1016/j.cie.2023.109061
  • United Nations Environment Programme(UNEP). (2024). Rise in used heavy-duty vehicles a major contributor to pollution, prompting global action. Erişim: 16 Aralık 2024, https://www.unep.org/news-and-stories/press-release/rise-used-heavy-duty-vehicles-major-contributor-pollution-prompting
  • Vijayagopal, R., and Rousseau, A. (2021). Electric truck economic feasibility analysis. World Electric Vehicle Journal, 12(2), 75. https://doi.org/10.3390/wevj12020075
  • Wang, N., Xu, Y., Puška, A., Stević, Ž., and Alrasheedi, A. F. (2023). Multi-Criteria selection of electric delivery vehicles using fuzzy–rough methods. Sustainability, 15(21), 15541. https://doi.org/10.3390/su152115541
  • Wangsa, I. D., Vanany, I., and Siswanto, N. (2023). The optimal tax incentive and subsidy to promote electric trucks in Indonesia: Insight for government and industry. Case Studies on Transport Policy, 11, 100966. https://doi.org/10.1016/j.cstp.2023.100966
  • Wątróbski, J., Małecki, K., Kijewska, K., Iwan, S., Karczmarczyk, A., and Thompson, R. G. (2017). Multi-criteria analysis of electric vans for city logistics. Sustainability, 9(8), 1453. https://doi.org/10.3390/su9081453
  • Werner, V., and Onufrey, K. (2022). If electric trucks are the solution, what are the problems? A study of agenda-setting in demonstration projects. Energy Research & Social Science, 91, 102722. https://doi.org/10.1016/j.erss.2022.102722
  • Więckowski, J., Wątróbski, J., Kizielewicz, B., and Sałabun, W. (2023). Complex sensitivity analysis in multi-criteria decision analysis: An application to the selection of an electric car. Journal of Cleaner Production, 390, 136051. https://doi.org/10.1016/j.jclepro.2023.136051
  • Wu, C., Li, P., Zhou, H., and Zhou, Y. (2023). The changing adoption behaviors on electric trucks over time during the intention-purchase stage: Insights from freight enterprises’ states and perception features. Journal of Cleaner Production, 421, 138476. https://doi.org/10.1016/j.jclepro.2023.138476
  • Xu, F., Crawford, C., Feng, Y., Lin, Z., and Li, S. (2023). Environment-economic analysis of diesel, hybrid electric, plug-in hybrid electric trucks in China. Transportation Research Part D: Transport and Environment, 117, 103661.
  • Yu, H., and Sun, X. (2024). Can an industry-led infrastructure development strategy facilitate electric truck adoption?. Transportation Research Part D: Transport and Environment, 134, 104356. https://doi.org/10.1016/j.trd.2024.104356
  • Zhang, X., Lin, Z., Crawford, C., and Li, S. (2021). Techno-economic comparison of electrification for heavy-duty trucks in China by 2040. Transportation Research Part D: Transport and Environment, 102, 103152. https://doi.org/10.1016/j.trd.2021.103152
  • Ziemba, P., Kannchen, M., and Borawski, M. (2024). Selection of the family electric car based on objective and subjective criteria—analysis of a case study of polish consumers. Energies, 17(6), 1347. https://doi.org/10.3390/en17061347

Elektrikli Ağır Yük Taşıma Aracı Seçiminin Çok Kriterli Analizi: Bulanık AHP-TOPSIS Çerçevesi

Year 2025, Volume: 8 Issue: 2, 112 - 132, 25.10.2025
https://doi.org/10.51513/jitsa.1700101

Abstract

Uluslararası karayolu yük taşımacılığının önümüzdeki dönemde dikkate alması gereken ana zorluklardan biri ulusal ve uluslararası çevreci düzenlemelerdir. Bu düzenlemelere uyum sağlamanın yollarından biri de araç filosunu elektrikli ağır yük taşıma araçlarıyla dönüştürmektir. Ancak yüksek sermaye yatırımı isteyen bu dönüşümde doğru araç seçimi uzun dönemli etkileri olan bir karardır. Bu çalışmanın amacı, uluslararası karayolu yük taşımacılığı bağlamında elektrikli ağır yük taşıma aracı (EAYTA) seçiminde çok boyutlu karar verme sürecini sistematik bir biçimde ele alacak bütünleşmiş bir model geliştirmektir. Çalışmada bulanık AHP ve TOPSIS yöntemi bütünleşmiş bir şekilde kullanılmıştır. Kriterlerin ağırlıklarının belirlenme aşamasında Bulanık AHP yönteminden faydalanılırken alternatiflerin seçim aşamasında ise TOPSIS yönteminden faydalanılmıştır. Çalışma bulgularına göre, bulanık AHP analizi sonucunda EAYTA seçiminde etkili olan kriterler sırasıyla; yük kapasitesi, menzil, satın alma maliyeti, şarj gücü, işletme maliyeti ve motor gücüdür. TOPSIS analizi sonucu ise EAYTA sıralaması; alternatif 1, alternatif 2, alternatif 4, alternatif 5 ve alternatif 3 olarak sırlanmaktadır. Elektrikli araç seçimine yönelik yapılan çalışmalar genellikle binek araçlar veya hafif yük taşıma araçları üzerine yoğunlaşırken bu çalışma, özellikle uluslararası karayolu yük taşımacılığı bağlamında EAYTA seçim problemine yönelik bir uygulamayla hem akademik hem de endüstriyel karar süreçlerine doğrudan uygulanabilir bir model önermektedir.

Ethical Statement

Bu çalışma etik ilkelere uygun olarak gerçekleştirilmiştir.

Supporting Institution

TÜBİTAK

Project Number

1919B012307319

Thanks

Bu çalışma, TÜBİTAK 2209-A Projesi kapsamında desteklenmiştir. Sağladığı katkılar dolayısıyla TÜBİTAK'a teşekkürlerimizi sunarız.

References

  • Aiello, G., Quaranta, S., Inguanta, R., Certa, A., and Venticinque, M. (2024). A multi-criteria decision-making framework for zero emission vehicle fleet renewal considering lifecycle and scenario uncertainty. Energies, 17(6), 1371.
  • Alamoodi, A. H., Albahri, O. S., Deveci, M., Albahri, A. S., Yussof, S., Dinçer, H., ... and Sharaf, I. M. (2024). Selection of electric bus models using 2-tuple linguistic T-spherical fuzzy-based decision-making model. Expert Systems with Applications, 249, 123498. https://doi.org/10.1016/j.eswa.2024.123498
  • Alonso-Villar, A., Davíðsdóttir, B., Stefánsson, H., Ásgeirsson, E. I., and Kristjánsson, R. (2023). Electrification potential for heavy-duty vehicles in harsh climate conditions: A case study based technical feasibility assessment. Journal of Cleaner Production, 417, 137997. https://doi.org/10.1016/j.jclepro.2023.137997
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., and Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056
  • Bergqvist, R., Monios, J., and Jönsson, J. (2023). Potential for rapid adoption of battery-electric heavy-duty trucks for pre-and post-haulage at intermodal terminals. Research in Transportation Business & Management, 50, 101035. https://doi.org/10.1016/j.rtbm.2023.101035
  • Bhardwaj, S., and Mostofi, H. (2022). Technical and business aspects of battery electric trucks-a systematic review. Future Transportation, 2(2), 382-401. https://doi.org/10.3390/futuretransp2020021
  • Biswas, T. K., and Das, M. C. (2019). Selection of commercially available electric vehicle using fuzzy AHP-MABAC. Journal of The Institution of Engineers (India): Series C, 100, 531-537. https://doi.org/10.1007/s40032-018-0481-3
  • Biswas, T., Chatterjee, P., and Choudhuri, B. (2020). Selection of commercially available alternative passenger vehicle in automotive environment. Operational research in engineering sciences: theory and applications, 3(1), 16-27. https://doi.org/10.31181/oresta200113b
  • Bošković, S., Švadlenka, L., Jovčić, S., Dobrodolac, M., Simić, V., and Bacanin, N. (2023). An alternative ranking order method accounting for two-step normalization (AROMAN)—A case study of the electric vehicle selection problem. IEEE Access, 11, 39496-39507. 10.1109/ACCESS.2023.3265818
  • Breed, A. K., Speth, D., and Plötz, P. (2021). CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe. Energy Policy, 159, 112640. https://doi.org/10.1016/j.enpol.2021.112640
  • Brusselaers, N., Macharis, C., and Mommens, K. (2023). The health impact of freight transport-related air pollution on vulnerable population groups. Environmental Pollution, 329, 121555. https://doi.org/10.1016/j.envpol.2023.121555
  • Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9
  • Büyükselçuk, E. Ç. (2024). Elektrikli kamyon seçiminde dairesel sezgisel bulanık kümelere dayalı VIKOR yönteminin uygulanması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 402-427.
  • Bynum, C., Sze, C., Kearns, D., Polovick, B., and Simon, K. (2018). An examination of a voluntary policy model to effect behavioral change and influence interactions and decision making in the freight sector. Transportation Research Part D: Transport and Environment, 61, 19-32. https://doi.org/10.1016/j.trd.2016.11.018
  • Cantillo, V., Amaya, J., Serrano, I., Cantillo-García, V., and Galván, J. (2022). Influencing factors of trucking companies willingness to shift to alternative fuel vehicles. Transportation Research Part E: Logistics and Transportation Review, 163, 102753. https://doi.org/10.1016/j.tre.2022.102753
  • Çelikbilek, Y., and Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics, 7(2), 281-300. https://doi.org/10.1080/23270012.2020.1748528
  • Chatterjee, S., Das, P. P., and Chakraborty, S. (2024). A novel integrated multi-criteria decision-making approach for solving delivery drone selection problem. OPSEARCH, 1-30. https://doi.org/10.1007/s12597-024-00794-w
  • Cheng, X., and Lin, J. (2024). Is electric truck a viable alternative to diesel truck in long-haul operation?. Transportation Research Part D: Transport and Environment, 129, 104119. https://doi.org/10.1016/j.trd.2024.104119
  • Cunanan, C., Tran, M. K., Lee, Y., Kwok, S., Leung, V., and Fowler, M. (2021). A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 3(2), 474-489. https://doi.org/10.3390/cleantechnol3020028
  • Dağdeviren, M., Yavuz, S., and Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems With Applications, 36(4), 8143-8151. https://doi.org/10.1016/j.eswa.2008.10.016
  • Das, M. C., Pandey, A., Mahato, A. K., and Singh, R. K. (2019). Comparative performance of electric vehicles using evaluation of mixed data. Opsearch, 56, 1067-1090. https://doi.org/10.1007/s12597-019-00398-9
  • Feng, W., and Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transportation Research Part C: Emerging Technologies, 26, 135-145. https://doi.org/10.1016/j.trc.2012.06.007
  • Golui, S., Mahapatra, B. S., and Mahapatra, G. S. (2024). A new correlation-based measure on Fermatean fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert Systems With Applications, 237, 121605. https://doi.org/10.1016/j.eswa.2023.121605
  • Gomes, C. F. S., Sousa, F., Pereira, T., Oliveira, M., and Torres, L. N. M. (2023). Multicriteria methodology for selection of a personal electric vehicle. Brazilian Journal of Operations & Production Management, 20(2), 1415-1415. https://doi.org/10.14488/BJOPM.1415.2023
  • Görçün, Ö. F., Simic, V., Kundu, P., Özbek, A., and Küçükönder, H. (2024). Electric vehicle selection for industrial users using an interval-valued intuitionistic fuzzy COPRAS-based model. Environment, Development and Sustainability, 1-42. https://doi.org/10.1007/s10668-024-05562-w
  • Gul, M., Guven, B., and Guneri, A. F. (2018). A new Fine-Kinney-based risk assessment framework using FAHP-FVIKOR incorporation. Journal of Loss Prevention in the Process Industries, 53, 3-16. https://doi.org/10.1016/j.jlp.2017.08.014
  • Güler, A., and Polatgil, M. (2024) Investigation of the effect of expert's opinions on multi-criteria decision making techniques in electric vehicle selection. European Transport 99 (3). https://doi.org/10.48295/ET.2024.99.3
  • Hamurcu, M., and Eren, T. (2020). Electric bus selection with multicriteria decision analysis for green transportation. Sustainability, 12(7), 2777. https://doi.org/10.3390/su12072777
  • Hao, C., Ge, Y., Liang, J., He, Z., Huang, Z., and Dou, G. (2023). Research on promotion pathways for zero-emission medium-and heavy-duty trucks: A case study of Hainan Island. Atmosphere, 14(5), 882. https://doi.org/10.3390/atmos14050882
  • Hensher, D. A., and Wei, E. (2024). Energy and environmental costs in transitioning to zero and low emission trucks for the Australian truck Fleet: An industry perspective. Transportation Research Part A: Policy and Practice, 185, 104108. https://doi.org/10.1016/j.tra.2024.104108
  • Hovi, I. B., Pinchasik, D. R., Figenbaum, E., and Thorne, R. J. (2019). Experiences from battery-electric truck users in Norway. World Electric Vehicle Journal, 11(1), 5. https://doi.org/10.3390/wevj11010005
  • International Council on Clean Transportation (ICCT). (2023). Battery electric trucks emit 63% less GHG emissions than diesel. ICCT. Erişim: 16 Aralık 2024, https://theicct.org/battery-electric-trucks-emit-63-less-ghg-emissions-than-diesel/
  • Jahangir Samet, M., Liimatainen, H., van Vliet, O. P. R., and Pöllänen, M. (2021). Road freight transport electrification potential by using battery electric trucks in Finland and Switzerland. Energies, 14(4), 823. https://doi.org/10.3390/en14040823
  • Kene, R., Olwal, T., and van Wyk, B. J. (2021). Sustainable electric vehicle transportation. Sustainability, 13(22), 12379. https://doi.org/10.3390/su132212379
  • Konstantinou, T., and Gkritza, K. (2023a). Are we getting close to truck electrification? US truck fleet managers’ stated intentions to electrify their fleets. Transportation Research Part A: Policy and Practice, 173, 103697. https://doi.org/10.1016/j.tra.2023.103697
  • Konstantinou, T., and Gkritza, K. (2023b). Examining the barriers to electric truck adoption as a system: A Grey-DEMATEL approach. Transportation Research Interdisciplinary Perspectives, 17, 100746. https://doi.org/10.1016/j.trip.2022.100746
  • Lee, D. Y., Thomas, V. M., and Brown, M. A. (2013). Electric urban delivery trucks: Energy use, greenhouse gas emissions, and cost-effectiveness. Environmental Science & Technology, 47(14), 8022-8030. https://doi.org/10.1021/es400179w
  • Leonard, A. T., Salek, F., Azizi, A., and Resalati, S. (2022). Electrification of a class 8 heavy-duty truck considering battery pack sizing and cargo capacity. Applied Sciences, 12(19), 9683. https://doi.org/10.3390/app12199683
  • Malozyomov, B. V., Martyushev, N. V., Sorokova, S. N., Efremenkov, E. A., Valuev, D. V., and Qi, M. (2024). Mathematical modelling of traction equipment parameters of electric cargo trucks. Mathematics, 12(4), 577. https://doi.org/10.3390/math12040577
  • Mauler, L., Dahrendorf, L., Duffner, F., Winter, M., and Leker, J. (2022). Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A US case study. Journal of Energy Storage, 46, 103891. https://doi.org/10.1016/j.est.2021.103891
  • Mete, A. N., ve Öztaş Karlı, R. G. (2025). Elektrikli skuterlerin şehir ekosistemine katkısı: Bulanık AHP perspektifi. Iğdır Üniversitesi Sosyal Bilimler Dergisi, (38), 323-341. https://doi.org/10.54600/igdirsosbilder.1495011
  • Moreno-Solaz, H., Artacho-Ramírez, M. Á., Aragonés-Beltrán, P., and Cloquell-Ballester, V. A. (2023). Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15481
  • Moultak, M., Lutsey, N., and Hall, D. (2017). Transitioning to zero-emission heavy-duty freight vehicles. The International Council on Clean Transportation. Erişim: 15 Mayıs 2024, https://theicct.org/publication/transitioning-to-zero-emission-heavy-duty-freight-vehicles/
  • Mu, Z., Zhao, F., Bai, F., Liu, Z., and Hao, H. (2024). Evaluating fuel cell vs. battery electric trucks: economic perspectives in alignment with China’s carbon neutrality target. Sustainability, 16(6), 2427. https://doi.org/10.3390/su16062427
  • Noto, F., and Mostofi, H. (2023). Acceptance analysis of electric heavy trucks and battery swapping stations in the German market. Systems, 11(9), 441. https://doi.org/10.3390/systems11090441
  • Nur, F., Alrahahleh, A., Burch, R., Babski-Reeves, K., and Marufuzzaman, M. (2020). Last mile delivery drone selection and evaluation using the interval-valued inferential fuzzy TOPSIS. Journal of Computational Design and Engineering, 7(4), 397-411. https://doi.org/10.1093/jcde/qwaa033
  • Nykvist, B., and Olsson, O. (2021). The feasibility of heavy battery electric trucks. Joule, 5(4), 901-913. 10.1016/j.joule.2021.03.007
  • Özlü, L., and Çelebi, D. (2024). Electrifying freight: modeling the decision-making process for battery electric truck procurement. Sustainability, 16(9), 3801. https://doi.org/10.3390/su16093801
  • Öztaş Karlı, R. G. (2025). Çevresel sürdürülebilirlik perspektifinden şehir içi akıllı ulaşım sistemlerinin TOPSIS analizi ile değerlendirilmesi. Trafik ve Ulaşım Araştırmaları Dergisi, 8(1), 1-14. https://doi.org/10.38002/tuad.1496774
  • Pal, K., Saraswat, D., and Budhraja, N. (2023). An ıntegrated entropy-TOPSIS approach for electric vehicle selection. Int. J. Exp. Res. Rev, 36, 311-318. https://doi.org/10.52756/ijerr.2023.v36.028
  • Piscitelli, P., Valenzano, B., Rizzo, E., Maggiotto, G., Rivezzi, M., Esposito Corcione, F., and Miani, A. (2019). Air pollution and estimated health costs related to road transportations of goods in Italy: A first healthcare burden assessment. International Journal of Environmental Research and Public Health, 16(16), 2876. https://doi.org/10.3390/ijerph16162876
  • Pradhan, P., Shabbiruddin, and Pradhan, S. (2022). Selection of electric vehicle using integrated Fuzzy-MCDM approach with analysis on challenges faced in hilly terrain. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2651-2673. https://doi.org/10.1080/15567036.2022.2056665
  • Qiao, Y., and Raufer, R. (2022). Electric truck deployment in Chinese cities: Promotion policies and implications for future policymaking. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4), e433. https://doi.org/10.1002/wene.433
  • Raoofi, Z., Huge Brodin, M., and Pernestål, A. (2024). System-level impacts of electrification on the road freight transport system: a dynamic approach. International Journal of Physical Distribution & Logistics Management, 54(6), 631-651.
  • Sejwal, R., Pal, S., Kumar Singh, N., Saini, R., and Yuvraj, N. (2022). Selection of Electric Vehicles Using MCDM Techniques. In Advanced Production and Industrial Engineering (pp. 598-607). IOS Press. https://ebooks.iospress.nl/doi/10.3233/ATDE220801
  • Sen, B., Ercan, T., and Tatari, O. (2017). Does a battery-electric truck make a difference?–Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of cleaner production, 141, 110-121. https://doi.org/10.1016/j.jclepro.2016.09.046
  • Shekhovtsov, A., Kołodziejczyk, J., and Sałabun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541. https://doi.org/10.3390/sym12091541
  • Shoman, W., Yeh, S., Sprei, F., Plötz, P., and Speth, D. (2023). Battery electric long-haul trucks in Europe: Public charging, energy, and power requirements. Transportation Research Part D: Transport and Environment, 121, 103825. https://doi.org/10.1016/j.trd.2023.103825
  • Sonar, H. C., and Kulkarni, S. D. (2021). An integrated AHP-MABAC approach for electric vehicle selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665
  • Statista. (2023a). Global road freight emissions by vehicle type 2020. Statista. Erişim Tarihi: 16.09.2024, https://www.statista.com/statistics/1200116/road-freight-emissions-by-vehicle-type-worldwide/
  • Statista. (2023b). Worldwide market forecast for electric trucks by type from 2020 to 2030. Statista. Erişim Tarihi: 16.06.2024, https://www.statista.com/statistics/1273791/electric-truck-worldwide-market-forecast-by-type/
  • Tanvir, S., Un-Noor, F., Boriboonsomsin, K., and Gao, Z. (2021). Feasibility of operating a heavy-duty battery electric truck fleet for drayage applications. Transportation Research Record, 2675(1), 258-268. https://doi.org/10.1177/0361198120957325
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2025). Türkiye’nin Uzun Dönemli İklim Stratejisi. Erişim: 14 Mayıs 2025, https://iklim.gov.tr/db/turkce/dokumanlar/turkiyenin--8230-3143-20250210095501.pdf#page=7.86
  • Tian, Z. P., Liang, H. M., Nie, R. X., Wang, X. K., and Wang, J. Q. (2023). Data-driven multi-criteria decision support method for electric vehicle selection. Computers & Industrial Engineering, 177, 109061. https://doi.org/10.1016/j.cie.2023.109061
  • United Nations Environment Programme(UNEP). (2024). Rise in used heavy-duty vehicles a major contributor to pollution, prompting global action. Erişim: 16 Aralık 2024, https://www.unep.org/news-and-stories/press-release/rise-used-heavy-duty-vehicles-major-contributor-pollution-prompting
  • Vijayagopal, R., and Rousseau, A. (2021). Electric truck economic feasibility analysis. World Electric Vehicle Journal, 12(2), 75. https://doi.org/10.3390/wevj12020075
  • Wang, N., Xu, Y., Puška, A., Stević, Ž., and Alrasheedi, A. F. (2023). Multi-Criteria selection of electric delivery vehicles using fuzzy–rough methods. Sustainability, 15(21), 15541. https://doi.org/10.3390/su152115541
  • Wangsa, I. D., Vanany, I., and Siswanto, N. (2023). The optimal tax incentive and subsidy to promote electric trucks in Indonesia: Insight for government and industry. Case Studies on Transport Policy, 11, 100966. https://doi.org/10.1016/j.cstp.2023.100966
  • Wątróbski, J., Małecki, K., Kijewska, K., Iwan, S., Karczmarczyk, A., and Thompson, R. G. (2017). Multi-criteria analysis of electric vans for city logistics. Sustainability, 9(8), 1453. https://doi.org/10.3390/su9081453
  • Werner, V., and Onufrey, K. (2022). If electric trucks are the solution, what are the problems? A study of agenda-setting in demonstration projects. Energy Research & Social Science, 91, 102722. https://doi.org/10.1016/j.erss.2022.102722
  • Więckowski, J., Wątróbski, J., Kizielewicz, B., and Sałabun, W. (2023). Complex sensitivity analysis in multi-criteria decision analysis: An application to the selection of an electric car. Journal of Cleaner Production, 390, 136051. https://doi.org/10.1016/j.jclepro.2023.136051
  • Wu, C., Li, P., Zhou, H., and Zhou, Y. (2023). The changing adoption behaviors on electric trucks over time during the intention-purchase stage: Insights from freight enterprises’ states and perception features. Journal of Cleaner Production, 421, 138476. https://doi.org/10.1016/j.jclepro.2023.138476
  • Xu, F., Crawford, C., Feng, Y., Lin, Z., and Li, S. (2023). Environment-economic analysis of diesel, hybrid electric, plug-in hybrid electric trucks in China. Transportation Research Part D: Transport and Environment, 117, 103661.
  • Yu, H., and Sun, X. (2024). Can an industry-led infrastructure development strategy facilitate electric truck adoption?. Transportation Research Part D: Transport and Environment, 134, 104356. https://doi.org/10.1016/j.trd.2024.104356
  • Zhang, X., Lin, Z., Crawford, C., and Li, S. (2021). Techno-economic comparison of electrification for heavy-duty trucks in China by 2040. Transportation Research Part D: Transport and Environment, 102, 103152. https://doi.org/10.1016/j.trd.2021.103152
  • Ziemba, P., Kannchen, M., and Borawski, M. (2024). Selection of the family electric car based on objective and subjective criteria—analysis of a case study of polish consumers. Energies, 17(6), 1347. https://doi.org/10.3390/en17061347
There are 76 citations in total.

Details

Primary Language Turkish
Subjects Road Transportation and Freight Services
Journal Section Articles
Authors

Tuğçe Ece Ergin This is me 0009-0007-2589-2139

Halil Karlı 0000-0002-5366-9774

Project Number 1919B012307319
Early Pub Date October 22, 2025
Publication Date October 25, 2025
Submission Date May 15, 2025
Acceptance Date September 23, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Ergin, T. E., & Karlı, H. (2025). Elektrikli Ağır Yük Taşıma Aracı Seçiminin Çok Kriterli Analizi: Bulanık AHP-TOPSIS Çerçevesi. Akıllı Ulaşım Sistemleri Ve Uygulamaları Dergisi, 8(2), 112-132. https://doi.org/10.51513/jitsa.1700101